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Abstract: Detection of signals in noisy images is necessary in many
applications, including astronomy and medical imaging. The optimal linear
observer for performing a detection task, called the Hotelling observer in
the medical literature, can be regarded as a generalization of the familiar
prewhitening matched filter. Performance on the detection task is limited by
randomness in the image data, which stems from randomness in the object,
randomness in the imaging system, and randomness in the detector outputs
due to photon and readout noise, and the Hotelling observer accounts for all
of these effects in an optimal way. If multiple temporal frames of images
are acquired, the resulting data set is a spatio-temporal random process,
and the Hotelling observer becomes a spatio-temporal linear operator. This
paper discusses the theory of the spatio-temporal Hotelling observer and
estimation of the required spatio-temporal covariance matrices. It also
presents a parallel implementation of the observer on a cluster of Sony
PLAYSTATION 3 gaming consoles. As an example, we consider the use of
the spatio-temporal Hotelling observer for exoplanet detection.
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1. Introduction

Signal detection [1, 2] is a fundamental task in image science and a common problem in many
fields, from medicine (for example, the detection of tumors [1, 3, 4]) to astronomy (detection
of extrasolar planets [5, 6] or near-earth objects). As a consequence, an extensive theory and
numerous algorithms have been developed to address the problem of signal detection from im-
ages [1,2,7–13]. Some systems, such as adaptive optics systems [14,15], can deliver sequences
of spatially correlated images. Spatio-temporally correlated data also appear in medical appli-
cations, such as [16,17]. In many cases, the large amount of spatio-temporal data makes it hard
to examine them and apply the detection algorithm directly to the data. Reduction in the tem-
poral dimension is usually performed by adding together some or all of the frames. In adaptive
optics, for example, images of the same object are taken over time and summed together ei-
ther on the readout chip or in an external computer. The resulting single-frame image is used
to perform the task of interest, but the information loss that results from the summation can
reduce the detection performance. In medical applications, by contrast, it is usually not valid to
assume that the object is constant over a long exposure time, and indeed the temporal dynamics
of the object may be what defines the signal to be detected. Short-exposure images are inher-
ently noisy, but long exposures wash out the signal. Full spatio-temporal processing is required
for optimal signal detection.

The performance of a detection algorithm is mathematically quantified using receiver oper-
ating characteristic (ROC) analysis [18–20] and the area under the ROC curve (AUC) [19, 21].
With respect to that measure, the likelihood ratio is the optimal detector [21]. However, the
likelihood ratio requires knowledge of the probability density functions under the hypotheses
signal present and signal absent. Such probability density functions are often unknown or hard
to estimate in practical cases. A more viable solution is the Hotelling observer [22], which
requires only the knowledge of the data mean vector and covariance matrix. The Hotelling ob-
server is linear, and it is optimal with respect to the class of linear observers [21] and a certain
detectability measure to be defined below.

In this paper, the optimal-linear Hotelling observer is applied to spatio-temporal imagery.
For this reason, we talk about the spatio-temporal Hotelling observer. By construction, such an
observer is able to use both the spatial and temporal correlations between pixels in an optimal
way, with respect to all linear observers. Methods for the estimation of the mean data vector and
covariance matrix are described as well. Computational methods are described, and a parallel
algorithm is implemented on a cluster of Sony PLAYSTATION 3 game consoles.
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Table 1: Possible Outcomes of a Binary Discrimination Problem

��������Decision
Signal

Present ( f ∈ Γ1) Absent ( f ∈ Γ0)

“Yes” (H1)
“hit” or

“true positive”
“false alarm” or
“false positive”

“No” (H0)
“miss” or

“false negative”
“correct rejection”
or “true negative”

2. The spatio-temporal Hotelling observer

Let {ggg(1), . . . ,ggg(J)} be a collection of J images of the same object f (assumed to be independent

of time) taken over time. Each ggg( j) is, in turn, a collection of M pixel intensities {g( j)
1 , . . . ,g( j)

M }.
The data set {ggg(1), . . . ,ggg(J)} represents the intensities of a total of MJ pixels, which we raster-
scan and represent in compact form as the MJ×1 vector GGG.

