

# EXO-S FINAL REPORT PRESENTATION TO NASA APS

### Aki Roberge

on behalf of the Exo-S Team March 18, 2015





**Exoplanet Exploration Program** 

CL#15-1113 Jet Propulsion Laboratory, California Institute of Technology

### **Exo-S Study Charter**

- The discovery of exoEarths, via a space-based direct imaging mission, is a long-term priority for astrophysics (Astro 2010)
- Exo-S was an 18-month NASA HQ-funded study of a starshade and telescope "probe" space mission (5/2013 to 1/2015)
  - Total mission cost targeted at \$1B (FY15 dollars)
  - Technical readiness: TRL-5 by end of Phase A, TRL-6 by end of Phase B
  - New start in 2017
  - Compelling science must be beyond the expected ground capability at the time of mission
- Study also intended as a design input to the exoplanet community to help formulate ideas for the next Decadal Survey

### **Exo-S Team Members**

### STDT

S. Seager, Chair (MIT) M. Thomson (NASA-JPL) M. Turnbull (GSI) W. Sparks (STScI) S. Shaklan (NASA-JPL) A. Roberge (NASA-GSFC) M. Kuchner (NASA-GSFC) N. J. Kasdin (Princeton) S. Domagal-Goldman (NASA- GSFC) W. Cash (Colorado)

JPL Design Team K. Warfield, Lead D. Lisman C. Heneghan S. Martin D. Scharf R. Trabert D. Webb E. Cady R. Baran P. Zarifian S. Krach B. Hirsch

# Two Cost Constrained Exo-S Concepts

### Exo-S Dedicated Co-Launched Mission

- Starshade and telescope launch together to conserve cost
- Telescope: low-cost commercial Earth observer, 1.1 m diameter aperture
- Starshade: 30 m diameter
- Orbit: heliocentric, Earth-leading, Earth-drift away
- Retargeting: by the telescope spacecraft with solar-electric propulstion
- Three year Class B mission

#### • Exo-S Rendezvous Mission

- Starshade launches for a rendezvous with an existing telescope
- Telescope: WFIRST/AFTA 2.4 m is adopted
- Starshade: 34 m diameter
- Orbit: Earth-Sun L2 (assumption for the purposes of the Exo-S study)
- Retargeting: by the starshade spacecraft with chemical propulsion
- Three year Class C mission
- Minimal impact to current mission design
  - No stringent requirements are imposed on the WFIRST/AFTA spacecraft
  - No new instrument, only modification to the existing coronagraph



Exo-S Final Report to NASA APS - March 18, 2015

 $\odot$  2015 California Institute of Technology

### **Starshade Basics**



- Contrast and IWA decoupled from telescope aperture size
- No outer working angle
- High throughput, broad wavelength bandpass
- High quality telescope not required
  - Wavefront correction unnecessary
- Retargeting requires long starshade slews (days to weeks)

WFIRST/AFTA + Starshade simulated image of Beta Canum Venaticorum plus solar system planets (8.44 pc, G0V)



#### Saturn

Hypothetical dust ring at 15 AU

Background galaxy

Image credit: M. Kuchner

# **Exo-S Science Goals**



Simulated R=70 planet spectra for the Rendezvous mission, with three representative 10% error bars.

Dedicated mission cannot reach R=70 on small planets.

- Discover new exoplanets from giants down to Earth size
- Characterize new planets with R=10 to 70 spectra
- Characterize known giant planets with R=70 spectra and constrain masses
- 4. Study planetary systems including circumstellar dust
  - Locate dust parent bodies
  - Evidence of unseen planets
  - Exozodi assessment for future missions

