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Outline
Key points from lecture 1

— Scalar test statistics
— ROC and LROC CURVES

Optimum linear (Hotelling) test statistic for image sequences
Statistical models of AO systems

Analytical and simulation approaches to multivariate speckle
statistics

Summary and conclusions

Revised proposal for the Exoplanet Challenge



Notation and simplifications
Given a data set G (sequence of J images)
G={g¥j=1,.,73}
Two possible hypotheses about the object:
— Signal absent, S_
— Signal present, S,
Make a statistically-based determination of whether the
signal is present or absent, then determine its location

To simplify today’s discussion, consider only:
— Hotelling observer and ROC curve

— Scanning Hotelling observer and LROC curve
Sources of randomness considered today

— Detector readout noise and Photon (Poisson) noise
— Random system PSF



Assume that a binary decision (signal-present or signal-absent)
must be made for every image and that there is no randomness
In the decision (Don’t guess; don’t equivocate)

With these assumptions, the decision strategy Is:

To decide if a signal is present at a particular location ry, use
Dy
t(G:ry) - threshold
D_

This inequality is to be read:
“decide signal present when the greater-than sign holds;

decide hypothesis signal absent when the less-than sign holds.”

To decide if a signal is present anywhere in the data, use

D,
max t(G;ry) = threshold
Lo D_




From a set of trial images with known truth, can construct ROC and LROC curves
for any test statistic t(G; r,) , (i.e. any detection algorithm)
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The Hotelling observer

Performs only linear operations on
data

Maximizes SNR for test statistic

Requires knowledge of ensemble
means and covariance matrices of the
iImages

Equivalent to ideal observer for
Gaussian data
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Objective assessment of image quality. IV.

Application to adaptive optics

This paper presents the full derivation of the mean and covariance of
the data set G for object and system PSF being general
spatiotemporal random processes
Here we summarize the results for a simple object (a star) which is

not random and does not vary with time and where the PSF
randomness arises from a phase perturbation in the pupil

Two cases

« Simple AO system, pinned speckle

« Lyot coronagraph



Notation for object and image

Object model (host star at origin, possible planet at rg):
Signal absent: f(r) = Ad(r)
Signal present: f(r) = Ad(r) + ad(r — ry)

General linear mapping of object to discrete data (value in image frame j at pixel m):

g.,[ﬂ} | d?'f'f(l‘)hi}{_j(r) - nl)

(j .. : : : i) . :
where h.,,;':]{r} is integral of PSF over frame j and pixel m and 'I'J.-?[,J;_ 1s noise

Signal absent: g.,[,{ ARY }{H} F )

Signal present: g.r,[;f., f’lh,?[ff_ }[H} - :’,{-h--l,:;ﬁ_j[r{;} | ’.r'.i..,':;{}

Shorthand: G = Hf +n




Doubly stochastic averaging: mean data

General spatiotemporal data: G = Hf + n

Average over zero-mean noise: G = (G) G|H

Average over random PSFs: G = ((G) 4 /-

Key point: these averages are ensemble averages,
over an infinite set of realizations of noise and PSFs,
not time averages or sample averages over a few realizations




Overall covariance matrix (details on next slide)

Ko =(((6-G) (c

Overall covariance is sum of two terms, with
no assumption that noise and PSF are statistically independent

Noise term includes Poisson noise and readout noise from
science camera, it is almost always a diagonal matrix

Random PSF induces correlations from frame to frame and from pixel to pixel,
and understanding these correlations is key to optimal planet detection

Useful assumption for exoplanet detection:
K is the same for signal-present and signal absent
because the planet signal is so weak



Some algebra, which you can read at your leisure

In outer-product notation, the overall covariance matrix is given by

ko=(((¢-8)(c-T)"), ),

where the dagger denotes adjoint (transpose for a simple real matrix). In component form,

Kali, = (( (a0 -a@.)) (64

Now add and subtract G in first equation:

