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Maximum-likelihood (ML) estimation in wavefront sensing requires careful attention to all noise sources and
all factors that influence the sensor data. We present detailed probability density functions for the output of
the image detector in a wavefront sensor, conditional not only on wavefront parameters but also on various
nuisance parameters. Practical ways of dealing with nuisance parameters are described, and final expressions
for likelihoods and Fisher information matrices are derived. The theory is illustrated by discussing Shack–
Hartmann sensors, and computational requirements are discussed. Simulation results show that ML estima-
tion can significantly increase the dynamic range of a Shack–Hartmann sensor with four detectors and that it
can reduce the residual wavefront error when compared with traditional methods. © 2007 Optical Society of
America
OCIS codes: 010.0010, 010.1080, 010.7350.
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. INTRODUCTION
easurement of optical wavefronts has a long and storied

istory. Classical interferometry uses a reference beam to
earn as much as possible about a wavefront, and phase-
etrieval methods attempt to reconstruct a wavefront
rom one or more measurements of optical irradiance
ithout a reference beam. In recent years, however, a dis-

inctly different requirement has been imposed on sys-
ems for wavefront measurement: They have to respond
o rapid changes in the wavefront and provide signals
hat can be used in adaptive systems that correct for
avefront distortions. Such adaptive systems are proving
xtremely valuable in many applications, including
round-based astronomy, retinal imaging in ophthalmol-
gy, and laser machining. In these applications there is no
articular interest in the wavefront itself, but instead the
oal is to sense a distorted wavefront, correct it, and
hereby minimize its influence on the actual task of inter-
st. Wavefront-measurement systems intended for use in
daptive optics (AO) are referred to as real-time wave-
ront sensors, or simply wavefront sensors for short.

Many different wavefront sensors have been developed
or AO; for reviews, see Tyson1 and Rousset.2 The wave-
ront of interest is usually the pupil function of a tele-
cope or other optical instrument, and the sensors differ
n whether they attempt to characterize the wavefront
ver the entire pupil aperture at once or over selected re-
ions called subapertures. All of the sensors, however, use
1084-7529/07/020391-24/$15.00 © 2
set of optical detectors in conjunction with optical ele-
ents intended to make the detector outputs sensitive to

reselected characteristics of the wavefront. For example,
he familiar Shack–Hartmann sensor attempts to mea-
ure two components of the wavefront tilt over a subaper-
ure by observing the image of a star or other pointlike
ource in the back focal plane of a lenslet placed over the
ubaperture. Because of the lenslet, the image of the
ource is displaced laterally by an amount proportional to
he tilt, and the displacement can be estimated by com-
uting the centroid of the outputs of an array of detectors
n the focal plane.

Other wavefront sensors attempt to measure other pa-
ameters, such as the local curvature of the wavefront at
ach subaperture3 or the coefficients in an expansion of
he wavefront in orthogonal basis functions over the
hole aperture. Many clever techniques have been de-
ised for choosing the configuration of optical elements
nd the photodetector array and for processing the out-
uts of the photodetectors to obtain measurements of the
arameters of interest.
Most current real-time sensors can be described by the

eneral block diagram shown in Fig. 1. The wavefront is
ssumed to be described by a set of P parameters ��p , p
1, . . . ,P�, or equivalently by a P�1 parameter vector �.
imilarly, the raw data are described by a set of M output
ignals �gm , m=1, . . . ,M�, or equivalently by an M�1
ata vector g. The photodetector signals are then prepro-
007 Optical Society of America
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essed, usually by simple, noniterative formulas, to get a
et of I derived quantities, �vi , i=1, . . . ,I� or an I�1 vec-
or v, that can be regarded as measurements of some
roperties of the wavefront, though not necessarily di-
ectly the components of �. For example, in a Shack–
artmann sensor for one subaperture, I=2 and the com-
onents of v are estimates of the tilts of the wavefront
ver the subaperture in the x and y directions. The pre-
rocessing step in this case is computation of the centroid.
ote that centroid computation, though fast and efficient,

s a nonlinear operation on the data (because of the divi-
ion by the sum of the signals).

No matter how the specific boxes in Fig. 1 are realized,
t is usually assumed that there is a linear relation be-
ween the mean values of v and the actual wavefront pa-
ameters; this linear relation is expressed as

v̄ = H� or v = H� + n, �1.1�

here H is an I�P matrix, n is a zero-mean I�1 vector
escribing the noise in v, and the overbar denotes an av-
rage over that measurement noise. Recovery of the un-
nown � from the output of the preprocessing stage is
hen treated as a matrix inversion or pseudoinversion
mplemented in a separate stage called a reconstructor.
he output of the reconstructor can be the final estimates
f � or correction signals to be applied to a control element
deformable mirror or spatial light modulator) in an AO
ystem.

There are several difficulties with this general ap-
roach. An immediate concern is the linearity assumed in
q. (1.1). Even in our example of a Shack–Hartmann sen-
or and centroid estimation, it is well known that the
ean centroid is a nonlinear function of the tilts if the

umber of photodetectors is small. Moreover, if wavefront
arameters other than tilt influence the data, then there
s no chance that Shack–Hartmann tilt estimates will be
inear functions of the additional parameters.