The task of interest is binary discrimination: given a noisy data set GGG, an observer must
decide whether the object f that produced GGG belongs to either the “signal-absent” class Γ0 or
to the “signal-present” class Γ1. The observer can also be said to decide between hypothesis H0

where the signal is absent, or hypothesis H1 where the signal is present. In any case, the observer
evaluates a real-valued non-random function t on the random data GGG and compares t(GGG) to a
threshold τ . If t(GGG) > τ , hypothesis H1 is assumed. Otherwise, hypothesis H0 is concluded. All
of the possible outcomes and associated terminology are summarized in Table 1.

Recall that GGG is a random vector, so t(GGG) is a random variable. For any fixed value of τ ,
the decision taken depends on t(GGG), so it is a random variable as well. We can consider its
probability density functions pr(t|H0) and pr(t|H1) given, respectively, hypothesis H0 or H1.
These two densities allow us to formally define the true positive fraction (TPF) and the false
positive fraction (FPF) as

TPF(τ) =
∫ ∞

τ
pr(t|H1)dt, FPF(τ) =

∫ ∞

τ
pr(t|H0)dt, (1)

in which it is made clear that TPF and FPF are functions of τ .
If we change the value of τ , different values of TPF(τ) and FPF(τ) are obtained; a plot of

TPF(τ) versus FPF(τ) as τ is varied over the real line is called a receiver operating character-
istic (ROC) curve [18–20], and the area under the ROC curve (AUC) [19, 21] is a meaningful
figure of merit for a binary classification task. The AUC is defined as [21]

AUCt(GGG) =−
∫ ∞

−∞
TPF(τ)

dFPF(τ)
dτ

dτ .

Another figure of merit for the same task is the signal-to-noise ratio (SNR) on the test statistic
t(GGG):

SNRt(GGG) =
〈t(GGG)〉GGG|H1

−〈t(GGG)〉GGG|H0√
1
2Var

{
t(GGG)|H1

}
+ 1

2Var
{

t(GGG)|H0
} , (2)

in which the notation 〈t(GGG)〉GGG|Hi
denotes the statistical expectation of the random variable t(GGG)

conditioned to the knowledge that hypothesis Hi is true. Similarly, Var{t(GGG)|Hi} is the variance
of t(GGG) under the hypothesis Hi. In (2), hypotheses H0 and H1 are assumed equiprobable. The
AUCt(GGG) is a known, monotonic function of SNRt(GGG) if t(GGG) is normally distributed [21].

Many classical monographs discuss statistical decision theory; some of them are [2] and [9].
These texts show that, for binary classifications and for any ROC-related figure of merit (in-
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cluding the AUC), the optimal observer is the likelihood ratio [1, 2, 9, 21]:

Λ(GGG) =
pr(GGG|H1)
pr(GGG|H0)

,

or, equivalently, its logarithm λ (GGG) = lnΛ(GGG). However, we note that Λ(GGG) requires knowledge
of the multivariate densities pr(GGG|Hi), which are usually unknown or difficult to estimate. A
more viable alternative can be found by restricting attention to linear observers, i.e., observers
of the form t(GGG) = WWWTGGG, for an appropriate template vector WWW of the same size of GGG. Here,
the symbol T denotes the transpose of a vector or matrix, so WWWTGGG is a scalar product. The
optimal template vector can be derived by substituting t(GGG) = WWWTGGG in (2) and maximizing
SNR2

t(GGG) with respect to WWW . The resulting template vector, which we call the Hotelling template
vector [21, 22], is of the form

WWW Hot =
[
KGGG

]−1
SSS, (3)

in which KGGG is the covariance matrix of the data vector GGG and SSS = GGG1−GGG0 is the image of the
signal. The triple overbar represents an average over object randomness, system randomness,
and measurement noise as discussed below. The linear observer that uses WWW Hot is the Hotelling
observer, defined as tHot(GGG) = WWWT

HotGGG. The Hotelling observer is also called a prewhitening
matched filter [21], and the prewhitening operation is both correcting for the correlation in a
single image and also undoing the frame-to-frame correlation. Note that the Hotelling observer
tHot(GGG) defined above is applied to spatio-temporal data, as opposed to the classical use of the
Hotelling observer in the case of purely spatial data.

