vpl

Direct Imaging Wavelength Range Implications for Biosignatures

Shawn Domagal-Goldman, Aki Roberge, Victoria Meadows, Eddie Schwieterman, Giada Arney, Chris Stark, Avi Mandell, Matt Bolcar, Karl Stapelfeldt, Mark Clampin, Sonny Harman, Harley Thronson, and years of insights from colleagues at the Virtual Planetary Laboratory and the ATLAST team ExoPag SIG #1 @ ExoPAG-12 Chicago, IL, June 14, 2015

Take home point #1: Everywhere and every way we have looked finding biosignatures has been easy. Eliminating false positives (abiotic sources) is the difficult part.

4

Mechanism	Star Type	False Positive	Identifiers
Photochemistry	F, M, K	O_3 , potentially O_2	High CO ₂ , high CO,
(Domagal-Goldman et			low CH ₄
al., 2014; Gao et al.,			
2015, Hu and Seager,			
2014, Tian et al., 2014,			
Harman et al., in prep.)			
Atmospheric Loss	Μ	Extremely high	Low CH_4 ,
		(>90%) O ₂ and O ₃ ,	>10 bars
(Luger and Barnes, 2014)			total
			pressure,
			~pure O ₂
No cold trap	All?	Extremely high	Low
	Unclear.	$(>90\%) O_2 \text{ and } O_3.$	pressure,
(Wordsworth, 2014)			low CH ₄

Domagal-Goldman et al., 2014

Schwieterman et al., in prep.

Impact of Telescope (days) Temperature on Characterization Time (8-m ake home point #2: 27 1CH₄tdetection would be a strong confirmation of a biogenic O₂ source... Sbe 10². but CH₄ is hard to detect for "modern Earth twins." Bright Sun + Stark et al., in prep

Mechanism	Star Type	False Positive	Identifiers
Photochemistry	F, M	O_3 , potentially O_2	High CO ₂ , high CO,
(Domagal-Goldman et			low CH ₄
al., 2014; Gao et al.,			
2015, Hu and Seager,			
2014, Tian et al., 2014)			
Atmospheric Loss	M	Extremely high	Low CH ₄ ,
		(>90%) O ₂ and O ₃ ,	>10 bars
(Luger and Barnes, 2014)			total
			pressure,
			~pure O ₂
No cold trap	All?	Extremely high	Low
	Unclear.	(>90%) O ₂ and O ₃ .	pressure,
(Wordsworth, 2014)			low CH ₄

Gao, et al., arXiv

What we could say

- For a mission that goes out to 1.0 μ m (any Temp.): "We found the presence of biosignature gases (O₂ and O₃) on that planet, but did not comprehensively search for abiotic sources of those gases."
- For a mission that goes out to 1.8 μ m (T \leq 275 K) "We found the presence of biosignature gases (O₂ and O₃) on that planet, and searched for but did not find signs (CO₂, CO, O4, pressure) that these gases were created by abiotic processes."
- For a mission that goes out to 2.5 μ m (T \leq 250 K) "We found the presence of biosignature gases (O₂ and O₃) on that planet, and secondary features (CH₄) inconsistent with abiotic processes."

Implications for LUVOIR and HabEx

Getting to ~2 μ m would be strongly preferred

- Might not be necessary if we obtain high spectral resolution and time-dependent spectra.
- This is a trade against telescope temperature and associated cost.

However, viewing planets in habitable zones at longer wavelengths is a challenge.

- For coronagraphs, longer wavelength requires better coronagraph and/or larger telescope diameter, since IWA = C x (λ / D).
- For starshades, longer wavelength requires larger starshade diameter and greater telescope/starshade separation = longer retargeting times.

At 2 μm , both types of missions limited by collecting area and telescope thermal background. 16

Slide courtesy Eddie Schwieterman, figures from Schwieterman et al., 2015

R = 70, SNR = 10, Earth-Sun-1 Zodi 10 pc. Away.