A more serious issue concerns the dimensionality re-
uction in going from the M-dimensional raw data g to
he I-dimensional vector v; as I is often much less than M,
here could be a considerable information loss in this step.
n the Shack–Hartmann example, we can expect wave-
ront curvature and other parameters to influence the
ata unless the lenslet diameter Dl is significantly
maller than the Fried parameter r0. The usual choice,
owever, is to make Dl approximately equal to the mean
0 at a particular observing site, and it is not clear in that
ase how much information is lost in centroid estimation.

A related problem is that parameters other than ones
ssociated with the wavefront can influence the data. A

Fig. 1. Block diagram of a gene
imple example is the overall brightness of the guide star
r other source, which is one additional scalar parameter.

more complex example is irradiance variations (e.g.,
cintillation) over the aperture being sensed, which would
otentially require a large set of additional parameters.
hese extraneous parameters, called nuisance param-
ters, can have important effects on the data statistics.

In contrast to nuisance parameters, null functions are
roperties of the wavefront that might be of great interest
ut that do not influence the data. Since the matrix H in
q. (1.1) has dimensions I�P, with I often very small
ompared with P, there is a null space representing char-
cteristics of � that cannot be recovered from knowledge
f v, even in the absence of noise.

Another area of difficulty is in describing the statistical
roperties of both g and v. A centroid or other simple way
f computing v from g takes no account of the noise prop-
rties of g, and better performance might be obtainable if
e used accurate models of the data statistics. Even if we
o not use detailed statistical information in the prepro-
essing stage, it is still possible to compute the variances
n the resulting components of v by simple propagation of
rrors4 if we assume that the components of g are uncor-
elated, but this assumption is not always justified.

Considerable work has been reported on optimal ap-
roaches to the reconstruction step, starting with the pio-
eering paper by Wallner.5 This work starts with the as-
umption that the available data are noisy measurements
f the wavefront tilts averaged over subapertures and
hat these measurements are unbiased and uncorrelated,
oth with each other and with the random wavefront it-
elf. From this starting point, Wallner derives an optimal
econstructor that minimizes the mean-square wavefront
rror, accounting for unmeasured components by using
olmogorov statistics as prior knowledge. His approach
nd subsequent related research thus optimize the recon-
truction stage in Fig. 1, but they do not consider possible
nformation loss in the preprocessing stage. As we shall
emonstrate numerically in Section 6, that information
oss can be considerable.

Moreover, the common assumption that the compo-
ents of v are uncorrelated is almost never correct. Cor-
elations are introduced by the preprocessing stage, and
he statistics of v can be complicated, even when g is de-
cribed by simple uncorrelated Gaussian or Poisson noise.
t the least, any discussion of the statistics of the wave-

ront sensor output should give its mean (or bias), vari-
nce, and covariance matrix; a full multivariate probabil-
ty density function would be desirable for rigorous design
f the reconstruction stage.

efront sensor and reconstructor.



a
p
S
b
f
p
t
m

a
t
p
o
t
h
t
m
k

i
t
p
t
b
t
F
c
c
q
a

i
p
s
i
i
a
t
a
L
w
o
a
H
a
H
h
H
m
m
s
s

m
H
m
p
G

M
d

p
i

w
d
G
l
r
v
m
i

h
o
m
e
a
o
m
p
o
t
w
e
m
c
a
5
t
F
S
fi
n

n
i
s

2
T
R
o
o
d
t
S
s
C

A
L
p
o
P
c
i
t
r
d

d

Barrett et al. Vol. 24, No. 2 /February 2007 /J. Opt. Soc. Am. A 393
Finally, there is a need for rigorous methods of evalu-
ting wavefront sensors and comparing competing ap-
roaches. Most of the literature on this topic uses the
trehl ratio of the final AO system as the figure of merit,
ut it is difficult to discern the contribution of the wave-
ront sensor to this metric or to devise strategies for im-
roving the sensor. Moreover, it is not clear how Strehl ra-
io itself relates to objective or task-based figures of
erit6–9 for the final system.
Likelihood theory offers a potential way of addressing

ll of these concerns. A likelihood is a comprehensive sta-
istical description of a data set, showing how the data
robability law depends on various parameters and vari-
us noise sources. This probability law can then be used
o define a maximum-likelihood (ML) estimator, which
as many desirable properties to be enumerated in Sec-
ion 2. The likelihood is also required for Bayesian esti-
ation methods, which augment the likelihood with prior

nowledge of the parameters to be estimated.
From the likelihood it is possible to compute a Fisher

nformation matrix (FIM), which describes the informa-
ion content of a data set for the purpose of estimating the
arameters that enter into the likelihood. It is well known
hat the FIM can be used to compute a fundamental lower
ound, the Cramér–Rao bound (CRB), on the variance of
he parameter estimates. It is less well known, but the
IM can also be used to find a good approximation to the
ovariance matrix of the ML estimates, and in this form it
an be incorporated into objective theories of image
uality.8 In addition, likelihood theory provides a system-
tic way of discussing nuisance parameters.
Application of likelihood methods to wavefront sensing

s not new, though their full potential has not yet been ex-
loited. We can trace the beginnings of this line of re-
earch to three seminal 1974 papers by Bahaa Saleh,10–12

n which he studied the statistical limitations in localiz-
ng a spot of light and derived ML estimators. Elbaum
nd Greenebaum13 used similar methods for angular
racking, and Winick14 derived a CRB for spot localization
nd used it to discuss system design. Various papers by
ane et al.15–17 have applied ML methods and the CRB to
avefront sensors with the assumption that the positions
f individual detected photons were available. Welsh et
l.18 used the CRB to compare the performance of Shack–
artmann sensors and shearing interferometers. Löfdahl
nd Duncan19 gave an ML treatment of the Shack–
artmann sensor based on an additive Gaussian likeli-
ood model, and they showed how to use the Shack–
artmann for curvature estimation. Extension of ML
ethods to Bayesian MAP (maximum a posteriori) esti-
ation is discussed by Sallberg et al.,20 who used a Pois-

on likelihood and a prior on the correlation of wavefront
lopes across subapertures in a Shack–Hartmann sensor.