3. Analysis of the data covariance matrix

In a general case, we have three sources of randomness: detector noise, point spread function
variability, and object variability. This leads to the decomposition [23]

KGGG = Knoise
GGG +KPSF

GGG
+Kobject

GGG
, (4)

with which the Hotelling template vector is written as

WWW Hot =
[
Knoise

GGG +KPSF
GGG

+Kobject

GGG

]−1
SSS. (5)

The expression in (4) can be formally derived from the definition of covariance matrix for GGG:

KGGG =
〈〈〈[

GGG−GGG
][

GGG−GGG
]T〉

GGG|PPP, f

〉
PPP| f

〉
f
, (6)

in which PPP represents the sequence {ppp(1), . . . , ppp(J)} of point spread functions (PSFs). We will
allow the PSFs to be random, as in the adaptive optics problem. The PSFs will be assumed
known statistically (PSF-known-statistically or PKS [21]), and their contribution KPSF

GGG
to the

data covariance matrix will be estimated by means of simulated data. It is important to note
that full knowledge of the statistical properties of the PSFs is not needed. Instead, the Hotelling
observer requires the knowledge of only the mean signal SSS and the data covariance matrix KGGG.
As long as these two quantities can be estimated with sufficient accuracy, the Hotelling observer
will deliver high performance. No moments higher than the second are needed.

Expression (6) contains three averaging (or statistical expectation) steps. The innermost ex-
pectation is on the noise and for given PPP and f . The resulting quantity is averaged over PPP given
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f , and, finally, we average over f . From (6) and adding and subtracting terms appropriately [23],
(4) is derived, provided that:

Knoise
GGG = 〈〈Knoise

GGG 〉PPP| f 〉 f =
〈〈{〈[

GGG−GGG
][

GGG−GGG
]T〉

GGG|PPP, f

}〉
PPP| f

〉
f
,

KPSF
GGG

= 〈KPSF
GGG
〉 f =

〈{〈[
GGG−GGG

][
GGG−GGG

]T〉
PPP| f

}〉
f
,

Kobject

GGG
=

〈[
GGG−GGG

][
GGG−GGG

]T〉
f
,

in which GGG with a variable number of bars denotes average with respect to noise, PSFs, and
object. By construction, random vectors GGG, GGG, and GGG are uncorrelated [23].

For simplicity, we will assume that the signal we want to detect is known in brightness
and location. In this case, we refer to a signal-known-exactly (SKE) problem [21]. The more
realistic problem of unknown signal location can be handled by scanning the observer tem-
plate [24–26]. The SKE hypothesis provides valuable information that the observer can use to
improve detection performance (quantified by an increase in AUC) with respect to the detec-
tion and localization problem of [25]. We also assume that the object background is known
exactly (background-known-exactly or BKE in the terminology of [21]).

The noise covariance matrix is usually very easy to study. Indeed, if we assume that only
photon (Poisson) and readout (Gaussian) noises are present in the sequence GGG, then the noise
in distinct elements of the detector are usually uncorrelated and so we can write

[
Knoise

GGG

]( j, j′)

m,m′
=

{
σ2

m +g( j)
m if m = m′ and j = j′,

0 otherwise,
(7)

where σ2
m is the readout noise variance for the m-th pixel of the detector, and

g( j)
m = Pr(H0)g( j)

m|H0
+Pr(H1)g( j)

m|H1

is the variance of the photon noise for the same pixel when g( j)
m is the expected number of

photons (from objects in the field of view and background) collected for the m-th pixel of the j-
th image. The appropriateness of the Poisson model for the photon noise is justified by invoking
the so-called Poisson postulates [21]. The readout noise variance σ2

m at each detector pixel is

usually known, as provided by the detector’s manufacturer, or it can be measured. Matrix Knoise
GGG

above is diagonal with no zero terms on the diagonal, which guarantees the invertibility of KGGG.