Ke=({(G-G+@G

<< (G-G)(G E)Ir>g|n>ﬁ | <(E .l =Ry

Note that the cross term has vanished identically since

((c-a)(c-8)), ), - (@), (




Form of the Hotelling observer for detection of a planet at r,

ek / :1 . | =—=naoize ~PSF
HG) = AG! [KG KL

(7) )
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* Preprocess data sequence with inverse of overall covariance
 Take scalar product with mean planet signal

« Compare resulting test statistic to a threshold
or scan to find most probable planet location



Modeling the PSF (speckle) term
In the covariance matrix

Monte Carlo methods

— Simulate sample functions of ¢(r, t) (potentially non-Gaussian)
— Propagate to image plane, compute irradiance I(r, t)

— Compute sample covariance matrix

Analytical approach
— Treat pupil phase ¢(r, t) as spatiotemporal Gaussian random process
— Assume weak phase, use pinned-speckle theory
— Propagate resulting complex field to image plane
— Compute characteristic functional of irradiance
— Derive covariance matrix from characteristic functional
— Derive any other desired statistical property from characteristic functional

For a short introduction to characteristic functionals, see
http://media.nakfi.org/2010/tutorials/harrison_barrett/harrison_barrett.html
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Pupil function with random phase aberration

Upup (T, 1) = agp(r) explig(r, 1),
where r is a 2D vector in the pupil plane and a,,(r) is the transmittance of the pupil aperture.

The random field incident in the back focal plane is given in the Fresnel approximation by

1 T 9 4 2T
u(r.t) = Y exp (;} j) ] d*r’ explio(r', t)] exp (— ;; x r) :
- ap .

Expand the focal-plane field as

| ; 2mi
u(r,t) = BY; exp ( ' fr) [ d’r’ [14+ig(r' t) — L¢*(x',t) + - - ] exp (— ;f? . r) .
ap )

Retaining terms only up to second order in ¢(r',t), we can write the random focal-plane irradiance as

2
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In terms of spatial Fourier transforms:

1

I(r.t) = }LE—F

where ®(p,t) is the 2D Fourier transform of ¢(r’.t) and r = r/(Af).

{ Aop(F)])2 = 24, (F)Im {[Agy # ©](F)} + |[Aap * ©)(F)]2 — Aup(F)Re {[Aqy = © * D) (i)} }

2.



Equations of pinned speckle on last slide are just a start. For the Hotelling
observer we need the ensemble means and covariance matrices of
the random focal-plane irradiance:

I(r.t) = {I(r, 1)), Ki(r,t;x' t')y = ([I(r,t) — T(r,t)] [I(x",t") = T(x',t")]) .

where {---) denotes ensemble average

To evaluate these averages, we need a model for the multivariate statistics
of the pupil phase. Possibilities include:

» Treat ¢(r, t) as a real Gaussian random process
* Perhaps add assumption of spatial stationarity

* Perhaps model time dependence as Taylor frozen flow



Rationale for Gaussian phase models

» Kolmogorov model is Gaussian, so residual phase after AO still Gaussian
 Drive signals to DM can be noisy, but Gaussian model should be good

o Gaussian random processes are fully determined by their mean and
covariance functions

» Can find characteristic functional for focal-plane irradiance if pupil phase is
a Gaussian random process

» Spatial stationarity of the residual pupil phase might work for high-order AO and
atmospheric phase perturbations

Potential drawbacks to Gaussian phase assumption

o Statistics of quasistatic phase perturbations unknown, may not be Gaussian

» Quasistatic phase definitely not stationary



Example of a speckle covariance calculated from a characteristic functional
Stationary Gaussian model for pupil phase, no time variable
S,(p) = power spectral density of phase

7
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For AO system with very high Strehl ratio, can neglect lines 2 - 4
Math then shows that K,(ry, ;) = -K(r, -ry)

In this same limit, focal-plane irradiance is a Gaussian
random process and the Hotelling observer is ideal



Monte Carlo simulation for same speckle model as last slide (Strehl ratio = 0.91)
Work of Julia Sakamoto
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Fast computation of Lyot-style
coronagraph propagation

1 =1 7 g
R. Soummer*!-Z, L. Pueyo-,
q & [} -'I d T l"_
A. Sivaramakrishnan 1"'4_, and R. J. Vanderbei’

|

Focal Pupil
A B C D

Fig. 1. Illustration of the four coronagraphic planes: the pupil corresponds to Plane A (pos-
sibly apodized). A focal masks (hard-edged, or phase mask) 1s placed in the foeal plane B,
and a Lyot stop (possibly undersized) in plane C.