An important paper by Cannon21 considered ML esti-
ation of global wavefront parameters from Shack–
artmann data without the intermediary step of tilt esti-
ation. His likelihood function took account of the

olychromatic nature of the data, but it used an additive
aussian model and did not consider photon noise.
Several papers19,22–25 consider simultaneous ML or
AP estimation of a wavefront and an object from phase-

iversity data without an explicit wavefront sensor; this
roblem does not fit into the general schema of Fig. 1, and
t is not considered further in this paper.

Perhaps surprisingly, there is also some closely related
ork in a completely different area, namely gamma-ray
etection with scintillation cameras in nuclear medicine.
ray and Macovski26 suggested ML and MAP methods for

ocalizing the spot of light produced by a single gamma
ay in this application, and subsequent work at the Uni-
ersity of Arizona and elsewhere27–31 has refined the
ethodology and applied it to many practical gamma-ray

maging systems.
The objective of this paper is to develop rigorous likeli-

ood models and FIMs for wavefront sensing under vari-
us noise assumptions and choices of parameters to esti-
ate. In Section 2 we review some basic concepts in

stimation theory, including the effect of null functions
nd nuisance parameters. In Section 3 we consider vari-
us stochastic models for the raw data in a WFS. These
odels are in the form of conditional probabilities or

robability density functions (PDFs) on the photodetector
utputs, conditioned on all parameters that influence
hose probabilities, but they are not yet likelihoods since
e have not specified which of the parameters are to be
stimated and how to handle those that will not be esti-
ated. These topics are taken up in Section 4, where we

onsider various parametric descriptions of the wavefront
nd various choices of parameters to estimate. In Section
we combine the results from Sections 3 and 4 into prac-

ical likelihood functions and construct the corresponding
IMs. Section 6 applies these ideas specifically to a
hack–Hartmann sensor, and Section 7 discusses ways of
nding ML estimates in a time compatible with astro-
omical adaptive optics.
Appendixes A and B provide some statistical details

eeded in the main text, and Appendixes C and D exam-
ne statistical issues particular to a Shack–Hartmann
ensor.

. BASIC CONCEPTS IN ESTIMATION
HEORY
andom data are described by a probability law with one
r more free parameters, and the goal of estimation is to
btain numerical values for the parameters from a given
ata set. Excellent general references on estimation
heory include Melsa and Cohn,32 Van Trees,33 and
charf.34 An overview using a notation and approach
imilar to this paper is given by Barrett and Myers,6

hap. 13.

. Notation and Terminology
et g be an M�1 vector describing random data. The
robability law on g is a PDF denoted pr�g ��� for the case
f continuous-valued data, and it is a probability denoted
r�g ��� for the case where the data can take on only dis-
rete values. In both cases it is assumed that the probabil-
ty law is characterized by a P�1 parameter vector �. In
he remainder of this section we shall consider continuous
andom variables, but the results are easily translated to
iscrete data.
The PDF describes the sampling distribution of the

ata, and we say that an individual sample of g is drawn
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rom pr�g ���. Once a data vector is measured, however,
r�g ��� can be regarded as a function of � called the like-
ihood of � for the given g and is denoted by

L���g� = pr�g���. �2.1�

ote that L�� �g� is not a PDF on �.
An estimate of the parameter is denoted �̂; in most

ases the estimate is a deterministic function of the data,
o we can also write it as �̂�g�. Since g is random (even for
given �), so is �̂�g�.
In wavefront sensing, we can choose either the raw

hotodetector output g or the derived quantities v as the
ata from which we wish to perform an estimation. In the
atter case, the likelihood will be denoted L�� �v� or
r�v ���, and an estimate will be denoted �̂�v�.

. Performance Metrics
here are three distinct approaches to specifying the per-

ormance of an estimation procedure (or, indeed, any sta-
istical inference task). There is the classical or frequen-
ist method, which envisions repeated sampling of the
ata vector from its sampling distribution pr�g ��� and
ases its performance criteria on averages of the resulting
stimates. In this view the parameter is unknown but not
onsidered random. A Bayesian approach, on the other
and, considers the parameter being estimated to be ran-
om and assigns it a prior probability pr���, though this
robability may be regarded as a degree of belief rather
han something that is necessarily verifiable by repeated
xperiments. By using pr��� and pr�g ��� in Bayes’s rule, it
s possible to assign a probability pr�� �g�, called the pos-
erior to the value of � after the data vector is observed;
ll performance metrics are derived from the posterior.
The third approach to specification of estimation per-

ormance is to consider the use to which the estimate will
e put. In an AO system, for example, we are not inter-
sted in the parameters of the wavefront but rather in the
erformance of the overall closed-loop system that uses
he estimate. As noted in the introduction, a common way
f specifying the overall performance in astronomical AO
s in terms of Strehl ratio, but it is also possible to con-
ider specific astronomical tasks such as detection of ex-
planets and use a detectability measure as the final per-
ormance metric.35 This approach is classical in the sense
hat it uses long-run averages, but they are averages re-
ated to the final task rather than to the estimates them-
elves.