### **Key Capabilities**

#### Instruments: Wide-Field Imager, Integral Field Spectrograph, Guide Camera

| Case Study         | Deremetere      | Observing Bands |         |          |  |
|--------------------|-----------------|-----------------|---------|----------|--|
| Case Sludy         | Parameters      | Blue            | Green   | Red      |  |
| Rendezvous Mission | Bandpass (nm)   | 425-602         | 600-850 | 706-1000 |  |
| 20m inner disk     | IWA (mas)       | 70              | 100     | 118      |  |
| 28 7m petals       | Separation (Mm) | 50              | 35      | 30       |  |
| Dedicated Mission  | Bandpass (nm)   | 400-647         | 510-825 | 618-1000 |  |
| 16m inner disk     | IWA (mas)       | 80              | 100     | 124      |  |
| 22 7m petals       | Separation (Mm) | 39              | 30      | 25       |  |

| FoV (arcsec) |   |  |  |
|--------------|---|--|--|
| Imager IFS   |   |  |  |
| 10           | 2 |  |  |
| 60           | 3 |  |  |

| Throughput |     |  |  |
|------------|-----|--|--|
| Imager IFS |     |  |  |
| 28%        | 22% |  |  |
| 51% 42%    |     |  |  |

Contrast at inner working angle consistent w/ error budget

- Dedicated: 5 x 10<sup>-10</sup>
- Rendezvous: 1 x 10<sup>-10</sup>

## **Design Reference Mission Strategies**

### In Planet detection

- Green band observation with IFS
- Divided into 3 channels for multi-color imaging
- SNR = 4 per channel
- In Planet characterization
  - SNR = 10, R=10 to 70 per spectral resolution element
- If dust level high, obtain wide-field image then move on

#### Three target prioritization strategies studied

| Study Case | Theme           | Mission                     | Propulsion | Defining Characteristic            |
|------------|-----------------|-----------------------------|------------|------------------------------------|
| Caso 1     | "Earths in H7"  | 1 1 m Dodicatod             | SED        | Efficient observations based       |
|            |                 | 1.1 III Deulcateu           | JEP        | on Stellar Luminosity              |
|            | "Maximum Dlanot |                             | SEP        | Observe all stars to limiting      |
| Case 2     |                 | 1.1 m Dedicated             |            | sensitivity lim $^{\Delta}$ mag=26 |
|            | Diversity       |                             |            | (contrast of 4e-11)                |
|            | "Earthe in U7"  | Earthain UZ" 2.4 m Dandaway |            | Efficient observations based       |
| Case 5     |                 | 2.4 III Kelluezvous         | ы-ргор     | on Stellar Luminosity              |

# **Observing Sequence**

- 1. Schedule known giant planet observations
- 2. Fill in gaps on sky with highest priority blind search target
- 3. Repeat with lower priority targets until fuel or time limit reached
- 4. Reserve 3<sup>rd</sup> year for follow-up / additional characterization revisits



Rendezvous mission, 2-year sequence, 55 stars visited,  $\Delta v = 1266$  m/s

12 known giant planets. Blind search targets: 28 Earths, 7 sub-Neptunes, 8 Jupiters

# **DRM Yield Summaries**

|                | Completeness       |        |        |  |  |
|----------------|--------------------|--------|--------|--|--|
|                | Case 1             | Case 2 | Case 3 |  |  |
| HZ Earth       | 6.3                | 3.6    | 10.9   |  |  |
| Earth          | 1.7                | 2.1    | 3.7    |  |  |
| Sup. Earth     | 14.9               | 10.6   | 27.3   |  |  |
| Sub-Neptune    | 30.3               | 26.8   | 52.3   |  |  |
| Neptune        | 43.0               | 42.7   | 71.1   |  |  |
| Jupiter        | 63.2               | 64.4   | 93.9   |  |  |
| Total          | 159.5              | 150.2  | 259.2  |  |  |
|                | Mean Planet Yields |        |        |  |  |
|                | Case 1             | Case 2 | Case 3 |  |  |
| HZ Earth       | 1.0                | 0.6    | 1.7    |  |  |
| Earth          | 0.3                | 0.3    | 0.6    |  |  |
| Super Earth    | 1.5                | 1.1    | 2.7    |  |  |
| SubNeptune     | 3.0                | 2.7    | 5.2    |  |  |
| Neptune        | 4.3                | 4.3    | 7.1    |  |  |
| Jupiter        | 6.3                | 6.4    | 9.4    |  |  |
| Known Jupiters | 14                 | 14     | 12     |  |  |
| Total          | 30.4               | 29.4   | 38.8   |  |  |

