Exo-C coronagraph probe mission study

Michael McElwain, on behalf of the Science & Technology Definition Team:

Karl Stapelfeldt (NASA/GSFC, Chair); Rus Belikov & Mark Marley (NASA/Ames); Geoff Bryden, Gene Serabyn, & John Trauger (JPL/Caltech); Kerri Cahoy (MIT); Supriya Chakrabarti (UMass Lowell); Michael McElwain (NASA/GSFC); Vikki Meadows (U of Washington)

JPL Engineering Design Team:
Frank Dekens (lead), Keith Warfield, Michael Brenner, Paul Brugarolas, Serge Dubovitsky, Bobby Effinger, Casey Heeg, Brian Hirsch, Andy Kissil, John Krist, Jared Lang, Joel Nissen, Jeff Oseas, Chris Pong, Eric Sunada

NASA Exoplanet Program Office:
Gary Blackwood, Steve Unwin
• Exo-C uses an internal coronagraph with precision wavefront control to conduct high contrast imaging at visible wavelengths
• Exo-C’s science goals are to:
 – Spectrally characterize at least a dozen RV planets
 – Search >100 nearby stars at multiple epochs for planets down to $\sim 3 \times 10^{-10}$ contrast. Characterize mini-Neptunes, search the α Centauri system.
 – Image hundreds of circumstellar disks
• Even though coronagraph missions have been studies for 20 yr engineering designs evolved significantly to improve performance and risk (cost).
• Exo-C internal costs estimate is $950 M, independent cost estimate is only slightly higher. Study has met its goal of achieving mission with cap of $\sim 1B$.
• Exo-C uses an internal coronagraph with precision wavefront control to conduct high contrast imaging at visible wavelengths

• Exo-C’s science goals are to:
 – Spectrally characterize at least a dozen RV planets
 – Search >100 nearby stars at multiple epochs for planets down to $\sim3\times10^{-10}$ contrast. Characterize mini-Neptunes, search the α Centauri system.
 – Image hundreds of circumstellar disks

• Even though coronagraph missions have been studies for 20 yr engineering designs evolved significantly to improve performance and risk (cost).

• Exo-C internal costs estimate is 950 M, independent cost estimate is only slightly higher. Study has met its goal of achieving mission with cap of \sim1B.
Internal Coronagraph Tutorial

Animation Outside Powerpoint

PLANET LIGHT
Radial velocity and transit surveys have shown exoplanets are abundant. Spectral characterization is the natural next step; reflected light planets are unique targets.

Atmospheric features are more readily detected by imaging than by transits.

Transit spectra probe only the tenuous upper atmosphere.

Curves show spectra relative to mean optical flux level.

GJ 1214b model spectra by Caroline Morley and Mark Marley.
• A ~1.4m aperture can be very effective if coronagraph requirements can drive the mission design
• Community interest in this mission class shown by at least 13 proposals submitted to Mid-Ex, Discovery, Astro 2010 ASMCS, and ESA M class since 1998
• Agility of internal coronagraph allows large number of targets to be observed and at multiple epochs
• Natural technology step to Exo-Earth flagship mission
• Kepler proved stable 1.4m observatory costs < $1B
• **Indirect detections:** RV surveys have detected 10 yr period planets ≥ Saturn mass, 1 yr period planets ≥ Neptune mass around stars F8 & later. Gaia detects short-period Jupiters. Target lists for spectra.

• **Transits:** TESS has extended Kepler results to brighter stars, defining planet mass-radius relationship. JWST+ELTs get transmission spectra for some of these. PLATO mission begins. All these provide target lists for outer planet imaging searches.

• **Exoplanet Direct Imaging:** Ground Adaptive Optics (AO) has obtained spectra of dozens of young/massive planets in near-IR thermal emission. Likely contrast limit of $\sim 10^{-8}$ set by atmospheric turbulence. JWST may image cold/wide giant planets around M stars (contrast $\sim 10^{-6}$).