In this paper we adopt the classical viewpoint. All prob-
bilities and PDFs will be regarded as quantities that in
rinciple can be verified by repeated sampling. Quantities
ike bias and variance of an estimator will thus have a fre-
uentist (experimental) interpretation, but they will also
erve as necessary inputs to a task-based assessment.

. Bias, Variance, and Covariance of Estimates
n classical estimation theory, the accuracy of an estimate
s specified in terms of its sampling distribution pr��̂ ���,
nterpreted as the distribution of �̂�g� that would be ob-
ained by drawing repeated samples of g from pr�g ��� and
erforming the estimation procedure on each. In terms of
he sampling distribution, the mean of the P�1 vector of
stimates is given by

�̂
¯

=� dP�̂ pr��̂����̂. �2.2�

f the estimation rule and the sampling distribution on g
re known, we can also express the mean (expectation) of
he estimate as

�̂
¯

=� dMg pr�g����̂�g� � ��̂�g�	g��. �2.3�

e shall use the overbar and the angle brackets inter-
hangeably to denote means; the latter has the advantage
hat the subscript can show explicitly which PDF is im-
lied in the averaging process.
The bias in an estimate specifies its average deviation

rom the true value of the parameter. For a vector param-
ter, the bias is a vector given by

b��� � �̂
¯

− �

��
�

dMg 
�̂�g� − ��pr�g���

=�
�

dP� 
�̂ − ��pr��̂���. �2.4�

parameter is said to be be estimable or identifiable with
espect to some data set if there exists an unbiased esti-
ator of it for all true values of the parameter.
If we denote the mean of the pth element of the random

ector �̂ by ��̂p	, the variance of the pth element is given
y

Var��̂p� � �
�̂p − ��̂p	�
�̂p − ��̂p	�*	g��

=�
�

dMg��̂p�g� − ��̂p�g�	�2pr�g���

=�
�

dP� ��̂p − ��̂p	�2pr��̂���, �2.5�

nd the full covariance matrix is given by


K�̂�pp� = �
�̂p − ��̂p	�
�̂p� − ��̂p�	�*	g��

r

K�̂ = ���̂ − �̂
¯���̂ − �̂

¯�†

g��, �2.6�

here the dagger denotes adjoint (conjugate transpose),
r simply transpose for real vectors and matrices.
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. Mean-Square error
he mean-square error (MSE) is a way of specifying the
verall error, including bias and variance, in a single sca-
ar quantity; it is defined by

MSE = ���̂ − ��2	g�� =�
�

dMg ��̂�g� − ��2
pr�g���

= tr
K�̂� + tr
bb†�, �2.7�

here tr�·� denotes the trace. Note that the MSE mea-
ures the squared deviation from the true value of the pa-
ameter, while the variances relate to deviations from the
ean of the estimate.
In general, bias, variance, and MSE will all depend on

he true value of the parameter. If a realistic sampling
istribution of the parameter is known, it can be used to
verage the MSE, forming a quantity called the ensemble
SE, defined by

EMSE = ����̂�g� − ��2	g��	�
. �2.8�

he EMSE can often be estimated by Monte Carlo sam-
ling even when we do not have enough detail about the
rior to use it in Bayesian estimation.

. Cost and Risk
general approach to estimation is to define a cost func-

ion C��̂ ,�� and to define the risk R as an average cost,
= �C��̂ ,��	. Depending on the statistical philosophy be-

ng adopted, the angle brackets here can have one of three
istinct meanings. In a purely frequentist approach, the
rackets imply averaging over g for a given �, so the risk
s a function of �. In a purely Bayesian view, the average
s over � for a given g, so the risk is a function of the par-
icular data set g and no other data set is ever considered.

pragmatic view is to average over both g given � and
hen over �, so that the risk is a pure number. The EMSE
n Eq. (2.8) is an example of risk defined this way for a
uadratic cost function.
No matter what cost function and definition of risk are

sed, a nuisance parameter can be defined as one that
oes not appear in the cost function.

. Nuisance Parameters and Null Functions
he performance metrics discussed above must be inter-
reted carefully when the measurement system has null
unctions or when there are nuisance parameters in the
roblem.
Null functions do not influence the data and in prin-

iple cannot be determined from the data. An example in
he context of wavefront sensing is the piston component
f the wave over a lenslet in a Shack–Hartmann sensor.
e need to know this component to reconstruct the wave-

ront, but the sensor is not responsive to it. A second ex-
mple is the so-called waffle effect, which arises when the
eformable mirror in an AO system has modes that the
avefront sensor cannot detect; the resulting corrected
avefront then has a corrugated or waffled appearance.
Nuisance parameters do influence the data but are not

f interest to the estimation problem, perhaps because
hey do not influence performance of the real task of in-
erest. An example in astronomical applications is the
rightness of the guide star. Like all nuisance param-
ters, the brightness of the guide star influences the bias
nd/or variance of the estimates of the parameters of in-
erest, but the value of the brightness itself is irrelevant
o further application of the output of the WFS. If there is
tmospheric scintillation or if the guide star is laser-
nduced and hence noisy, however, fluctuations in the
rightness can be a serious nuisance.
In a sense it is trivial to deal with null functions. Since

hey do not affect the data and cannot be estimated from
he data, we can just omit them from the likelihood func-
ion and the FIM. On the other hand, if we do try to esti-
ate them, for example by trying to solve Eq. (1.1) for the

ase P�I, then the FIM is singular36 and the CRB is in-
nite. Stated differently, � is not estimable. This difficulty
ften goes unrecognized in the wavefront-sensing litera-
ure and in other areas of inverse problems.