4. Estimation of the Hotelling template vector

In this section, we describe how quantities discussed in the previous section can be estimated.
We will rely on simulation code and consider L1 realization of the PSF sequence PPP and L2 real-

ization of a random signal. Consider L1L2 simulated noiseless data sets GGG(�1,�2)
1 , �1 = 1, . . . ,L1,

�2 = 1, . . . ,L2 for the hypothesis H1 and, similarly, L1 noiseless data sets GGG(�1)
0 , for �1 = 1, . . . ,L1

for the hypothesis H0.
The noise covariance matrix is estimated as:

[
K̂noise

GGG

]( j, j′)

m,m′
=

⎧⎨
⎩σ2

m + ĝ
( j)

m if m = m′ and j = j′,
0 otherwise.
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where we denoted estimated quantities using the hat symbol and we set

ĝ
( j)

m =
[

ĜGG
]( j)

m
=

1
L1

L1

∑
�1=1

[
GGG(�1)

0

]( j)

m
.

The PSF covariance matrix KPSF
GGG

is estimated from simulated data as well:

[
K̂PSF

GGG

]( j, j′)

m,m′
=

1
L1−1

L1

∑
�1=1

[
ΔGGG(�1)

0

]( j)

m

[
ΔGGG(�1)

0

]( j′)

m′
, (8)

where [
ΔGGG(�1)

0

]( j)

m
=

[
GGG(�1)

0

]( j)

m
− 1

L1

L1

∑
�′1=1

[
GGG

(�′1)
0

]( j)

m
. (9)

Expressions (8) and (9) show that K̂PSF
GGG

is the sample estimate of KPSF
GGG

, estimated from the
noiseless simulated data.

Finally, if we consider randomness in the signal to be detected or the background on which
it is superimposed, the object term in the covariance matrix expression can be estimated as:

[
K̂object

GGG

]( j, j′)

m,m′
=

1
L2−1

L2

∑
�2=1

[
ΔGGG(�2)

1

]( j)

m

[
ΔGGG(�2)

1

]( j′)

m′
,

where [
ΔGGG(�2)

1

]( j)

m
=

1
L1

L1

∑
�1=1

[
ΔGGG(�1,�2)

1

]( j)

m
.

It might be tempting to try to estimate the whole data covariance matrix KGGG in (6) from
noisy simulated data, without using the decomposition (4). A necessary (but not sufficient)
condition for such estimate K̂GGG to be nonsingular is that the number L = L1L2 of simulated noisy
sequences must be greater than MJ, the order of KGGG itself. If, for example, each image ggg( j) is of
size 64×64 and there are 25 of them in each sequence GGG, then MJ = 642 ·25≈ 105. Simulating
such a huge number of image sequences is clearly prohibitive. Instead, the decomposition (4),
along with (7), guarantees the invertibility of K̂GGG. This can be proved by noting that K̂GGG is
symmetric and (strictly) positive definite. Indeed:

xxxTK̂GGG xxx = xxxTK̂noise
GGG xxx+ xxxT

[
K̂PSF

GGG
+ K̂object

GGG

]
xxx≥ xxxTK̂noise

GGG xxx =
M

∑
m=0

(
σ2

m + ĝ
( j)

m

)
x2

m > 0,

for any vector xxx �= 000.
Finally, the average contribution of the signal to the image data is estimated as:

ŜSS =
1

L1L2

L1

∑
�1=1

L2

∑
�2=1

GGG(�1,�2)
1 − 1

L1

L1

∑
�1=1

GGG(�1)
0 .

