

Exoplanet Exploration Program - Updates

Copyright 2015 California Institute of Technology. Government sponsorship acknowledged

Gary Blackwood Program Manager

June 13, 2015

ExoPAG 12 Chicago IL

NASA Exoplanet Exploration Program

Serving the Science, and Community, by implementing NASA's space science vision for exoplanets and astrophysics

Purpose described in 2014 NASA Science Plan

- 1. Discovering planets around other stars
- 2. Characterizing their properties
- 3. Identifying candidates that could

harbor life

NASA Exoplanet Exploration Program

Large Binocular Telescope Interferometer

Measures exozodiacal dust in habitable zones

- Demonstrated 12 zodi sensitivity for a solar twin at 10 pc
- Successfully completed Operational Readiness Review (ORR) and now conducting Science Validation Phase
- Level 1 requirement: 3 zodi (baseline) and 6 zodi (threshold) on 50 stars
- LBTI nulling data available to public at http://nexsci.caltech.edu/missions/LBTI/

Kepler Closeout

Harvesting the exoplanet yield from the mission

- Uniform Processing of Q0-Q17 (using SOC 9.2)
 - Long cadence light curves
 - Short cadence light curves
 - KOI Catalog
 - Occurrence Rate Products

Dec 2014 Mar 2015 Oct 2015 Sep 2015

Final Data processing of Q0-Q17 (using SOC 9.3)

Community

Community

- Pipeline Development Complete
- Light curves
- KOI Catalog
- Occurrence Rate Products
- Completeness and Reliability Products

July 2015 Mar 2016 Nov 2016 Sep 2016 Feb 2017

Kepler K2

Exoplanet Science Goals:

Kepler Project, I. Heinrichsen

- Identify potentially-habitable planets around bright M-dwarfs near the Sun
- Observe hot planets around bright stars for follow-up transit spectroscopy
- Find small planets to aid measurements of masses, densities and compositions
- Determine if hot gas giants exist around young stars
- Detect and measure masses of free-floating planets using microlensing

WFIRST / AFTA Exoplanet Science via Microlensing and Coronagraphy

Microlensing Survey

- Outer planet demographics
- Free-floating planets
- Completes census begun by Kepler

Exoplanet Direct Imaging

- Imaging and spectroscopy of exoplanet atmospheres down to a few Earth masses, R~70
- 0.4 1 μm bandpass
- $\leq 10^{-9}$ detection contrast
- 100 mas inner working angle at 0.4 μm

Coronagraph will develop the technologies for New Worlds Telescope mission

WFIRST Coronagraph Occulting Mask Technology

- HLC (Hybrid Lyot Coronagraph)
 - Successfully met <10-08 narrowband raw contrast
 - Started broadband nulling
- SPC (Shaped-pupil coronagraph)
 - Successfully produced two-sided dark holes (2% bandwidth) using 2 DMs

- PIAA/CMC (backup): Focal plane mask fabricated.
 - Recent designs show improved IWA performance

PIAACMC mask (atomic force microscope images)

8

Exoplanet Missions

Spitzer

Hubble

New Worlds Telescope

WFIRST /

AFTA

Habitable Exoplanet Imager HabEx, LUV/O/IR

New Worlds, New Horizons

Kepler

Report Release e-Townhall Keck Center of the National Academies August 13, 2010

NATIONAL RESEARCH COUNC

What Exoplanet Direct Imaging missions are possible for Probe-Scale (\$1B)?

JWST

TESS

Probe-Scale studies

High-Contrast Imaging

Purpose

- Alternatives for 2017 new start
- Motivate technology investments
- Candidates for next Decadal Survey

Ground rules:

- Compelling Science beyond ground capability at time of mission
- Feasibility: TRL 5 by end of Phase A, TRL 6 by end of Phase B
- \$1B LCC confirmed by Aerospace CATE
- Launch 2024

Exo-C:

Internal Occulter (Coronagraph)

K. Stapelfeldt, STDT Chair, GSFC

Exo-S:

External Occulter (Starshade)

S. Seager, STDT Chair, MIT

Exo-C: Internal Coronagraph

- Visible Hybrid Lyot Coronagraph mask
- Design Reference Mission observes > 400 unique targets
 - Spectra or colors for ~30 planets
 - Access to a few super-Earths in HZ of their stars
- 1.4m aperture
- Cost: \$1B life-cycle, validated by Aerospace CATE
- 3 year mission, Earth trailing orbit
- Exo-C's scope, hardware, and expected cost are very similar to those of NASA's Kepler mission
- A modest aperture can be very effective if coronagraphy requirements allowed to drive the mission and telescope design

