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Pure detection 
•  Given a data set g (one or more images) 

‒  Size of g = # pixels/image × # images 
•  Two possible hypotheses about the object: 

‒  Signal absent, S－ 

‒  Signal present, S+ 

•  Make a statistically-based determination of whether the 
signal is present or absent 

•  Many potential sources of randomness 
‒  Detector readout noise 
‒  Photon (Poisson) noise 
‒  Random system PSF (atmosphere, AO, laser guidestar, ...) 
‒  Random signal (e.g., location, magnitude) 
‒  Random background (host star, other celestial objects, dust, ...) 



Formulation of the detection strategy 

Assume that a binary decision (signal-present or signal-absent) 
must be made for every image and that there is no randomness 
in the decision (repeated decisions on the same data vector g 

always lead to the same result) 

With these assumptions, the decision strategy always has the form: 
 
 



Each signal-present decision can be either a correct detection 
or a false alarm.  Decreasing the threshold increases the  
probability of detection and the probability of a false alarm 

Receiver Operating Characteristic (ROC) 
Points A, B and C correspond to different decision thresholds 



Area under the ROC curve, denoted AUC, is a 
common figure of merit for detection performance 

•  AUC varies from 0.5 to 1.0 
1.0 ó perfect detection system 
0.5 ó worthless system 

•  AUC is independent of decision 
threshold 

•  AUC is independent of prevalence 
of signal (probability of signal being 
present) 

•  Optimum threshold (operating point) 
can be determined if one assigns 
costs to correct and incorrect 
decisions and has prior knowledge 
of signal prevalence 



Can also define detectability dA related to AUC 

(a)  PDF of test statistic for large dA 
(b)  PDF of test statistic for  small dA 



The ideal observer for signal detection 
•  Maximizes probability of detection for 

any probability of false alarm 

•  Maximizes area under ROC curve  

•  Maximizes dA 

•  Minimizes Bayes risk (if costs and 
     prevalence are specified) 
 

•  Requires knowledge of full multivariate 
PDF of image data under both 
hypotheses 

•  Generally nonlinear 

•  Difficult to calculate  

The test statistic for the ideal observer 
is the likelihood ratio or its log 

 
The decision is made by comparing the 

test statistic to a threshold 
 

Varying the threshold generates 
the ROC curve 



•  Many mathematical and statistical properties of 
ideal observers and their ROC curves 

•  All statistical properties of ideal observer can be 
derived from likelihood-generating function 

•  Many simplifications possible if λ(g) is normally 
distributed; true if g is a sequence of indep. images 



The Hotelling observer 

•  Based on 1931 paper by Harold Hotelling 

•  Performs only linear operations on data 

•  Optimum in several senses 

•  Requires knowledge of ensemble mean and 
covariance of the images 

•  Computational difficulty: inversion of large 
covariance matrix (but many tricks available) 

•  Equivalent to ideal observer for Gaussian data 

Harold Hotelling 





Comments on the covariance matrix Kg 
 •  It’s huge! (# pixels × # pixels for one image) 

•  It’s an ensemble covariance matrix, not a sample matrix 

•  It must include all sources of randomness, at least in the signal-
absent images 

•  It must be inverted to get the Hotelling template 

•  Lecture by Luca Caucci will explain how to deal with these issues 



Pure estimation tasks 
•  Signal known to be present 

•  Want to estimate some set of parameters θ 

•  Have a statistical model (likelihood) pr(g | θ ) 

•  Distinguish Bayesian and classical estimation 
‒  Bayesian: Prior probability model, pr( θ ) 
‒  Classical:  No prior knowledge of θ  



Estimation figures of merit 

Average is over all sources of randomness in  
the data and over an ensemble of parameters 

Classical: Bias, variance and mean-squared error (MSE) 
 

Bias = systematic error, accuracy 
Variance = random error, precision 

MSE = bias2 + variance 

Bayesian: Ensemble MSE 



The ideal Bayesian observer 

•  Minimizes the EMSE 

•  Requires knowledge of PDF of 
image data and a prior 
distribution on the parameter 

•  Generally nonlinear 

•  Difficult to calculate  

The ideal estimator computes 
the posterior mean of the parameter 

 
Equivalently, it computes the mean 

with respect to the likelihood 
weighted by the prior 



Generalized Wiener estimator 
•  Performs only linear operations on data 

•  Optimizes ensemble mean-square error 

•  Requires prior knowledge of mean and 
covariance of data and parameter 

•  Computational difficulty: inversion of 
large covariance matrix (but many tricks 
available) 

•  Ideal if posterior PDF is Gaussian  

•  Reduces to Wiener filter for stationary, 
•  Gaussian noise (not a good model for 

exoplanets) 

•  Performs poorly with location uncertainty 
 

Norbert Wiener 



Maximum A Posteriori (MAP) estimator 

Find the maximum of the likelihood weighted by the prior 



Maximum-likelihood estimation 

•  MLE maximizes the probability of the data 
given the parameter : 

•  Equivalently, maximizes the logarithm of this 
conditional probability: 



Fisher information matrix 
Definition 

Cramer-Rao lower bound (for unbiased estimator) 

Off-diagonal elements of inverse 
relate to covariances of estimates 



An efficient estimator is one that is unbiased and for which the  
CR bound become an equality 

 
In any problem, the ML estimator is efficient 

if an efficient estimator exists 
 

The ML estimator is always asymptotically efficient ... 
 