Armed with an estimate of the signal to be detected and estimates of the covariance matrices
that appear on the right-hand side of (4), we can formally write an expression for the Hotelling
template vector estimate: in analogy with (5), we define

ŴWW Hot =
[
K̂GGG

]−1
ŜSS =

[
K̂noise

GGG + K̂PSF
GGG

+ K̂object

GGG

]−1
ŜSS. (10)
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For the SKE/BKE case, (10) reduces to:

ŴWW Hot =
[
K̂GGG

]−1
ŜSS =

[
K̂noise

GGG + K̂PSF
GGG

]−1
ŜSS. (11)

Although (10) and (11) make sense because [K̂GGG]−1 exists, the matrix we need to invert is
huge, so computing the inverse by means of standard algorithms (such as Gaussian elimina-
tion) is computationally prohibitive [27]. Even if we could invert K̂GGG, storing it will require
an incredible amount of disk space. However, we recognize the particular structure of the PSF
covariance matrix [see (8)] and consider an algorithm that takes advantage of it. Indeed, if we
introduce the matrix R whose elements are

[
R

]( j)
�,m =

1√
L−1

[
ΔGGG(�)

0

]( j)

m
,

then (8) is rewritten as
K̂PSF

GGG
= RRT.

The MJ×L matrix R contains in the �-th column the MJ×1 vector obtained by raster-scanning

the pixels in ΔGGG(�)
0 . The Woodbury matrix-inversion lemma [28–31] allows us to rewrite the

inverse in (10) as a computationally tractable expression. In abstract form, the matrix-inversion
lemma can be stated as follows:

[A−UBV]−1 = A−1 +A−1[IN−BVA−1U]−1BVA−1,

in which IN is the identity matrix of order N. If

A = K̂noise
GGG , B =−IL, U = R, V = RT,

then [
K̂noise

GGG + K̂PSF
GGG

]−1
=

[
K̂noise

GGG

]−1
{

IMJ−RQ−1RT
[
K̂noise

GGG

]−1
}

, (12)

where

Q = IL +RT
[
K̂noise

GGG

]−1
R.

The matrix K̂noise
GGG is diagonal, so computing its inverse does not pose computational problems.

The matrix Q is of size L× L and invertible. Note that L is usually much smaller than MJ,
which implies that Q−1 can be calculated in much shorter time than [K̂GGG]−1. Standard Gaussian
elimination with pivoting is a fast and numerically stable way to invert Q. Overall, using (12)
is a more tractable and stable problem than computing (11) directly.

5. Implementation

For this research, we took advantage of the computational capabilities available at the Center for
Gamma-Ray Imaging, University of Arizona. In particular, we used a Sony PLAYSTATION 3
cluster consisting of 30 units. Each unit was equipped with a Cell Broadband Engine (Cell BE)
processor, 256 MB of RAM memory, 60 GB of disk space, and was running Linux Fedora 7,
kernel version 2.6.23. The IBM’s Cell BE Software Development Kit 3.0 was installed on all
of the units and used to generate code suitable for the Cell BE microprocessor. All machines
in the cluster were connected by means of a 1-Gbit/s local area network (LAN). All algo-
rithms were coded using the C programming language, and source files were compiled using
IBM XL C/C++ compiler, version 9.0. Communication between different nodes of the com-
puter cluster was achieved using the Message Passing Interface (MPI) standard. The Cell BE
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architecture [32–34] has recently received enormous attention from the computer science com-
munity. The possibility of using up to nine processing cores and the fact that SIMD instructions
are supported make the Cell BE processor particularly appealing as a low-cost solution for
high-performance scientific computing [35–39].