In contrast to null functions, it is never correct to omit
uisance parameters from the likelihood, though in fact it

s often done. A correct statistical description of the data
as the form pr�g ���, where the vector � contains all of
he parameters that influence the data, not just those we
ight want to estimate.
Methods of dealing with nuisance parameters are sum-
arized in Barrett and Myers.6 If we write

� = ��

�
� ,

here � contains the parameters of interest and � con-
ains the nuisance parameters, we can

(1) Ignore the problem and assume a form for pr�g ���.
(2) Replace � with some typical value �0 and assume

hat pr�g �� ,���pr�g �� ,�0�.
(3) Estimate � and � simultaneously from g and dis-

ard the estimate of �.
(4) Estimate � from some auxiliary data set and use it

s in option (2).
(5) Assume (or measure) some prior pr��� and margin-

lize over �.

It is shown by Barrett and Myers6 (Sec. 13.3.8) that op-
ion (5) is optimal in terms of minimizing a particular cost
unction (the one that leads to MAP estimation), provided
hat the cost is independent of the nuisance parameter. It
s assumed there, however, that pr��� is a meaningful
ampling prior, not something based on belief or chosen
or mathematical convenience. For a good discussion of
arginalization from a Bayesian perspective, see
erger.37

These five approaches to dealing with nuisance param-
ters will be discussed further in the context of wavefront
ensing in Section 5.

. Fisher Information and Cramér-Rao Bounds
or a vector parameter with P real components, the FIM,
enoted F, is a P�P symmetric matrix with components
iven by
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Fjk =�� �

��j
ln pr�g����� �

��k
ln pr�g����


g��

=�
�

dMg pr�g���� 1

pr�g���

�

��j
pr�g����

�� 1

pr�g���

�

��k
pr�g���� . �2.9�

ote that the FIM is fully determined by the likelihood
unction; it is the covariance matrix of the gradient of the
ogarithm of the likelihood, and the average itself is with
espect to the likelihood function. In general the FIM will
epend on the true parameter �.
An important use of the FIM is to determine the lower

RB on the variance of the estimate. It is shown in any
tandard text32,33 that the variance of any unbiased esti-
ate must satisfy


K�̂�nn = Var��̂n� � 
F−1�nn. �2.10�

ote that inversion of the Fisher information is required
o find the lower bound on the variance of a component of
he estimate. An unbiased estimator that achieves the
ound of inequality (2.10) is called “efficient.”
Inequality (2.10) is a special case of a more general re-

ation, which can be stated with the help of a notational
onvention known as Loewner ordering (see Barrett and
yers,6 Appendix A). If we have two P�P positive-

efinite matrices A and B, the statement A�B does not
old on an element-by-element basis. Rather, it means
hat A−B is positive-semidefinite, or equivalently that
†Ax�x†Bx for all x.
With this convention, it can be shown that the covari-

nce matrix for any unbiased estimator must satisfy

K�̂ � F−1. �2.11�

The corresponding relation for a biased estimator is

K�̂ � ���b + I�F−1���b + I�t, �2.12�

here I is the P�P unit matrix. Thus the bias of an es-
imator alters the lower bound on the variance by an
mount that depends on the bias gradient. Note that bias
an decrease the variance if the bias gradient is negative.

. Maximum-Likelihood Estimation
o far we have not talked about ways of actually finding
n estimate. One general method is ML estimation, de-
ned by

�̂ML � argmax
�

pr�g���, �2.13�

here the argmax operator returns the � argument at
hich pr�g ��� is maximized. Since the logarithm is a
onotonic function of its argument, Eq. (2.13) can also be
ritten as

�̂ML � argmax
�

ln 
pr�g����. �2.14�

ote that we are not maximizing the probability of �; we
re choosing the value of � that maximizes the probability
f occurrence of the g that we actually observed.

ML estimates have many desirable properties.6,38 First,
hey are efficient if an efficient estimate exists for a par-
icular problem. And even when no efficient estimator ex-
sts, the ML estimate is asymptotically efficient and as-
mptotically unbiased in a sense to be explained in the
ext paragraph. Moreover, the PDF on ML estimates,
r��̂ ���, is asymptotically a multivariate normal with the
ovariance matrix given by taking the equality sign in ex-
ression (2.11).
The asymptotic properties listed above are usually

tated by assuming that N independent samples of g are
rawn from the same pr�g ��� and then letting N→�; but
n fact they hold also when one gets better data, for ex-
mple by collecting more photons if the primary noise is
oisson or by letting the variance go to zero for Gaussian
oise. With better data, therefore, the ML estimate ap-
roaches an efficient estimate, and its PDF approaches a
ully specified multivariate normal law.