... as you get more or better data 
 

....thereby increasing the (Fisher) information content 





Advantage of MLE over centroids 
(work of David Lara, Galway) 



Joint detection and estimation 
•  Problem statement 

‒ Decide whether a signal is present 
‒  If it is, estimate location, magnitude, other parameters 

•  Figures of merit: Area under LROC and EROC 
•  Ideal observers 
•  Linear observers 

‒ Scanning Hotelling template 
‒ Scanning Linear Estimator (SLE) 



Localization tasks: the LROC curve 



General estimation tasks: the EROC curve 
EROC: Plot of expected utility of a true-positive detection against 

  false-alarm rate as the detection threshold is varied 

Ideal observers to maximize AEROC must know full PDFs of data under  
signal-absent and signal-present hypotheses as well as  

full PDFs of parameters to be estimated 
 

Under Gaussian assumptions, the ideal AEROC observer  
is equivalent to a scanning Hotelling observer 



Random backgrounds 
(nuisance parameters) 

Signals (random size, 
location and amplitude) 

Images for analysis,  
with Poisson noise 



Scatter plots of Wiener estimates of signal radius, amplitude and location 
(red line indicates perfect performance) 

Conclusion: optimum linear estimator does not work at all with location uncertainty 
 

Wiener estimator simply returns the mean of the prior ensemble (dashed line) 



Scatter plots of scanning linear estimates of signal radius, amplitude and location 
(red line indicates perfect performance) 

This method was applied to binary stars by Burke, Devaney, Whitaker et al. 
Proc. of SPIE Vol. 7015, 70152J, (2008) 



•  What is the SLE? 
‒ An approximation to a MAP estimator ... 
    ... that assumes a Gaussian likelihood ... 
    ... and simplifies the covariance by neglecting                          
     parameter randomness 

‒ An estimator that is linear in the data g, .... 
    ... but scans a linear template in parameter space 
    ... and then performs a nonlinear (argmax) operation 

•  Why does it work? 
‒  It knows about the system matrix 
‒  It knows about the object covariance 
 



Application to exoplanets 

•  Tasks 
•  Types of data 
•  Sources of randomness  
•  A game plan 



Tasks 

•  Detection  
•  Photometry (estimation of location of planet) 
•  Astrometry (estimation of relative magnitude) 
•  Spectral estimation or detection of spectral 
signature 



Types of data 
•  Single long-exposure image 
•  Multiple short-exposure images 

‒ Temporal sequences 
‒ Angular sequences 

•  Images plus spectra 
•  Images plus AO actuator signals 
•  Phase-diversity images 



Key point: Optimal statistical methods are, in principle,  
applicable to all of these tasks and all data types 

 
 

Figures of merit related to task performance can be used 
to compare data types as well as analysis methods 

 
 

Major need: Comprehensive, task-specific statistical models  



                  Tasks considered: 
• Detection of a star on a random background 
• Detection of a faint companion 
• Photometry in a crowded star field 
• Simultaneous differential imaging 

      Random effects considered 
• Spatial and temporal correlations  
       in residual speckle 
• Background models 
• Nuisance parameters 
• Poisson noise 
• Camera readout noise 
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A proposed game plan for the workshop challenge 
•  Make it a two-stage challenge 
•  Stage 1 (pre-workshop) 

‒  Simple telescope model 
‒  No coronagraph or pupil apodization 
‒  Only residual atmospheric speckle 
‒  Use simulated data 

•  Stage 2 (post-workshop) 
‒  State-of-the-art telescope 
‒  Include coronagraph, electric-field conjugation, apodization,... 
‒  Include quasistatic speckle 
‒  Consider use of real data with added planets 

•  In both stages, perform detection, location and magnitude 
estimation; analyze results by ROC, LROC and EROC 



Suggested information to be supplied for Stage 1 
•  Telescope 

‒  Specify primary and secondary diameters, spider, wavelength, ideal PSF 
•  Atmosphere 

‒  Kolmogorov, specify r0 

‒  Residual atmospheric speckle only (no quasistatic) 
•  Adaptive optics 

‒  Single adaptive mirror conjugate to telescope pupil 
‒  Specify actuator configuration, system bandwidth, WFS type and noise level 

•  Science camera 
‒  Specify pixel size, array size, readout noise, exposure time 

•  Images 
‒  Supply 100 simulated images, half with a single planet in a random location 
and with random magnitude (ranges to be determined).  Planet and host star 
should have same PSF, including residual speckle. 

‒  Specify mean # of detected photons from host star (i.e, Poisson noise)  
‒  Same host star, independent speckle realizations for each of the 100 images 



Still to be decided 
•  PDFs for positions and magnitudes of simulated 
planets 

•  Tolerance to use for LROC 
•  Utility function to use for EROC 
•  How to set error bars on AEROC (jackknife?) 
•  How to determine statistical significance of 
differences in AEROC 

•  Should we investigate effects of model mismatch, 
e.g. inaccurate knowledge of pr(θ) ? 



Discussion 



 
Acronyms (in order of introduction) 

PSF: Point Spread Function 
AO: Adaptive Optics 
ROC: Receiver Operating Characteristic 
AUC: Area Under Curve (usually an ROC curve) 
PDF: probability density function 
SNR: Signal-to-Noise Ratio 
MSE: Mean-Square Error 
EMSE: Ensemble Mean-Square Error 
ML: Maximum Likelihood 
MAP: Maximum A Posteriori 
LROC: Localization ROC 
EROC: Estimation ROC 
AEROC: Area under EROC curve 
SLE: Scanning Linear Estimator 
 



Mathematical symbols (in order of introduction) 



Mathematical symbols (continued) 


