



## **ExEP Resources for Technology Demonstrations at JPL**

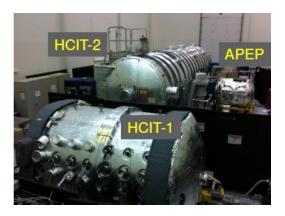
Nick Siegler Program Chief Technologist NASA Exoplanet Exploration Program (ExEP)

Pre-Proposal TDEM-15 Briefing Telecon 01/19/16

See 2016 ExEP Technology Plan Appendix: <u>http://exep.jpl.nasa.gov/technology/</u> (to be posted 1/22/16)






- This presentation provides an overview of the ExEP resources located at JPL available to support a TDEM-15 proposal.
- The available resources, if appropriate for your needs, may help you more efficiently meet your milestone goals and reduce your proposal costs and schedule.

#### **Unavailable** Resources at JPL for TDEM-15

• HCIT-1 (dedicated to WFIRST)

#### **Available** Resources at JPL for TDEM-14

- HCIT-2
- Apep Vacuum Chamber (HCIT-3)
- Vacuum Surface Gauge
- Microdevices Laboratory (MDL)
- Scatterometer
- Starshade Deployable Testbed
- Starshade Optical Shield Testbeds (new)
- Large deployable structures lab





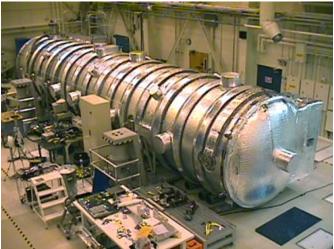




## Available ExEP Resources at JPL for TDEM-15



# High Contrast Imaging Testbeds (HCITs)


#### Exoplanet Exploration Program

### **Test Facility**

- Two vacuum chambers with 1 mTorr capability
- Seismically isolated, temperature-stabilized ~ 10 mK at RT.
- Narrow or broad band coronagraph system demos
  - Achieved 3x10<sup>-10</sup> contrast (narrowband)
- Fiber/Pinhole "Star" Illumination
  - -Monochromatic: 635, 785, 809, and 835 nm wavelengths
  - $-2,\,10,\,and\,20\%$  BW around 800 nm center
  - -Medium and high power super-continuum sources
- CCD camera (5e<sup>-</sup>), 13  $\mu$ m pixels
- Complete computer control with data acquisition and storage
- Coronagraph model validation & error budget sensitivities
- Remote access through FTP site



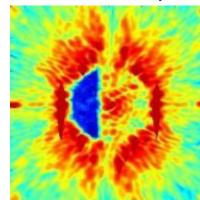
HCIT-1 Single-testbed capacity (5'x8')



HCIT-2 Two-testbed capacity (6'x10')

#### Availability for two testbed in HCIT-2 expected beginning of CY17




## **Wavefront Sensing & Control**



#### Exoplanet Exploration Program

#### **Nulling Algorithms**

- Electric Field Conjugations (EFC) algorithms exist for single and dual DM control
- Demonstrated to < 10<sup>-9</sup> contrast and 20% bandwidth
- Coupled to HCIT coronagraph models and DM calibration data for optimal efficiency



#### Best Results to Date

Band-Limited Coronagraph : 6 e-10, @ 3  $\lambda$ /D with 10% BW 2 e-9, @ 3  $\lambda$ /D with 20% BW

Shaped-Pupil Coronagraph: 1.2 e-9, @ 4  $\lambda$ /D with 2% BW 2.4 e-9, @ 4  $\lambda$ /D with 10% BW

Vector Vortex Coronagraph: <1e-9, @ 3  $\lambda$ /d with 0% BW

#### **EFC Nulling and current performance**

### **Deformable Mirrors**

- Wavefront control and speckle nulling available with Xinetics PMN deformable mirrors.
  - Format sizes: 32x32mm, 48x48, and 64x64 mm with 1 mm pitch and 500 nm stroke size.
  - Continuous fuse silica facesheet polished to  $\lambda$ /100 rms
  - Two-DM configurations available



#### **Xinetics DM**

#### Availability expected beginning of CY17



## HCIT-3



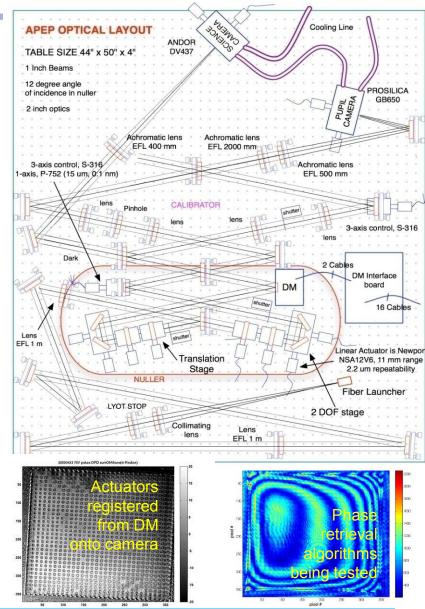
#### **Recently used for Visible Nulling Coronagraph**