Another useful property of ML estimation arises when
ou want to estimate some function of the � that appears
n the likelihood, rather than � itself. If we let a��� be a
rescribed one-to-one vector-valued function, then under
ild conditions it can be shown that34

âML = a��̂ML�. �2.15�

his property is referred to as the invariance of ML esti-
ates.

. STOCHASTIC DATA MODELS
n this section we present various probability laws for the
aw data g (the output of the photodetector array in Fig.
), and we briefly consider models for the derived mea-
urements v. The probability laws will depend on some
et of parameters �, so we shall give expressions for the
onditional probability laws, pr�data ���, along with the
orresponding FIM that would be relevant if we wanted to
stimate all components of �. In practical applications
uch as wavefront sensing, however, we may not want (or
e able) to estimate all components of �. In Section 4 we
hall look more closely at what we can and should esti-
ate, and in Section 5 the probability laws presented in

his section will be converted to practical likelihoods and
IMs.

. Pure Poisson Statistics
f we consider an array of ideal photon-counting detectors
nd a radiation source that satisfies the conditions for
oisson statistics (see Barrett and Myers6 for an exten-
ive discussion), then gm is the observed number of pho-
ocounts (photoelectric interactions) in the mth detector
lement. Similarly, dark current is frequently modeled as
oisson.
Since Poisson events are inherently independent and

he Poisson probability is determined fully by its mean,
he multivariate conditional probability on the data (the
ikelihood for estimation of �) is given by
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Pr�g��� = �
m=1

M

exp
− ḡm����

ḡm����gm

gm!
, �3.1�

nd its logarithm is

ln Pr�g��� = �
m=1

M

�− ḡm��� + gm ln
ḡm���� − ln�gm ! ��.

�3.2�

If the vector � includes all parameters that influence
he data, and all of these parameters are to be estimated,
hen Eq. (3.2) can be interpreted as a log-likelihood. The
IM in that case is readily derived from its definition [Eq.

2.9)].
The derivative of the log-likelihood with respect to a

omponent of � is

�

��j
ln Pr�g��� = �

m=1

M �− 1 +
gm

ḡm���� �ḡm���

��j
. �3.3�

oisson random variables are uncorrelated and have a
ariance equal to their mean,

�
gm − ḡm����
gm� − ḡm�����	 = ḡm����mm�, �3.4�

o it follows from Eq. (2.9) and a little algebra that

Fjk = �
m=1

M 1

ḡm���

�ḡm���

��j

�ḡm���

��k
. �3.5�

o reiterate, these expressions for likelihood and FIM
old rigorously only if � includes all parameters that can

nfluence the data (including, for example, the brightness
f the guide star).

An example of the pure Poisson model occurs in the
ork of Winick,14 who considered Poisson noise arising

rom a light spot projected onto a CCD detector and also
rom a dark current in the detector. The parameter vector

in his case consisted of just the x and y coordinates of
he spot.

. List-Mode Data
ne interesting special case of Eq. (3.2) that has been con-

idered in the literature on wavefront sensing15–17 is the
imit of very small detector elements. In that case, no el-
ment will detect more than one photon and the array
ill provide the coordinates of every detected photon. If K
hotons are detected, the data set, denoted G to distin-
uish it from the usual binned data, is a set of K+1 quan-
ities, namely each 2D position vector rk= �xk ,yk� as well
s K itself. This way of expressing information about a
ollection of photons is known in the nuclear-medicine lit-
rature as list mode; the coordinates and other param-
ters (e.g., time of arrival, photon energy if it can be mea-
ured) are stored in a list. List-mode likelihood and image
econstruction from list-mode data have been well studied
n the medical literature.39,40

The likelihood for a photon list can be expressed as

pr�G��� = pr��rk�,K��� = pr��rk��K,��Pr�K���, �3.6�

here pr��rk� ,K ��� is a multivariate PDF on the photon
ositions rk but a probability on the discrete random vari-
ble K. Under the same assumptions that lead to the in-
ependent Poisson form in Eq. (3.1), the photons are in-
ependent, and we can write

pr�G��� = Pr�K����
k=1

K

pr�rk���, �3.7�

here pr�rk ��� is the PDF for the location of the kth pho-
on; since the photons are indistinguishable, this PDF
ust be the same for all k. In fact, it is known from the

heory of Poisson random processes6 that

pr�rk��� =
b�rk;��

�
det

d2r b�r;��

, �3.8�

here b�r ;�� is the photon fluence (the mean number of
hotons per unit area for parameter �), and the integral is
ver the area of the detector array.

Since K is a Poisson random variable, the likelihood for
he list is given by

pr�G��� = exp
− K̄����

K̄����K

K! �
k=1

K b�rk;��

�
det

d2r b�r;��

=
exp
− K̄����

K! �
k=1

K

b�r;��, �3.9�

here the last step follows since �detd2r b�r ;�� is the total
ean number of detected photons, K̄���. The log-

ikelihood is

ln pr�G��� = − K̄��� − ln K ! + �
k=1

K

ln b�rk;��. �3.10�

. Electronic Noise
lectronic noise comes from electrons, and in any practi-
al system a very large number of electrons contribute
ore or less independently. It therefore follows from the

entral-limit theorem that electronic noise is accurately
escribed by Gaussian statistics. Moreover, if we consider
discrete array of individual detector elements with no

lectronic coupling from one element to another, then the
oise in different elements is statistically independent.
inally, if we assume that the elements are identical, the
oise is modeled as i.i.d. (independent and identically dis-
ributed) zero-mean Gaussian. The optical illumination
reates a signal that does not have zero mean, but if we
ssume that all noise sources are independent of the illu-
ination, the effect of the illumination is to shift the
oise PDF. Thus the only place that the parameter � can
nter into the PDF on the data is in its mean. The PDF for
urely electronic noise (without any photonic contribu-
ion) is given by

pr�g��� = �
m=1

M 1

�2��2
exp�−


gm − ḡm����2

2�2 � , �3.11�

nd its logarithm is
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ln pr�g��� = −
1

2
M ln�2��2� −

1

2�2 �
m=1

M


gm − ḡm����2.