Exo-S Mission Concepts

Dedicated (Co-Launched) Mission

- Telescope: 1.1 m
- Retargeting: by the telescope s/c (SEP)
- \$1.1B lifecycle cost

Rendezvous Mission

- Telescope: WFIRST/AFTA 2.4 m is adopted
- Orbit: Earth-Sun L2
- Retargeting: by the starshade spacecraft
- Minimal impact to telescope to be "starshade ready"
- \$0.6B lifecycle cost

Common to both:

- Starshade design (30 m vs. 34 m diameter)
- Formation-flying over ~35,000 km separation
- 3 Year Mission
- Science:
 - Spectra or colors for ~30 planets.
 - Access to several exo-Earths in HZ of their stars

Introducing new Exoplanet Exploration Program Office Members

Program Chief Technologist Dr. Nicholas Siegler

Program Business Manager Mr. Ramon Lemus

Coronagraph Technologist Dr. Rhonda Morgan

TDEM Engineer Mr. David Breda

Sagan Fellows – Class of 2015

Courtney Dressing, Caltech Characterizing Small Planets Orbiting Small Stars

Daniel Foreman-Mackey, **University of Washington** Flexible and Robust Inference of the Exoplanet Population

Jonathan Gagne, **Carnegie Institute for Science** Locating the Young, Isolated Planetary-Mass Objects in the Solar Neighborhood

Paul Robertson, **Pennsylvania State University** Spotting Blue Planets Around Spotted Red Stars: Removing Stellar Activity from Radial Velocities of M Dwarf Stars

Leslie Rogers, **University of California, Berkeley** Searching for Water in Distant Worlds

> 2015 Sagan Workshop, "Exoplanet System Demographics: Theory and Observations", Caltech, July 26–31.

15

NASA/NSF Partnership for Exoplanet Research

Extreme Precision Doppler Spectrometer

- Scope:
 - Exoplanet-targeted Guest Observer program with existing instrumentation on WIYN using NOAO share (40%) of telescope time
 - Solicitation for facility-class extreme precision radial velocity spectrometer for WIYN telescope (commissioning goal: 2018)
- Motivation
 - Follow-up of current missions (K2, TESS, JWST)
 - Pathfinder observations inform design/operation of future missions
- Anticipated Timeline:
 - June 2015: Selection of study team(s)
 - July 2015: Begin 6-month concept phase

3.5m WIYN Telescope Kitt Peak National Observatory Arizona

Looking Ahead: Program Activities

- Consistent Analysis of Exoplanet Yields for WFIRST, Probes (Traub, this afternoon)
- Exoplanet yield tool development
- CY15: Probe Extended Studies
- Exoplanets 20/20: celebration of anniversary
- Answering question of Starshade technology readiness for flight (TR6,7):
 - Starshade Readiness Working Group
 - Charter in development for APD DD approval

Decadal Large Mission Studies for Exoplanets

(Stating Program's position. PAGs to recommend, APD DD to decide)

- The Exoplanet Program advocates for the exoplanet science (and technology investments) on both the Habitable Exoplanet Imager (HabEx) and the Large UV/Optical/IR Surveyor (LUVOIR)
- In 2020 the Decadal Committee will require mature concepts to prioritize the science:
 - Compelling, Feasible, Affordable, Timely (FACTs)
 - LUVOIR
 - Both Habitable Exoplanets and General Astrophysics as co-primary drivers
 - Compelling science guides the cost and necessary investments
 - HabEx:
 - Habitable Planet spectroscopy is primary science, plus general astrophysics
 - Astrophysics decadal budgets guide the compelling science
- The Exoplanet Program recommends that both the HabEx and LUVOIR concepts be matured
- The Exoplanet Program plans an Exoplanet Working Group (eXWG) to support both mission studies: common tools, assumptions, figures of merit, technology evaluation and advocacy

NASA

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Acknowledgements

- This was carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. © 2015. All rights reserved.
- Work also carried out by
 - NASA Goddard Space Flight Center
 - NASA Ames Research Center
- Work also carried out by University of Arizona under a contract with the Jet Propulsion Laboratory.
- Work also carried out by Princeton University, University of Arizona and Northrop Grumman Aerospace Systems under contracts with the National Aeronautics and Space Administration.
- Contributions gratefully acknowledged from Karl Stapelfeldt and the Exo-C STDT, and by Sara Seager and the Exo-S STDT, Wes Traub, Nick Siegler, Feng Zhao, Steve Unwin, Keith Warfield, Ingolf Heinrichsen, David Imel, Muthu Jeganathan, Kevin Grady, Cathy Peddie.