• **Disk Imaging:** ALMA has redefined knowledge of protoplanetary disks, but cannot map tenuous debris disks at subarcsec resolution. Ground AO imaging polarimetry of brighter disks.
• Obtain optical spectra of nearest RV planets: Measure gas absorbers, fix planet mass.
• Search for planets beyond RV limits (Neptunes, super-Earths) in a nearby star sample. Measure orbits, do spectroscopy of the brightest ones
 — α Centauri system is a very important case
• Image circumstellar disks beyond HST, AO, and ALMA limits
 — Resolve structures driven by planetary perturbations, including dust in nearest habitable zones
 — Time evolution of disk structure & dust properties from protoplanetary to debris disks
• Probe a few systems for exo-Earths, if telescope stability and exozodi are favorable.
<table>
<thead>
<tr>
<th>Exo-C Technical Capabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescope primary mirror</td>
</tr>
<tr>
<td>Uncontrolled speckle contrast</td>
</tr>
<tr>
<td>Contrast stability</td>
</tr>
<tr>
<td>Spectral coverage</td>
</tr>
<tr>
<td>Spectral resolution $\lambda > 500$ nm</td>
</tr>
<tr>
<td>Inner Working Angle $2 \lambda/D$</td>
</tr>
<tr>
<td>Outer Working Angle $> 20 \lambda/D$</td>
</tr>
<tr>
<td>Spillover light from binary companion</td>
</tr>
<tr>
<td>Astrometric precision</td>
</tr>
<tr>
<td>Fields of view</td>
</tr>
<tr>
<td>Mission lifetime</td>
</tr>
</tbody>
</table>
Points are known RV planets

⊕ Earth analog as it would appear in nearby star HZ

Contrast $\geq 10^{-9}$
Contrast $< 10^{-9}$

Vertical lines show $2 \lambda/D$ inner working angle for 1.4m telescope at 500 and 800 nm
Histogram of detectable planets around nearby stars in total of 1 year of spacecraft time. Search yield of ~ 15 planets is expected.
Exo-C will discover and characterize circumstellar disks.

- Predicted disk sizes and contrasts for Herschel disks d < 40 pc
- Red points: The small number of disks imaged to date in scattered light.
- Black points: Disks with sizes known from Herschel data (measured at 5” resolution)
- Hollow points: Disks whose sizes can be estimated from far-IR SED and assumed dust properties.
• **Planet characterizations:** roughly 1 year of mission time
 – Take spectra of \(\sim 20 \) exoplanets (both known and mission-discovered)
 – Take multi-color photometry of 20 known RV planets plus an additional \(\sim 15 \) mission-discovered exoplanets

• **Planet discovery surveys:** roughly 1.2 years of mission time
 – Survey 15 nearby stars for super-Earths in the HZ, 6 visits each
 – Survey 135 nearby stars for giant planets, 2-3 visits each
 Provisionally assume 10% yield, or \(\sim 15 \) mission-discovered planets

• **Disk imaging surveys:** roughly 0.6 years of mission time
 – Survey for habitable zone dust in 150 A-K stars
 – Deep search for disks in 60 RV planet systems
 – Resolve structure in 150 known debris disks from Spitzer/Herschel/WISE
 – Resolve structure in 40 protoplanetary disks in nearby molecular clouds

* A wide range of science, containing characterizations and surveys
Exo-C Simulated Imagery

Altair 12 hrs each in V, R, I bands. Jupiter & Saturn analogs detected, 1 zodi dust ring from 2-4 AU

12 hr V band exposure of HIP 85790, a V= 5.6 star at 80 pc with WISE infrared excess. A 50 zodi debris disk extended to 80 AU radius is assumed.

5 day V band exposure of an Earth analog in the HZ of α Cen A (occulted at center). Scattered light from α Cen B is the primary noise source; shown is a 3% residual after calibration.

All simulations use Hybrid Lyot Coronagraph optical models by John Krist
Exo-C Simulated Spectroscopy

Work by Ty Robinson (ORAU / NASA Ames)
• Exo-C’s small fields of view (42 arcsec for imager; 2.2” for imaging spectrograph) will limit general astro applications
• Coronagraph needs stars with $V < 13$ for pointing system to operate as currently designed
• High contrast science applications for post-main sequence stars and AGN/quasars; see COPAG report
• Use of camera and IFS without coronagraphic spots, or on targets with $V \geq 13$, would require pointing system redesign
• A second instrument could be accommodated in terms of payload mass/volume, but not within $\$1B$ cost cap.
 — Optical/near-IR photometer/spectrometer for transit work can likely be accommodated on instrument bench
Exo-C Baseline Overview

• Earth-trailing orbit as for Kepler
 • Good thermal stability & sky visibility, no propulsion needed

• Unobscured 1.4m Cassegrain telescope
 • Better throughput, spatial resolution, stiffness, coronagraph technical readiness vs. obscured

• Hybrid Lyot coronagraph for 2017 project start; Vector Vortex and PIAA still under consideration for later start

• Active thermal control of telescope & instrument

• Bright science target star is reference for precision pointing and for following low-order wavefront drifts

• ~1000 kg observatory mass, Kepler-like spacecraft bus, Falcon 9 class launch vehicle
Exo-C Design Changes During Study