�3.12�

Of the various assumptions that enter into Eqs. (3.11)
nd (3.12), the one that is the most suspect in practice is
hat the detector elements are identical. The pixels in
ommercial CCD detectors, for example, have consider-
ble variation in dark current and responsivity. Postac-
uisition digital processing can correct these effects on av-
rage by subtracting a measured dark-current map and
ividing the result by a measured gain map, but these
orrections do not produce a uniform variance in each el-
ment; in fact, they may increase the variance nonunifor-
ity since a pixel with low response will be divided by a

mall gain factor. A more accurate approach would be to
easure the variances after the corrections and express

he PDF on the corrected data as

pr�g��� = �
m=1

M 1

�2��m
2

exp�−

gm − ḡm����2

2�m
2 � . �3.13�

The FIM corresponding to Eq. (3.13) is readily shown to
e

Fjk = �
m=1

M 1

�m
2

�ḡm���

��j

�ḡm���

��k
. �3.14�

s with Poisson data, the only dependence of the likeli-
ood or the Fisher information on the parameter is
hrough ḡm���.

. Combined Poisson and Gaussian Noise
o far we have discussed Poisson and Gaussian noise as if
nly one or the other were present, but in practice both
ill contribute in most cases.
Suppose the mth detector element receives km photo-

lectrons in some exposure time T, responds to each with
esponsivity R [Volts/photon], and feeds the result into a
eadout channel with noise variance �2 
Volts2�. The out-
ut of the electronics channel is denoted gm, and its PDF
s given by

pr�gm��� = �
km=1

�

pr�gm�km�Pr�km���, �3.15�

here pr�gm �km� is the Gaussian PDF of the electronic
ignal for a fixed input and Pr�km ��� is the Poisson prob-
bility (not PDF) for the photoelectrons. If we assume
hat all detectors have the same noise variance and re-
ponsivity, we obtain41

pr�g��� = �
m=1

M

pr�gm���

= �
m=1

M 1

�2��2 �
km=0

�

exp�−
�gm − Rkm�2

2�2 �
�exp
− k̄m����


k̄m����km

km!
. �3.16�

ote that the only dependence on � in this expression is
hrough the means k̄m���, so pr�gm ��� can also be written
s pr
gm � k̄m����.
The dependence of pr
gm � k̄m���� on gm is illustrated in

igs. 2(a) and 2(b). The distinct peaks in Fig. 2(a) corre-
pond to different integer numbers of detected photons.
igures 2(a) and 2(b) should not be confused with likeli-
oods; when pr
g �km���� is plotted against k̄m��� for fixed
m as in Figs. 2(c) and 2(d), a smooth unimodal likelihood
esults even when the variance of the electronic noise is
mall.

An exact expression for the FIM for combined Poisson
nd Gaussian noise is derived in Appendix A; a useful ap-
roximation is

Fjk � �
m=1

M R2

�2 + R2k̄m���

�k̄m���

��j

�k̄m���

��k
, �3.17�

here k̄m��� is the mean number of photoelectrons. This
xpression is exact for pure Gaussian noise or pure Pois-
on noise, and it is a good approximation for all values of

m��� so long as � /R (the standard deviation of the elec-
ronic noise in photon units) is at least 0.5.

With combined Gaussian and Poisson noise, all you
eed to know to compute the FIM is k̄m��� (plus the de-
ector characteristics R and �2, of course).

. Detectors with Gain
any detectors, including photomultipliers (PMTs), in-

ensified CCDs, electron-multiplication CCDs, and ava-
anche photodiodes (APDs), have an internal gain mecha-
ism to increase the level of the signal before subjecting it
o electronic noise. Electron-multiplication CCDs are al-
eady being used in wavefront sensing, and arrays of
PDs and multianode PMTs (essentially many PMTs in a
ommon glass envelope) are also very promising for this
pplication.

ig. 2. Plots of pr
gm � k̄m� for mixed Poisson and Gaussian noise:
a) and (b) show pr
gm � k̄m� versus gm for fixed k̄m; (c) and (d) show
r
gm � k̄m� versus k̄m for fixed gm. Plots (a) and (c) are for small
lectronic noise (�=0.2 in electron units), and plots (b) and (d)
re for larger electronic noise ��=2.0�.
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Two new features can arise in the stochastic data model
or detectors with gain. The obvious one is that the gain
rocess itself is noisy. A less-obvious effect is that in some
ases the gain process can introduce correlations in the
ata values. In intensified CCDs or multianode PMTs, for
xample, the secondary electrons produced by a single
rimary photoelectron can spread over several neighbor-
ng output pixels.