Exoplanet Exploration Program Organization Chart

ExoPlanet Exploration Program

Coronagraph Key Milestones

MS #	Milestone	Date
1	First-generation reflective Shaped Pupil apodizing mask has been fabricated with black silicon specular reflectivity of less than 10^{-3} and 20 μ m pixel size.	7/21/14
2	Shaped Pupil Coronagraph in the High Contrast Imaging Testbed demonstrates 10 ⁻⁸ raw contrast with narrowband light at 550 nm in a static environment.	9/30/14
3	First-generation PIAACMC focal plane phase mask with at least 12 concentric rings has been fabricated and characterized; results are consistent with model predictions of 10 ⁻⁸ raw contrast with 10% broadband light centered at 550 nm.	12/15/14
4	Hybrid Lyot Coronagraph in the High Contrast Imaging Testbed demonstrates 10 ⁻⁸ raw contrast with narrowband light at 550 nm in a static environment.	2/28/15
5 🔮	Occulting Mask Coronagraph in the High Contrast Imaging Testbed demonstrates 10 ⁻⁸ raw contrast with 10% broadband light centered at 550 nm in a static environment.	9/15/15
6 🧃	Low Order Wavefront Sensing and Control subsystem provides pointing jitter sensing better than 0.4 mas and meets pointing and low order wavefront drift control requirements.	9/30/15
7	Spectrograph detector and read-out electronics are demonstrated to have dark current less than 0.001 e/pix/s and read noise less than 1 e/pix/frame.	8/25/16
8	PIAACMC coronagraph in the High Contrast Imaging Testbed demonstrates 10 ⁻⁸ raw contrast with 10% broadband light centered at 550 nm in a static environment; contrast sensitivity to pointing and focus is characterized.	9/30/16
9	Occulting Mask Coronagraph in the High Contrast Imaging Testbed demonstrates 10 ⁻⁸ raw contrast with 10% broadband light centered at 550 nm in a simulated dynamic environment.	9/30/16

WFIRST-AFTA Detector Technology Milestones

-				
MS #	Milestone	Milestone Date		
1	Produce, test, and analyze 2 candidate passivation techniques (PV1 and PV2) in <u>banded</u> <u>arrays</u> to document baseline performance, inter-pixel capacitance, and shall meet the following derived requirements: dark current less than 0.1 e-/pixel/sec, CDS noise less than 20 e-, and QE greater than 60% (over the bandpass of the WFI channel) at nominal operating temperature.	7/31/14		
2	Produce, test, and analyze 1 additional candidate passivation technique (PV3) in <u>banded</u> <u>arrays</u> to document baseline performance, inter-pixel capacitance, and shall meet the following derived requirements: dark current less than 0.1 e-/pixel/sec, CDS noise less than 20 e-, and QE greater than 60% (over the bandpass of the WFI channel) at nominal operating temperature.	12/30/14		
3	Produce, test, and analyze <u>full arrays with operability > 95%</u> and shall meet the following derived requirements: dark current less than 0.1 e-/pixel/sec, CDS noise less than 20 e-, QE greater than 60% (over the bandpass of the WFI channel), inter-pixel capacitance \leq 3% in nearest-neighbor pixels at nominal operating temperature.	9/15/15		
4	Produce, test, and analyze final selected recipe in <u>full arrays demonstrating a yield of > 20%</u> with operability > 95% and shall meet the following derived requirements: dark current less than 0.1 e-/pixel/sec, CDS noise less than 20 e-, QE greater than 60% (over the bandpass of the WFI channel), inter-pixel capacitance $\leq 3\%$ in nearest-neighbor pixels, persistence less than 0.1% of full well illumination after 150 sec at nominal operating temperature.	9/15/16		
5	Complete environmental testing (vibration, radiation ₆ thermal cycling) of one SCA sample part, as per NASA test standards.	12/1/16		

ME

WIDE-

ASTROPHYSICS . DARK ENERGY

EXOPLANET

.