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Outline
• Key points from lecture 1

– Scalar test statistics
– ROC and LROC CURVES

• Optimum linear (Hotelling) test statistic for image sequences

• Statistical models of AO systems

• Analytical and simulation approaches to multivariate speckle 
statistics

• Summary and conclusions

• Revised proposal for the Exoplanet Challenge



Notation and simplifications
• Given a data set G (sequence of J images)

G = { g(j), j = 1,..., J } 
• Two possible hypotheses about the object:

– Signal absent, S−

– Signal present, S+

• Make a statistically-based determination of whether the 
signal is present or absent, then determine its location

• To simplify today’s discussion, consider only:
– Hotelling observer and ROC curve
– Scanning Hotelling observer and LROC curve

• Sources of randomness considered today
– Detector readout noise and Photon (Poisson) noise
– Random system PSF 



Assume that a binary decision (signal-present or signal-absent)
must be made for every image and that there is no randomness

in the decision (Don’t guess; don’t equivocate)

With these assumptions, the decision strategy is:



From a set of trial images with known truth, can construct ROC and LROC curves
for any test statistic t(G; r0) , (i.e. any detection algorithm)

Receiver Operating Characteristic 
Points A, B and C correspond 
to different decision thresholds

Localization ROC
Must specify tolerance on

required localization accuracy



The Hotelling observer
• Performs only linear operations on 

data

• Maximizes SNR for test statistic

• Requires knowledge of ensemble 
means and covariance matrices of the 
images

• Equivalent to ideal observer for 
Gaussian data



This paper presents the full derivation of the mean and covariance of 
the data set G for object and system PSF being general

spatiotemporal random processes

Here we summarize the results for a simple object (a star) which is 
not random and does not vary with time and where the PSF
randomness arises from a phase perturbation in the pupil

Two cases

• Simple AO system, pinned speckle 

• Lyot coronagraph



Notation for object and image



Doubly stochastic averaging: mean data

Key point: these averages are ensemble averages,
over an infinite set of realizations of noise and PSFs,

not time averages or sample averages over a few realizations



Overall covariance matrix (details on next slide)

Overall covariance is sum of two terms, with
no assumption that noise and PSF are statistically independent

Noise term includes Poisson noise and readout noise from
science camera; it is almost always a diagonal matrix

Random PSF induces correlations from frame to frame and from pixel to pixel,
and understanding these correlations is key to optimal planet detection

Useful assumption for exoplanet detection:
KG is the same for signal-present and signal absent

because the planet signal is so weak



Some algebra, which you can read at your leisure



Form of the Hotelling observer for detection of a planet at r0

• Preprocess data sequence with inverse of overall covariance

• Take scalar product with mean planet signal

• Compare resulting test statistic to a threshold 
or scan to find most probable planet location



Modeling the PSF (speckle) term 
in the covariance matrix 

• Monte Carlo methods
– Simulate sample functions of ϕ(r, t) (potentially non-Gaussian)
– Propagate to image plane, compute irradiance I(r, t)
– Compute sample covariance matrix

• Analytical approach
– Treat pupil phase ϕ(r, t) as spatiotemporal Gaussian random process
– Assume weak phase, use pinned-speckle theory
– Propagate resulting complex field to image plane
– Compute characteristic functional of irradiance
– Derive covariance matrix from characteristic functional
– Derive any other desired statistical property from characteristic functional

For a short introduction to characteristic functionals, see
http://media.nakfi.org/2010/tutorials/harrison_barrett/harrison_barrett.html







Equations of pinned speckle on last slide are just a start.  For the Hotelling
observer we need the ensemble means and covariance matrices of
the random focal-plane irradiance:

To evaluate these averages, we need a model for the multivariate statistics
of the pupil phase.  Possibilities include:

• Treat ϕ(r, t) as a real Gaussian random process

• Perhaps add assumption of spatial stationarity

• Perhaps model time dependence as Taylor frozen flow



Rationale for Gaussian phase models

• Kolmogorov model is Gaussian, so residual phase after AO still Gaussian

• Drive signals to DM can be noisy, but Gaussian model should be good

• Gaussian random processes are fully determined by their mean and
covariance functions