- Reduced telescope aperture from 1.5m to 1.4m (cost ↓)
- Solar array expanded into a sunshield for entire telescope (improves wavefront stability)
- Replaced outer barrel with thermal blankets (mass ↓)
- Lowered stack height (mass ↓)
- Electronics boxes moved inside spacecraft bus (thermal stability)
- Fine pointing requirement relaxed to 0.8 mas (margin +)
- Increased stray light baffling
- Two-layer instrument bench
Exo-C Subsystem Description

- Solar Array/Sunshade
- SA/Sunshade Support Structure
- Barrel Structure
- Removable Lid
- Secondary Mirror Assy
- Instrument Enclosure
- Instrument Bench Assy
- Primary Mirror Assembly
- Primary Support Structure
- Radiator Panel Assembly
- Star Tracker Assembly
- Isolation Assembly
- Spacecraft Assembly
 - SC and Payload Electronics
 - Reaction Wheel Assy
 - Propulsion Assy
 - LV interface Ring Assy

Hinge
Launch Locks

6.4m
2.6m
Exo-C Instrument Configuration

- Lateral instrument configuration on the side (IFS), the guidance sensor (FGS) for pointing, low order wavefront sensor (LOWFS)
- Much larger volume available than traditional aft configuration
- Wavefront control using two 48x48 Deformable Mirrors (DMs)
- Two-layer optical bench allows Deformable mirror and fine steering mirror to be implemented separately

NAC Astrophysics Subcommittee
• Five architectures were evaluated: Hybrid Lyot, PIAA, shaped pupil, vector vortex, and the visible nuller.

• Realistic optical system models for each with wavefront control and telescope pointing errors.

• Contrast maps and individual throughputs used to predict science yield for each. Three met science requirements and have path to readiness, participated in second design cycle.

• Summary evaluations result in Hybrid Lyot as baseline for a 2017 project start. Vector Vortex and PIAA remain options for a later start.
Model predictions suggest Exo-C final design will have ~2 hr settling timescale and very small contrast drifts.

This would allow low overheads and routine use of two-roll observing strategy.
Exo-C Technology Demonstrations

- Exo-C technology is built on years of TPF & TDEM investments and is closely aligned with planned AFTA coronagraph investments and demonstrations.
- Exo-C bandwidth & contrast requirements already met by Hybrid Lyot coronagraph at 3 \(\lambda/D \) inner working angle. 2 \(\lambda/D \) inner working angle requirement met by PIAA & Vector Vortex coronagraphs, but at \(10^{-8} \) contrast and 10% bandwidth.
- Need to demonstrate all the above in a single instrument in the presence of dynamic pointing & wavefront errors \(\rightarrow \) low-order wavefront control.

48x48 Xinetix deformable mirror has been shake tested

HCIT Lab contrast demonstration

1% 1e-8
10% 1e-9
20% 1e-10

JPL High Contrast Imaging Testbed
• Exo-C’s aperture, orbit, spacecraft, & lifetime are virtually the same as those of the Kepler mission, which at $700M is our cost reference.
• Exo-C’s estimated costs are significantly less than those of similar coronagraph mission concepts evaluated by Aerospace for Astro 2010.
• The Exo-C design effort demonstrates that a compelling science mission can be done at the mandated Probe mission cost cap of $1B.
• Final report submitted to NASA HQ on March 10, 2015.
• Exo-C STDT will be studying the science capability of a stand-alone 2.4 m dedicated mission.
Exo-C
Imaging Nearby Worlds

http://exep.jpl.nasa.gov/stdt/exoc/
Possible Improvements to Exo-C Sensitivity

Improved throughputs and inner working angles enable larger exoplanet search space. However, the Vector Vortex and PIAA technologies are less ready and therefore considered alternates.
A robust pointing architecture that leverages flight proven technologies.
“The (EOS) panel did evaluate, and found appealing, several “probe-class” concepts employing ~1.5-m primary mirrors and internal star-light suppression systems, often coronagraphs with advanced wavefront control. Each was judged to be technically feasible after completion of a several year technology development program, and could cost significantly less than a precision astrometry mission like SIM Lite. Such a mission could image about a dozen known (RV) giant planets and search hundreds of other nearby stars for giant planets. Importantly, it could also measure the distribution and amount of exozodiacacl disk emission to levels below that in our own solar system (1 zodi) and detect super-Earth planets in the habitable zones of up to two dozen nearby stars. These would be extremely important steps, both technically and scientifically, toward a mission that could find and characterize an Earth-twin.”

Science frontier discovery areas:
Identification and characterization of nearby habitable exoplanets
How diverse are planetary systems?
How do circumstellar disks evolve and form planetary systems?