An algorithm for the computation of the template vector ŴWW Hot according to (10) and (12)
was implemented and run on the PLAYSTATION 3 cluster. The algorithm is composed of two
different programs: one to be run as a master process and one to be run as a slave process.
Pseudocode for the master process is shown below:

J← number of images in each sequence
L← number of simulated sequences
N← number of slave processes
for all n ∈ {1, . . . ,N} do

send “initialize” to slave process n
end for
for all � ∈ {1, . . . ,L} do

read GGG(�)
0 from the disk

for all n ∈ {1, . . . ,N} do

send GGG(�)
0 to slave process n

end for
end for
for all � ∈ {1, . . . ,L} do

read GGG(�)
1 from the disk

for all n ∈ {1, . . . ,N} do

send GGG(�)
1 to slave process n

end for
end for
j← 1
m← 0 {number of tasks completed}
while m < J do

while m < J and there is an idle slave process do
n← index of an idle slave process
send “compute [ŴWW Hot]( j)” to slave process n
j← j +1

end while
if m < J then

n← slave process that has just computed [ŴWW Hot]( j′)

receive [ŴWW Hot]( j′) from slave process n
save [ŴWW Hot]( j′) to disk
m← m+1

end if
end while
for all n ∈ {1, . . . ,N} do

send “end of computation” to slave process n
end for
Pseudocode for the slave processes is shown below:
J← number of images in each sequence
L← number of simulated sequences
σ2

m← readout noise variance for all m ∈ {1, . . . ,M}
for all � ∈ {1, . . . ,L} do

receive GGG(�)
0 from master process

save GGG(�)
0 to disk

end for
for all � ∈ {1, . . . ,L} do

receive GGG(�)
1 from master process

save GGG(�)
1 to disk

end for

ĜGG0← 1
L ∑L

�=1 GGG(�)
0

#110281 - $15.00 USD Received 20 Apr 2009; revised 22 May 2009; accepted 9 Jun 2009; published 16 Jun 2009

(C) 2009 OSA 22 June 2009 / Vol. 17,  No. 13 / OPTICS EXPRESS  10954



ĜGG1← 1
L ∑L

�=1 GGG(�)
1

ŜSS← ĜGG1− ĜGG0
for all j ∈ {1, . . . ,J} do[

K̂noise
GGG

]( j)← diag
(

σ2
1 + ĝ( j)

0,1, . . . ,σ
2
M + ĝ( j)

0,M

)
end for[
R

]( j)
�
← 1√

L−1

[
ΔGGG(�)

0

]( j)

Q← IL +RT
[
K̂noise

GGG

]−1
R

Q−1← inverse(Q)
while not message “end of computation” received do

receive “compute [ŴWW Hot]( j)” from master process
[ŴWW Hot]( j)← 000M×M

for all j′ ∈ {1, . . . ,J} do

T( j, j′)← ( j, j′)-th block of
[
K̂noise

GGG

]−1
{

IMJ −RQ−1RT
[
K̂noise

GGG

]−1
}

[ŴWW Hot]( j)← [ŴWW Hot]( j) +T( j, j′)[ŜSS]( j′)

end for
send [ŴWW Hot]( j) to master process

end while

In the implementation, we took advantage of the Cell BE processor and its SIMD capabilities.
Floating-point values were stored in double precision, and SIMD instructions were used for the
computation of the blocks of [K̂GGG]−1 as they were needed. Splitting the work load among all of
the processing cores available on each PLAYSTATION 3 allowed more than a 15-fold reduction
in the computation time with respect to an implementation that uses only one core and ignores
their SIMD capabilities. Had we used single-precision values, the speed-up would have been
even larger.

6. Simulation results

As an example, we developed the spatio-temporal Hotelling observer for adaptive optics (AO)
images [14, 15]. The simulation code we used is AOTools (webpage: http://www.tosc.
com/software/software.html). The atmospheric thickness was set to 24km and, in
order to compute the aberrated wavefront, we assumed the frozen flow hypothesis of atmo-
spheric turbulence. The turbulence was computed according to the modified Hufnagel-Valley
Cn

2 profile, given by [40]:

Cn
2(h) = 8.16 ·10−54h10e−h/1000 +3.02 ·10−17e−h/1500 +1.90 ·10−15e−h/100,

in which the altitude h is expressed in meters and the units of Cn
2 are meters to the −2/3

power. We assumed Cn
2(h) trascurable when h ≥ 24km. The Fried parameter r0 [41] for the

phase screens was 0.30m at the wavelength λ = 500nm. Our simulation took into account
effects such as scintillation and anisoplanetism [15] as well. The wind speed was 1.25m/s. The
telescope we simulated had a circular aperture of diameter 5m, and the diameter of the central
obscuration due to the secondary mirror was 0.50m. The secondary mirror was supported by
three arms. For the estimation of the template vector ŴWW Hot in (10), we simulated L = 512
sequences containing J = 25 images each of size 64×64 (pixel size 5.96µm). The wavefront
sensor apparatus of many AO systems includes a lenslet array. In our simulation, we simulated
a 32×32 array of side length 0.02m. The total power entering the telescope was equally split
between the wavefront sensor and the science camera by a 50/50 beamsplitter. The system was
assumed idea, with an efficiency of 1 (i.e., no losses) and the AO loop was running at a speed of
1kHz. The quality of the AO correction can be quantified with an average Strehl ratio of about
0.67.
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Table 2: Values of the AUC, σ , and the SNR for the Observers tHot(GGG), tHot(ggg), and tmat(ggg)

Observer AUC σσσ SNR
tHot(GGG) 0.9305 0.001696 2.0957
tHot(ggg) 0.8140 0.002966 1.2609
tmat(ggg) 0.7812 0.003213 1.0918

We applied the spatio-temporal Hotelling observer to the detector of dim planets orbiting a
star (assuming the star and the planet in the same isoplanetic patch), and we simulated data sets
for both hypotheses H0 and H1. The apparent magnitude of the star was m = 6 and the difference
in apparent magnitude between the planet and the star was Δm = 16.74. More specifically, we
simulated L = 512 sequences for each hypothesis and, for each sequence, we used J = 25 frames
containing M = 642 pixels each. The simulation was set up in order to mimic an astronomical
observation. For example, we used typical values for the readout noise as found in [42]. The
exposure time was 0.1ms. The data used to estimate the template vector ŴWW Hot was noiseless
and no noise was considered in the wavefront sensor. On the other hand, data on which the
detection task was applied were noisy and were obtained with different phase screens.

We considered the SKE/BKE/PKS case and we compared the performance of the spatio-
temporal Hotelling observer to that of the purely spatial Hotelling observer tHot(ggg) and the
purely spatial matched filter [43, 44] observer tmat(ggg) = sssTggg, where sss is the signal to be de-
tected. In an effort to mimic current practice in astronomical detection, both tHot(ggg) and tmat(ggg)
were applied to long-exposure data ggg obtained by on-chip integration of many short-exposure
frames. The observers were run on simulated noisy data. We generated test noise-free image
sequences for both the planet-absent and planet-present hypotheses and degraded them with
Poisson photon noise and Gaussian readout noise to generate n = 10,000 noisy sequences of
short-exposure images for the planet-absent hypothesis and n noisy sequences short-exposure
images for the planet-present hypothesis. The corresponding long-exposure images were gener-
ated as well. These test data were supplied to the observers considered in this comparison, and
the corresponding values of the test statistics t(1)

0 , . . . , t(n)
0 and t(1)

1 , . . . , t(n)
1 were collected. Bin-

ning these values would provide approximated plots of the densities pr(t|H0) and pr(t|H1) for
a particular observer t. For each observer, we estimated the values of the TPF and FPF [see (1)]
as:

TPF(τ) =

∣∣{i such that t(i)1 > τ , i = 1, . . . ,n
}∣∣

n
,

FPF(τ) =

∣∣{i such that t(i)0 > τ , i = 1, . . . ,n
}∣∣

n
,

in which the notation |S| stands for the number of elements of the set S, and we varied the
value of τ to obtain ROC curves. The ROC curves are reported in Fig. 1, and the corresponding
values of the AUC, standard deviation σ on the AUC, and SNR are reported in Table 2. The
SNR for the three observers was computed according to (2), in which conditional means 〈. . .〉
and variances Var{. . .} were replaced by the sample means and sample variances of the t(i)0 and
t(i)1 . The values of σ were computed as described in [45].

