FINESSE Fast Infrared Exoplanet Spectroscopy Survey Explorer

Exploring New Worlds Around Other Stars

FINESSE is the first mission dedicated to the characterization of the rapidly growing number of newly discovered worlds.

- Building on the legacy of exoplanet discovery.
- Taking the next step ... characterizing the diverse exoplanet family.

FINESSE: Humankind's Journey

Many Worlds - Many Suns

Today we know that our solar system is part of a much larger family of planets

Science Team

Small & experienced team with well-defined roles

Tem Member	Institution	Role	
Mark Swain (PI)	JPL	Overall responsibility for FINESSE mission	
Rob Green (dep. PI)	JPL	Instrument scientist, spectrometer design and calibration	
Rachel Akeson	Caltech	Data products and archive lead	
Linda Brown	JPL	Molecular opacities	
Adam Burrows	Princeton	Modeling planetary atmospheres	
Pieter Deroo	JPL	Algorithm development lead	
Tom Greene	NASA Ames	Instrument modeling	
Caitlin Griffith	U. Arizona	Modeling planetary atmospheres – emission spectra	
Carl Grillmair	Caltech	Target and calibrator target selection and observing plan lead	
Thomas Henning	MPIA	Modeling planet-disc coevolution	
Giusi Micela	INAF	Modeling star spots and stellar variations	
Glenn Orton	JPL	Planetary atmospheres and solar system context	
Giovanna Tinetti	UCL	Modeling planetary atmospheres – transmission spectra	
Gautam Vasisht	JPL	Instrument architect	

FINESSE Overview

Mission Summary

- Sun-synchronous, circular, 570 km altitude orbit, similar to WISE
- Compatible with Taurus 3210 & Athena II
- Ground-system and mission operations adapted from WISE with four 8-min S-band passes/day to Near Earth Network
- Unrestricted launch period
- · Two-year mission duration
- · Major trades closed

Payload

Single, high-stability spectrophotometer:

- Telescope, 76 cm, RESPONDER-1[™]-based

 passively cooled to 140 K
- Spectrometer, 0.7-5.0 µm, M3-based
 - $-\lambda/\Delta\lambda$ = 1000, actively cooled to 90 K
 - Detector, HgCdTe JWST/NIRspec copy
 - actively cooled to 70 K
- Pulse tube cryo cooler, 2 stage, pulse tube
 - · GOES & ABI-based
- Fine Guidance System
 - 2 Hz bandwidth, guides on science target
 - Guide camera, e2v CCD-57
 - Fine steering mirror, piezo-based

An Extraordinary Opportunity

By systematically exploring a large sample of these new worlds, we have the rare and extraordinary opportunity to dramatically advance the emerging field of comparative exoplanetology.

FINESSE provides a transformational data set.

> FINESSE will answer two key questions:

1. What is the composition and temperature of exoplanet atmospheres?

2. How does the composition and temperature change from the dayside to the nightside and with time?

Many Questions Addressed

The FINESSE Survey

FINESSE will characterize the "extended family" of exoplanets, as a class of objects, by observing 200 exoplanets drawn from three broad categories, using a consistent observing method.

Characterization via Detecting Molecules

Key diagnostic molecules:

- H2O, CH4, CO2, CO
- Trace C/O and non-equilibrium chemistry
- Detected via spectroscopy in 3 planets to date

Table D.1-1: Molecules and locations of their prominent bands to be targeted by FINESSE.

<u>'</u>	3			
	Molecule	0.7–3.0 μm	$3.05.0~\mu\text{m}$	
<u>ပ</u>	H ₂ O	0.82, 0.94, 1.13, 1.38, 1.9, 2.69		
Key Diagnostic	CH ₄	0.79, 0.86, 1.65, 2.2, 2.31, 2.37	3.3	
Ag Re	CO ₂	1.21, 1.57, 1.6, 2.03	4.25	
Ë	CO	1.57, 2.35	4.7	
S	C ₂ H ₂	1.52	3.0	
nle	HCN		3.0	
) 	O ₃		4.7	
Š	O_2	0.76, 1.27		
ple	NH ₃	0.93, 1.5, 2, 2.25, 2.9	3.0	
SSi	C ₂ H ₄		3.22, 3.34	
P	H₂S	2.5	3.8	
na	SO ₂		4	
ditic	N ₂ O	2.8	3.9, 4.5	
Additional Possible Molecules	TiO	0.7–3.0	3.0–3.5	
	VO	0.7–2.5		

The FINESSE measurement method

Day/Night Composition and Climate

Unique FINESSE capabilities

- FINESSE provides a combination of stability and spectroscopic coverage that is unlike any other instrument.
- Optimized design means
 - No decorrelation required
 - 2. Broad, continuous coverage
 - Long term stability calibrators
 - 4. Large, uniformly measured sample
 - 5. Bright target capability

Directly addresses NASA Strategic Priorities.

Optimized for Stability

Optimization for Stability

Science Community Engagement

- > The objective is to rapidly extract maximum science from a transformative data set.
- Completed sets public in 6 months or less.
 - Includes all Level 1-4 data products
 - Includes spectral retrieval results
- Meeting prior to launch with synthetic data products
 - Allows community to "practice" analysis of FINESSE results.
- Participating Scientist Program:
 - Observational component joint observing for ground-space bootstrap
 - Theory component modeling beyond scope of the proposal team
 - Non-transiting planets