“… a critical element of the committee’s exoplanet strategy is to continue to build the inventory of planetary systems around specific nearby stars”
8.5” separation in 2025, increasing to 10.5” in 2028.

STEPS FOR CONTROL OF SPILLOVER LIGHT:
- Coronagraph mask concepts to block both stars and accommodate the variable separation
- Primary mirror surface quality specifications at 100 cycles/aperture
- Agile dark hole using deformable mirrors
- Careful baffling and control of internal reflections
Accessible RV Planets vs. Aperture Size

Known RV planets vs. $2 \lambda/D \otimes \lambda = 0.8 \mu m$

Cumulative number

Planet elongation (arcsec)

- 1.8m
- 1.5m
- 1.3m
- 1.1m

- All planets
- Planets $V \leq 29$
Exo-C Working Filter Set

<table>
<thead>
<tr>
<th>Waveband</th>
<th>Filter Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>V band 20%</td>
<td>Photom & blocking</td>
</tr>
<tr>
<td>R band 20%</td>
<td>Photom & blocking</td>
</tr>
<tr>
<td>I band 20%</td>
<td>Photom & blocking</td>
</tr>
<tr>
<td>z band 20%</td>
<td>Photom & blocking</td>
</tr>
<tr>
<td>B band 10%</td>
<td>Rayleigh scattering</td>
</tr>
<tr>
<td>650 nm 5%</td>
<td>Weak CH₄ band</td>
</tr>
<tr>
<td>793 nm 3%</td>
<td>Moderate CH₄ band</td>
</tr>
<tr>
<td>835 nm 6%</td>
<td>CH₄ continuum</td>
</tr>
<tr>
<td>885 nm 6%</td>
<td>Strong CH₄</td>
</tr>
<tr>
<td>940 nm 6%</td>
<td>H₂O</td>
</tr>
</tbody>
</table>

Target Category

<table>
<thead>
<tr>
<th>Category</th>
<th># Stars</th>
<th>Median V mag</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known RV planets</td>
<td>11</td>
<td>5.7</td>
</tr>
<tr>
<td>Search for HZ planets</td>
<td>15</td>
<td>3.7</td>
</tr>
<tr>
<td>Searches for larger planets</td>
<td>135</td>
<td>3.8</td>
</tr>
<tr>
<td>Survey for HZ dust</td>
<td>150</td>
<td>3.7</td>
</tr>
<tr>
<td>Debris disks in RV planet systems</td>
<td>60</td>
<td>5.3</td>
</tr>
<tr>
<td>Debris disks detected in far-IR</td>
<td>150</td>
<td>5.3</td>
</tr>
<tr>
<td>Protoplanetary disks</td>
<td>40</td>
<td>11.4</td>
</tr>
<tr>
<td>Number of Targets</td>
<td>Mission Time (days with overhead)</td>
<td>Design Reference Mission</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>35</td>
<td>166</td>
<td>Exoplanet astrometry & multicolor photometry (known and mission-discovered planets)</td>
</tr>
<tr>
<td>20</td>
<td>215</td>
<td>Exoplanet spectra (known and mission-discovered planets)</td>
</tr>
<tr>
<td>15</td>
<td>113</td>
<td>Search for small exoplanets in nearest star Habitable Zones</td>
</tr>
<tr>
<td>150</td>
<td>69</td>
<td>Survey of Habitable Zone dust in A-K stars</td>
</tr>
<tr>
<td>135</td>
<td>323</td>
<td>Search for giant planets around nearby stars</td>
</tr>
<tr>
<td>60</td>
<td>36</td>
<td>Survey for debris dust in RV planet systems</td>
</tr>
<tr>
<td>150</td>
<td>91</td>
<td>Imaging the structure of debris disks identified by Spitzer, Herschel, and WISE</td>
</tr>
<tr>
<td>40</td>
<td>24</td>
<td>Structure of nearby protoplanetary disks</td>
</tr>
<tr>
<td></td>
<td>2.8 years</td>
<td>Total Science Observations (0.2 years are reserved for in-orbit checkout)</td>
</tr>
</tbody>
</table>
Accessible Earths in HZ