Can readily extend calculations from previous slides to this configuration;
just replace Fourier transform with coherent propagator from plane A to plane D.



Summary

Statistical approaches to evaluation of exoplanet-detection algorithms
must be based on average probability of detection and false-alarm rate
over many images

ROC and LROC curves are a well-established way of displaying the
results

|deal observers for ROC and LROC are known, require multivariate
PDFs for huge data vectors

|deal linear (Hotelling) observers also known, require means and
covariance matrices of the image data

Data are spatiotemporal (image sequences), so covariances must
include space and time variables

Both analytical and simulation methods exist for finding the requisite
multivariate statistics

Both theory and simulation show that focal-plane irradiance is Gaussian
if Strehl ratio is large; Hotelling is ideal in this case

Once the means and covariances are either known or sampled, Hotelling
and scanning-Hotelling observers can be constructed and evaluated
(Luca Caucci)



Revised proposal for the workshop challenge
Make it a two-stage challenge

Stage 1 (pre-workshop)
— Simple telescope model, DM conjugate to pupill
— Can include Lyot coronagraph

— Can include quasistatic speckle as well as residual atmospheric
speckle, but model it as originating in the pupill

— Use simulated data (need ~ 100 data sets, each an image sequence)
Stage 2 (post-workshop)
— State-of-the-art telescope

— Include current coronagraph, electric-field conjugation, apodization,...
— Consider use of real data with added planets

In both stages, perform detection, localization and magnitude
estimation; analyze results by ROC and LROC



Supplemental slides on characteristic functionals
In case further discussion is needed

http://media.nakfi.org/2010/tutorials/harrison_barrett/harrison_barrett.ntml



Characteristic functionals

An object f is a function ...
... hence a vector in an infinite-dimensional space
Thus its PDF pr(f) is infinite-dimensional ...
which is difficult to conceive, much less write down.

But an infinite-dimensional characteristic functional always
exists, and can often be expressed in a simple analytic form

This characteristic functional contains all possible statistical
Information about the object function



Characteristic functional -- definition

Recall the definition of the characteristic function for a M D real random
vector:

Ya(€) = (exp(—2mit's)) , (8.26)

Here, £ is a real M x 1 vector, and &lg denotes a scalar product.

In the case of a random process f(r), each sample function corresponds to
a vector fin an infinite-dimensional Hilbert space, so the frequency vector
£ in (8.26) must be replaced by an infinite-dimensional vector s in the
same Hilbert space as f. That means that s describes a function s(r), so
the characteristic function becomes a characteristic functional W¢{s(r)} or
Wy (s) for short. It is defined by

We(s) = (exp[—2mi(s, T)]), (8.94)

where (s, ) is the usual Lo scalar product.

Equation numbers refer to Barrett and Myers, Foundations of Image Science



Random processes for which the characteristic
functional is known analytically

Lumpy backgrounds (often used to simulate tissue
iInhomogeneity in medical imaging)

Clustered lumpy backgrounds (good model for
mammograms)

Any Poisson random process (stationary or not)

Any Gaussian random process (complex or real, arbitrary
covariance)

Fully developed speckle
Certain texture models related to non-Gaussian speckle
Image-plane irradiance in adaptive optics

Any of the above after detection by a discrete detector array
with Poisson on Gaussian noise



Uses of characteristic functionals

* |If the characteristic functional for the object random
process Is known, we can derive:

— Any desired marginal PDF on the object
— Any moment or covariance function of the object

— The characteristic function for the image data through any
linear -- and some nonlinear -- imaging systems

— The object and noise terms in the data covariance matrix
needed for Hotelling and Wiener observers

— |deal observer performance

Details in Barrett and Myers
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