• Can find characteristic functional for focal-plane irradiance if pupil phase is 
a Gaussian random process

• Spatial stationarity of the residual pupil phase might work for high-order AO and 
atmospheric phase perturbations 

Potential drawbacks to Gaussian phase assumption

• Statistics of quasistatic phase perturbations unknown, may not be Gaussian

• Quasistatic phase definitely not stationary



Example of a speckle covariance calculated from a characteristic functional
Stationary Gaussian model for pupil phase, no time variable

Sϕ(ρ) = power spectral density of phase

For AO system with very high Strehl ratio, can neglect lines 2 - 4
Math then shows that KI(r1, r1) = -KI(r1, -r1)

In this same limit, focal-plane irradiance is a Gaussian 
random process and the Hotelling observer is ideal



Monte Carlo simulation for same speckle model as last slide (Strehl ratio = 0.91)
Work of Julia Sakamoto

Univariate PDFs for irradiance at two different points in the focal plane

Covariance maps, KI(x0, y0; x,y) for two fixed locations (x0, y0 )



Can readily extend calculations from previous slides to this configuration; 
just replace Fourier transform with coherent propagator from plane A to plane D.



Summary
• Statistical approaches to evaluation of exoplanet-detection algorithms 

must be based on average probability of detection and false-alarm rate 
over many images

• ROC and LROC curves are a well-established way of displaying the 
results

• Ideal observers for ROC and LROC are known, require multivariate 
PDFs for huge data vectors

• Ideal linear (Hotelling) observers also known, require means and 
covariance matrices of the image data 

• Data are spatiotemporal (image sequences), so covariances must 
include space and time variables

• Both analytical and simulation methods exist for finding the requisite 
multivariate statistics

• Both theory and simulation show that focal-plane irradiance is Gaussian 
if Strehl ratio is large; Hotelling is ideal in this case

• Once the means and covariances are either known or sampled, Hotelling
and scanning-Hotelling observers can be constructed and evaluated 
(Luca Caucci)



Revised proposal for the workshop challenge
• Make it a two-stage challenge
• Stage 1 (pre-workshop)

– Simple telescope model, DM conjugate to pupil 
– Can include Lyot coronagraph
– Can include quasistatic speckle as well as residual atmospheric 

speckle, but model it as originating in the pupil
– Use simulated data (need ~ 100 data sets, each an image sequence)

• Stage 2 (post-workshop)
– State-of-the-art telescope
– Include current coronagraph, electric-field conjugation, apodization,...
– Consider use of real data with added planets

• In both stages, perform detection, localization and magnitude 
estimation; analyze results by ROC and LROC



Supplemental slides on characteristic functionals
in case further discussion is needed

http://media.nakfi.org/2010/tutorials/harrison_barrett/harrison_barrett.html



Characteristic functionals

An object f is a function ...

... hence a vector in an infinite-dimensional space

Thus its PDF pr(f) is infinite-dimensional ...

which is difficult to conceive, much less write down.

But an infinite-dimensional characteristic functional always
exists, and can often be expressed in a simple analytic form

This characteristic functional contains all possible statistical
information about the object function



Characteristic functional -- definition

Equation numbers refer to Barrett and Myers, Foundations of Image Science



Random processes for which the characteristic 
functional is known analytically

• Lumpy backgrounds (often used to simulate tissue 
inhomogeneity in medical imaging)

• Clustered lumpy backgrounds (good model for 
mammograms)

• Any Poisson random process (stationary or not) 
• Any Gaussian random process (complex or real, arbitrary 

covariance)
• Fully developed speckle
• Certain texture models related to non-Gaussian speckle
• Image-plane irradiance in adaptive optics
• Any of the above after detection by a discrete detector array 

with Poisson on Gaussian noise



Uses of characteristic functionals
• If the characteristic functional for the object random 

process is known, we can derive:

– Any desired marginal PDF on the object
– Any moment or covariance function of the object
– The characteristic function for the image data through any 

linear -- and some nonlinear -- imaging systems
– The object and noise terms in the data covariance matrix 

needed for Hotelling and Wiener observers
– Ideal observer performance

Details in Barrett and Myers
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