Completeness is the probability of detecting planet if it's there, summed over all stars

Multiply completeness by planet frequency (η) to get expected yield

Assumed  $\eta = 16\%$  for Earths,  $\eta = 10\%$  for all other planets

#### Large Planet Characterization

| Number of Targets |        | Case 1 | Case 2 | Case 3 |
|-------------------|--------|--------|--------|--------|
| Jupiter           | R > 20 | 13     | 25     | 29     |
|                   | R = 70 | 10     | 24     | 19     |
| Sub-Neptune       | R > 20 | 0      | 24     | 13     |
|                   | R = 70 | 0      | 0      | 1      |

Number of stars for which R=X spectra of Jupiters and sub-Neptunes can be acquired

### Yield By Planet Type & Temperature



# Starshade Mechanical Design Overview



- Starshade stows compactly, fits in 5m launch fairings, can carry a telescope on top, and can carry propellant in central cylinder.
- Inner disk draws heritage from Astromesh Antenna (Thuraya), but is greatly simplified and tailored to accommodate petals.

## Starshade Error Budget

| Starshade Error Budget (3-sigma)      |                                       |                                 |                                        |                                 |                              |          |  |
|---------------------------------------|---------------------------------------|---------------------------------|----------------------------------------|---------------------------------|------------------------------|----------|--|
| Error Source                          | Dedicated Mission<br>(1.1m telescope) |                                 | Rendezvous Mission<br>(2.4m telescope) |                                 | Demonstrated                 | Domo     |  |
|                                       | Tolerance<br>Allocation               | Contrast<br>x 10 <sup>-11</sup> | Tolerance<br>Allocation                | Contrast<br>x 10 <sup>-11</sup> | Performance                  | Demo     |  |
| Manufacture                           |                                       |                                 |                                        |                                 |                              |          |  |
| Petal Segment Shape (Bias)            | 14 µm                                 | 1.4                             | 22 µm                                  | 0.4                             |                              |          |  |
| Petal Segment Shape (Random)          | 68 µm                                 | 0.3                             | 68 µm                                  | 0.1                             | 45 µm                        | TDEM-09  |  |
| Petal Segment Placement (Bias)        | 4 µm                                  | 0.7                             | 7 µm                                   | 0.1                             |                              |          |  |
| Petal Segment Placement (Random)      | 45 µm                                 | 0.6                             | 53 µm                                  | 0.5                             | 45 µm                        |          |  |
| Pre-Launch Deployment                 |                                       |                                 |                                        |                                 |                              |          |  |
| Petal Radial Position (Bias)          | 150 µm                                | 6.0                             | 200 µm                                 | 0.15                            | 100 µm                       | TDEM-10  |  |
| Petal Radial Position (Random)        | 450 µm                                | 0.6                             | 450 µm                                 | 0.1                             | 300 µm                       |          |  |
| Post-Launch Deployment                |                                       |                                 |                                        |                                 |                              |          |  |
| Petal Radial Position (Bias)          | 100 µm                                | 2.7                             | 250 µm                                 | 0.23                            |                              |          |  |
| Petal Radial Position (Random)        | 350 µm                                | 0.4                             | 375 µm                                 | 0.06                            |                              |          |  |
| Thermal                               |                                       |                                 |                                        |                                 |                              | OTDT     |  |
| Disk-Petal Differential Strain (Bias) | 20 ppm                                | 6.0                             | 40 ppm                                 | 0.6                             | 12 ppm                       | Analysis |  |
| 1-5 cycle/petal width (Bias)          | 10 ppm                                | 1.0                             | 30 ppm                                 | 0.2                             | 9x10 <sup>-12</sup> contrast | ,, e     |  |
| Formation Flying                      |                                       |                                 |                                        |                                 |                              |          |  |
| Lateral Displacement                  | 1 m                                   | 2.9                             | 1 m                                    | 1.1                             |                              |          |  |
| Longitudinal Displacement             | 250 km                                | 2.5                             | 250 km                                 | 0.43                            |                              |          |  |
| Total Photometric Error               |                                       |                                 |                                        |                                 |                              |          |  |
| Photometric Allocation                |                                       | 50                              |                                        | 10                              |                              |          |  |
| Total Systematic Error                |                                       |                                 |                                        |                                 |                              |          |  |
| Systematic Allocation                 |                                       | 4                               |                                        | 4                               |                              |          |  |