<table>
<thead>
<tr>
<th>Star</th>
<th>V mag</th>
<th>HZ inner radius (AU)</th>
<th>Elongation (arcsec)</th>
<th>Contrast</th>
<th>Integration time for V band detection (hrs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha Cen A</td>
<td>0.1</td>
<td>1.2</td>
<td>0.93</td>
<td>9x10^{-11}</td>
<td>51</td>
</tr>
<tr>
<td>alpha Cen B</td>
<td>1.2</td>
<td>0.8</td>
<td>0.60</td>
<td>2x10^{-10}</td>
<td>99</td>
</tr>
<tr>
<td>tau Ceti</td>
<td>3.6</td>
<td>0.7</td>
<td>0.20</td>
<td>3x10^{-10}</td>
<td>99</td>
</tr>
<tr>
<td>epsilon Eri</td>
<td>3.7</td>
<td>0.6</td>
<td>0.18</td>
<td>4x10^{-10}</td>
<td>80</td>
</tr>
<tr>
<td>eta Cas A</td>
<td>3.6</td>
<td>1.2</td>
<td>0.21</td>
<td>9x10^{-11}</td>
<td>109</td>
</tr>
</tbody>
</table>

For the two components of the alpha Centauri system, scattered light from the companion at 8” has been included as a noise source. eta Cas is a 12” binary. Exozodiacal light at the minimal 1 zodi level is assumed. tau Ceti and epsilon Eridani both have far-IR excess which may mean high levels of dust in their habitable zones; this is not taken into account for the integration times given here.
Exo-C Design Trades

<table>
<thead>
<tr>
<th>Trade</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telescope obscured vs. non-obscured</td>
<td>Unobscured aka “off-axis”</td>
</tr>
<tr>
<td>Telescope design</td>
<td>Cassegrain</td>
</tr>
<tr>
<td>Telescope material: Glass vs. silicon carbide (SiC)</td>
<td>Low CTE glass</td>
</tr>
<tr>
<td>Orbit</td>
<td>Earth-training</td>
</tr>
<tr>
<td>Aperture size</td>
<td>1.4 m</td>
</tr>
<tr>
<td>High-gain antenna (HGA)</td>
<td>Fixed</td>
</tr>
<tr>
<td>Isolators: between reaction wheel assembly (RWA) and spacecraft, and again between spacecraft and payload</td>
<td>Two passive layers</td>
</tr>
<tr>
<td>Deformable mirrors</td>
<td>Two 48 × 48 devices for 2017, investigate larger formats for later launch</td>
</tr>
<tr>
<td>Instrument configuration: Lateral vs. behind primary mirror</td>
<td>Lateral</td>
</tr>
<tr>
<td>Mission design</td>
<td>Baseline configuration in §6</td>
</tr>
<tr>
<td>Low-order wavefront sensor (LOWFS) design</td>
<td>Zernike WFS, spectral splitting</td>
</tr>
<tr>
<td>Spacecraft bus</td>
<td>Kepler type</td>
</tr>
<tr>
<td>Solar array configuration</td>
<td>Fixed</td>
</tr>
<tr>
<td>Field of regard</td>
<td>Boresight angles of 45-135 degrees w.r.t. the Sun</td>
</tr>
<tr>
<td>Mission lifetime</td>
<td>3 years, consumables for 5 years</td>
</tr>
<tr>
<td>Pointing architecture</td>
<td>Isolation, flight management system (FMS), payload, and spacecraft interface</td>
</tr>
<tr>
<td>Spectrometer architecture</td>
<td>Integrated field spectrometer (IFS): 76x76 lenslet array, R= 70</td>
</tr>
<tr>
<td>Telescope stability—thermal architecture</td>
<td>Multizone heater control of telescope barrel and primary mirror; sunshade for telescope</td>
</tr>
<tr>
<td>Secondary mirror configuration</td>
<td>Actuated secondary</td>
</tr>
<tr>
<td>Telescope metering structure configuration</td>
<td>Integrated with barrel assembly</td>
</tr>
<tr>
<td>Instrument architecture</td>
<td>Coronagraph, imaging camera, IFS, fine-guidance sensor (FGS)</td>
</tr>
<tr>
<td>Coronagraph architecture</td>
<td>Hybrid Lyot baseline for 2017, Vector Vortex and PIAA still considered for later launch</td>
</tr>
<tr>
<td>Science detectors</td>
<td>Science camera and IFS both use 1K x 1K EMCCD for 2017, 2K x 2K for later launch</td>
</tr>
</tbody>
</table>
Probe studies are directed to be based on a Phase A start at the beginning of FY17, project PDR in FY19 and a launch no later than 12/31/2024. The schedules includes funded schedule reserves per JPL Design Principles.
Missions like Exo-C have been proposed/studied several times before. What is new this time?

1. New design independently-costed as a probe-scale mission, providing an existence proof for this mission class
2. Identified lateral instrument bench as optimal for an internal coronagraph mission
3. Modeling showed that Exo-C’s combination of orbit, telescope structure, sunshield, and thermal control provides the very high telescope/wavefront stability needed for imaging exoplanets in reflected light
4. Added five years of scientific and technical progress to the case for flying this type of mission