The results reported in Fig. 1 and Table 2 confirm the superiority of the spatio-temporal
Hotelling observer with respect to the spatial Hotelling observer and the matched filter observer.
The results of Fig. 1 complete the ones reported in [25]. Indeed, in [25], we compared the
spatial Hotelling observer with current techniques used in astronomy for point-source detection,
and we noted that the spatial Hotelling observer outperforms popular detection algorithms,
such as [46]. In this paper, we showed that short-exposure images retain temporal information,
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Fig. 1: Plots of the ROC for the observers tHot(GGG), tHot(ggg), and tmat(ggg).

which increases detection performance. We see that the spatio-temporal Hotelling observer
outperforms current long-exposure detection algorithms as well.

7. Conclusions

In this paper, statistical decision theory was rigorously applied to the problem of signal de-
tection for spatio-temporal data. Three sources of randomness were initially considered: ran-
domness in the object, randomness in the residual point spread function, and randomness due
to measurement noise in the detector array. However, for simplicity, we assumed the signal in
the object to be nonrandom and at a known location, and the background constant and known.
We noted that, in many applications of interest, a complete description of the statistics of the
data is not available. Only the first and second moments of the data are required to compute
the Hotelling observer. We remarked the importance of the temporal correlations between pix-
els in the temporal data. Indeed, the Hotelling observer was applied to the whole sequence of
temporally-related images, rather than to their average.

In some cases, such as adaptive optics systems, a complete analytical study of the first two
moments of the data might be complicated. Therefore, we proposed to estimate means and co-
variance matrices using simulated data. We implemented one algorithm for the computation of
the spatio-temporal Hotelling observer, and we ran the algorithm on a Sony PLAYSTATION 3
cluster. Our implementation took advantage of the computational capabilities of the Cell Broad-
band Engine Architecture (Cell BE) processor, which equips all of the Sony PLAYSTATION 3
units of our cluster. Thanks to the matrix-inversion lemma, the problem of computing the prod-
uct between the inverse of a large covariance matrix and the signal was recast to the problem of
computing matrix multiplications involving the inverse of a much smaller matrix.

Research concerning an analytical expression for the PSF covariance matrix is currently un-
derway for the case of an ideal thin lens with a weak Gaussian phase perturbation in the pupil.
This model might be appropriate for high-performance adaptive optics systems, for which the
residual perturbation can be shown to be Gaussian and weak. This study would be of great im-
portance, as it would eliminate the need for simulation in order to estimate the PSF covariance
matrix. If an analytical expression for the data covariance matrix is available, other methods—
based, for example, on the Landweber algorithm or on the Neumann series expansion—for the
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computation of the Hotelling template vector could be investigated as well [21]. In addition,
it would be interesting to find an expression for the data’s probability density function. With
such density, the likelihood ratio could be computed and compared with the Hotelling observer.
We expect these two methods to deliver similar detection performance, because, for large mean
values, Poisson random variables are very well approximated with Gaussian random variables.

In this study, we relied on simulation code to estimate the mean and covariance of the data.
Differences between the actual mean and covariance present in real data and the mean and co-
variance used in the detection task can arise from two sources: errors in the simulation code or
sampling errors because the mean and covariance are estimated from a finite number of simu-
lated sample images. In this work and related previous studies [25,47], we have investigated the
latter point in great detail. The former point, effect of model errors on detection performance,
has not been investigated for the spatiotemporal Hotelling observer (implemented for the first
time in this paper), but it has been studied in the medical literature for purely spatial Hotelling
observers [21,48]. The general conclusion is that even crude modeling of the covariance model
affords a demonstrable improvement in detection performance, though of course more accurate
models are always preferable. This issue will be discussed in a separate paper.
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