Full error budget accounts for 200 separate perturbation sources

Will repeat early demos with more flight-like prototypes for TRL-5

32% of total allocation is unallocated reserve

Compliance is demonstrated via TDEMs for several key requirements

### Starshade Technology Development Overview

The STDT identified 5 technology gaps.

### Resolution plans in place to establish TRL-5 by 2017

| Technology Gap                            | Resolution Plan                                                                             | Funding                       |  |
|-------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------|--|
|                                           | Additional modeling                                                                         | TDEM-12, NGAS                 |  |
| 1 Control adda apattared Suplicit         | Testbed                                                                                     | ExEP modeling, infrastructure |  |
| 1. Control edge scattered Surnight        | Prototype edge segment                                                                      | JPL internal R&TD             |  |
|                                           | Flight-like edges part of TRL-5 petal                                                       | TDEM-12, Princeton            |  |
|                                           | Modeling                                                                                    | ExEP modeling, infrastructure |  |
| 2. Verify optical performance at subscale | Desert testbed                                                                              | TDEM-12, NGAS                 |  |
|                                           | Laboratory testbed                                                                          | TDEM-12, Princeton            |  |
| 3 Domo formation flying sonsing part      | Design, simulations, algorithm dev.,                                                        | TDEM 13 Princeton             |  |
| 5. Demo. Tormation hying sensing pen.     | Optical testbed                                                                             |                               |  |
| 4. Mature petal design to TRL-5           | Flight-like full-scale petal with: all truss I/Fs, optical edges, optical shield, etc.      | TDEM-12, Princeton            |  |
| 5. Mature inner disk design to TRL-5      | Flight-like half-scale inner disk with:<br>all petal I/Fs, optical shield, launch restraint | TBD                           |  |

### All efforts to TRL-5 are fully funded, except Gap #5

## Starshade-Ready WFIRST/AFTA

### Minimal modifications needed

- Earth-Sun L2 orbit
- Use existing coronagraph IFS for science, imager for formation guidance
- Rotate coronagraph masks out of path, add bandpass filters to existing wheel
- Add proximity radio with 2-way ranging to bus telecom system
- IFS FOV reduced to accommodate broader bandpass, but mitigated by adding detectors for bigger focal plane (improves coronagraph FOV as well)



### **Cost Estimates**

- Cost estimates from Exo-S Team, JPL Team X, and Aerospace CATE
- Dedicated mission went slightly over \$1B cap
- Exo-S team estimates close to CATE, except for "threats"
- CATE raised no issues with schedule

The cost information contained in this document is of a budgetary and planning nature and is intended for informational purposes only. It does not constitute a commitment on the part of JPL and Caltech.

### Take-Away Message

WFIRST/AFTA can be leveraged for a unique and timely opportunity

 Rendezvous Mission can access up to 50 unique target stars for exoEarths in the habitable zone

Minimal modification needed for starshade readiness

 Starshade technology is on track for TRL-5 by 2017 and for new start by 2018, but not fully funded

Mission cost ~ \$627M