- Optical layout as shown on the right
- Includes segmented BMC DM, pupil, and science cameras

#### **16-Bit DM Electronics for Vacuum**

- Minimizes feed-throughs into vacuum tank
- Designed for Boston Micromachines segmented DM
- Conductively cooled electronics and chassis

#### **Coherent Fiber Bundle and Lens Array**


- Prototype of 217 fibers, with map of fiber positions
- Fiber bundle and lenslet array now integrated
- System performance demonstrated

#### **Control System Based on RTC**

- Real-time phase retrieval demonstrated
- DM control better than 5nm

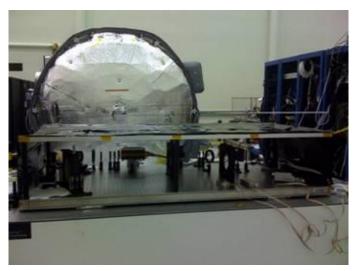




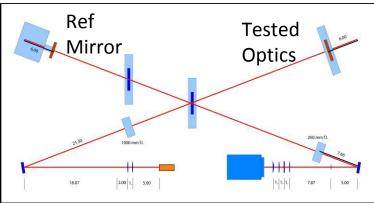


#### Availability for small vacuum testbed demonstrations




## Vacuum Surface Gauge




Exoplanet Exploration Program

#### Purpose: Accurate surface error measurement and deformable mirror calibration.

- Demonstrated optical surface measurement accuracy: ≤ 100 pm rms
- Customized Michelson interferometer set-up
  - Reference mirror w/ absolute position feedback
  - Frequency stabilized laser source
- Dedicated algorithms for wavefront extraction over > 10<sup>6</sup> pixels



Vacuum Surface Gauge testbed



End-points of axes are [4.5,6.5] inches from table corners. Beam height = center of beamsplitter = 4.405 inches. Top of b.s. mount = 8.810. Lens cell dia = 3.480. Top of lens cell = 6.147 inches.

#### Surface Gauge optical layout



## **MicroDevices Laboratory (MDL)**



#### Exoplanet Exploration Program

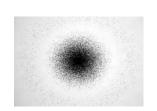



Figure 1. Microscope image (above) and AFM profile (below) of a micro dot patterned mask for JWST NIRCam coronagraph



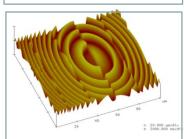
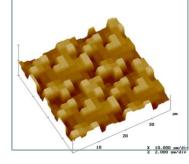




Figure 2. Diffractive optical devices



#### **Purpose: Precision sub-micron materials** fabrication and characterization

#### Advanced fabrication and characterization techniques

- **Electron Beam Lithography**
- **Deep Reactive Ion Etching**
- ICP Cryo Etching of Black Silicon microstructures
- Scanning Electron Microscopy
- Precision Optical Microscopy
- Atomic Force Microscopy
- 2D and 3D profilometry

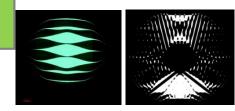
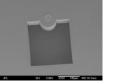




Figure 3. Transmissive slit Figure 4. Reflective and SP mask

absorptive SP mask



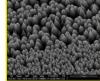



Figure 5. LOWFS mask Figure 6. Black Si Microstructure

#### Light suppression mask fabrication processes developed for:

- Micro dot patterned mask for JWST (Fig 1)
- Diffractive optical structures for spectrometer gratings and other computer generated holograms (Fig 2)
- Shaped pupil masks with fine structures and slits for transmission geometry (Fig 3)
- Shaped Pupil masks with black silicon structures in reflective aluminum background (Fig 4)
- LOWFS masks (Fig 5) incorporating a black silicon region ٠ (Fig 6) as well as shaped aperture through a silicon wafer
- Achromatic focal plane masks with deep diffractive structures (Fig 7)
- PIAACMC mask (Fig 8)
- Hybrid Lyot mask for WFIRST(Fig 9)

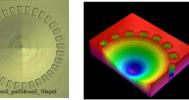



Figure 7 . Achromatic Focal Plane Masks (AFPM)

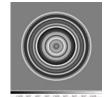



Figure 8 PIAACMC mask Figure 9 Hybrid Lyot mask 8

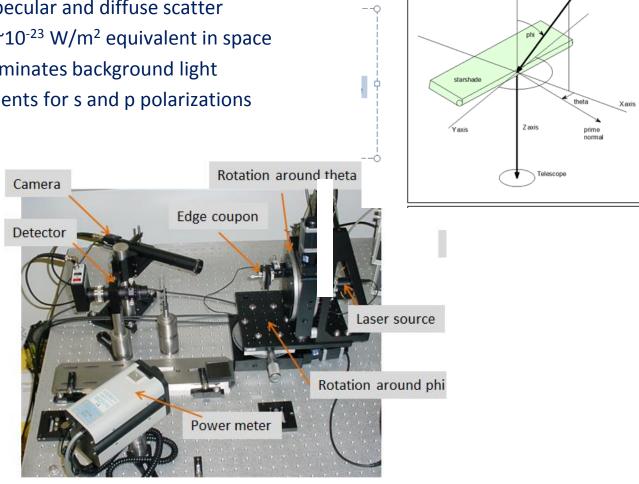




### **Scatterometer**



#### **Exoplanet Exploration Program**


target sta

Starshade edge in space

#### **Purpose: measurement of light scatter from material coupons**

#### Scatterometer Testbed

- Accurate for both specular and diffuse scatter
- Measures down to  $\sim 10^{-23}$  W/m<sup>2</sup> equivalent in space
- Optical chopping eliminates background light
- Separate measurements for s and p polarizations







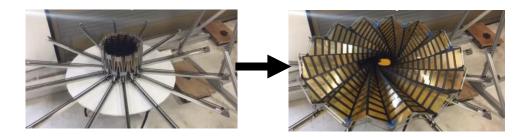
#### Purpose: Enable maturation of key starshade deployment components

#### Testbed Description

- 10m motorized deployable starshade inner disk from 1.5m stowed configuration
- Gravity compensation fixtures
- Flight-like perimeter truss

### Starshade Technology Opportunities

- Petal/perimeter truss interfaces
- Petal and inner disk optical shields
- Petal deployment tolerances








#### Purpose: Enable maturation of optical shield designs and interfaces

- Testbed Descriptions
  - 2m perimeter truss, manual deployment
  - 5m and 10m perimeter truss, motorized deployment



2m testbed

### Starshade Technology Opportunities

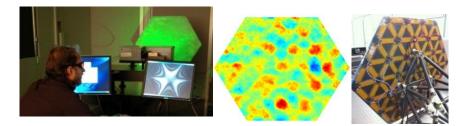
- inner disk optical shield design, fabrication, and demonstrations
- o interface development



5m origami prototype

# **Advanced Large Precision Structures Lab**




# Purpose: Laboratory for demonstrating accuracy and stability of large deployable structures

### **Facility**

- Dimensions: 10m x 5m x 3m
- Stable testing environment
  - Thermal stability: < 0.01 K/hr, < 0.02 K/24 hr</li>
  - Vibration: < 75 u-g rms (0-500 Hz)</li>
  - Acoustics: 35 dbA
  - Relative humidity stability: 1%
- Active thermal control
  - < 5 min for air temp stabilization (30 min from cold start)</p>
  - Up to 1 kW heat load while maintaining performance
- Class 100,000 clean room capable
- Wall and ceiling mounting possible

### **Measurement Capabilities**

- Scanning laser vibrometer
- Labview data acquisition and control
  - 60 high-speed simultaneous sampling for accelerometers
- Laser holography system for in- or out-of-plane deformations of 10 nm to 25 um.
- Photogrammetry for < 0.5 mm measurements at up to 16 frames/s for 20 min
- FLIR thermal imaging camera, modal test exciters













## **Gaining Access to the ExEP Resources at JPL**





- Submit preliminary Statement of Work (SOW) for use of ExEP resources to Nick Siegler no later than <u>March 3, 2016.</u>
  - Follow SOW questionnaire on next page.
- Schedule telecon with Nick Siegler between <u>March 3 10, 2016</u> to discuss use of the resources of interest and to obtain costing guidelines.
- Nick Siegler will evaluate workforce, labor, and infrastructure access required across all received SOWs.
  - Assessment will be provided to Doug Hudgins for consideration in proposal review process.
- Nick Siegler will supply the proposal PI a Letter of Commitment for use of any ExEP resources.
  - PIs are to include both the SOW and the Letter of Commitment in their proposal.
  - HCIT will provide labor to set up testbeds; additional labor and procurements specific to your proposal must be costed within the proposal to support the work.





- 1. Brief description of the proposed TDEM
- 2. What resources are requested?
- 3. Milestone (s) to be accomplished and performance goals
- 4. Brief description of how the work will be conducted
- 5. Period(s) and preferred dates, if any, over which the resource is requested, stating whether in vacuum or air for testbeds. Include any time required for preparatory work.
- 6. A list of the personnel, expertise, and level of effort (if any) who will assist in the use of the resource.
- 7. Any anticipated changes to the resource needed to accommodate your demonstrations.
- 8. List of items needed for all testbed modifications. Identify items you will be procuring within your proposal's budget and provide approximate cost of needed items.
  - a. Otherwise, state that no additional procurements will be necessary for the use of the infrastructure under consideration.
- 9. Provide any other relevant information or constraints.





For questions concerning use of ExEP technology resources or requests for more detail contact:

Dr. Nick Siegler Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91109

Office: (818) 354-1293 Email: <u>nsiegler@jpl.nasa.gov</u>

Copyright 2016 California Institute of Technology. Government sponsorship acknowledged.