Gain noise is no issue if the flux is low enough to allow
hresholding and photon counting. The distribution of
ulse heights is difficult to compute (see, for example,
aleh and Teich42), but it does not matter if the individual
hotons can be identified and counted.
Even spread of the secondaries to multiple pixels is not

ecessarily a problem at low photon flux; the electronics
an be designed to recognize a cluster of pixels arising
rom a single primary event and to assign the event to a
ingle pixel by some algorithm.43 If these measures are
aken (which they virtually never are), the output statis-
ics remain rigorously uncorrelated Poisson6 in spite of
he gain noise and charge spread.

At the opposite extreme, if the primary photon flux is
igh and the detector simply integrates all of the charge
t each pixel, then the effect of the gain noise in the ab-
ence of charge spread is mainly to increase the variance
y a factor studied by Burgess44 and Swank.45 The case of
mplification with spread has been studied by Rabbani
nd others.46,47 For a review of this work, see Barrett and
yers,6 Chap. 12. The outcome of these studies is easy to

ummarize if the mean number of primary photons per
ixel is high; in that case we can invoke the central-limit
heorem to say that the resulting overall PDF is multi-
ariate Gaussian. The covariance matrix can be deter-
ined theoretically from the work cited above, or it can be
easured for a particular detector. An important simpli-

cation in practice is that the correlations arising from
harge spread will have short range, if they occur at all,
o the covariance matrix will be diagonally dominant.

The intermediate case where the mean number of pri-
ary interactions per pixel is not low enough to permit

dentification of the signals from individual photons, yet
ot high enough that the central-limit theorem is valid, is

ust beginning to receive scrutiny.48

. PDF and Likelihood for Correlated Gaussian Noise
s we have seen, there are several possible situations in
hich the data provided by a WFS can be described as

orrelated Gaussian. In Subsection 3.E, we discussed cor-
elations arising from charge spread in certain detectors
ith gain. Without charge spread, the data will be inher-
ntly uncorrelated, at least if we define the correlation
ith respect to the conditional PDF pr�g ���, where � in-

ludes all parameters that can affect the mean data.
hen we use some subset of these parameters, however,

t often turns out that there are correlations induced by
he parameters we choose to leave out (see Subsection
.A). Finally, as we shall see in Appendix D, computation
f centroids or other derived parameters usually results
n correlations. In all of these cases, it may turn out that

more realistic data PDF is the correlated multivariate
ormal Gaussian.
A general multivariate normal PDF has the form:
pr�g� = 
�2��Mdet�K��−1/2exp
− 1
2 �g − ḡ�tK−1�g − ḡ�� ,

�3.18�

here ḡ is the mean vector and K is the covariance ma-
rix of g. The most general likelihood function is obtained
y letting the mean and covariance both be functions of �:

pr�g��� = 
�2��Mdet
K�����−1/2

�exp�− 1
2 
g − ḡ����t
K����−1
g − ḡ����� .

�3.19�

. PARAMETERIZATION
s in Subsection 2.C, here we shall denote the param-
ters we want to estimate by the N�1 vector �, but we
ust recognize that this parameter set is seldom suffi-

ient either to specify the wavefront fully or to completely
escribe the PDF of the data. In this section we look at
ome choices for �, what they imply for our representa-
ion of the wavefront, and how they have to be augmented
o get the full parameter set � that describes the data.

. Wavefront Representations
uppose the wave incident on the WFS has the form
xp
ikW�r��, where r= �x ,y� and k=2� /	. Let �
n , n
1, . . . , � � denote an infinite set of parameters that can
e used to express an arbitrary wavefront exactly as

W�r� = �
n=1

�


nun�r�, �4.1�

here the set �un�r�� is some orthonormal basis (e.g.,
ernike polynomials). It is safe to say that we are never

nterested in estimating the full wavefront or the infinite-
imensional vector �.
Sometimes we are interested in the N lowest-order

erms in Eq. (4.1) for their own sake. In ophthalmology,
or example, we might want to estimate the first N
ernike coefficients in order to use them for the task of
lanning laser surgery. In that case a reasonable choice
or the parameters of interest would be �n=
n, n
1, . . . ,N.
In AO, however, the usual objective is to determine the

ignals to be applied to the actuators of a deformable mir-
or. The possible phase functions that can be produced by
deformable mirror are assumed to be linear combina-

ions of its influence functions ��n�r�, n=1, . . .N�, where N
s the number of actuators. With this consideration in

ind, we can write Eq. (4.1) in the form

W�r� = �
n=1

N

�n�n�r� + 
W�r�. �4.2�

he N�1 vector � is what is needed for mirror control
nd hence a reasonable choice of parameters to estimate,
nd 
W�r� will be referred to as the residual. If the coef-
cients ��n� are chosen by least-squares (LS) fitting, the
esidual is orthogonal to the sum and Eq. (4.2) is an or-
hogonal decomposition of the wavefront.

Another way of representing a wavefront is to divide it
nto regions (subapertures), approximate the wavefront
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ver each region by a small set of known functions that
re zero outside the region, and then append a residual as
n Eq. (4.2) to make the expansion exact. The coefficients
n the regional representation can then be estimated, not
or their own intrinsic interest, but so they can be used in

subsequent estimation of the mirror-mode coefficients
.
As an example, consider a representation in terms of lo-

al tilts. Suppose the jth region �j=1, . . . ,J� is centered at
=rj, or equivalently x=xj and y=yj. Let the region itself
e defined by a support function Sj�r�, which is unity for r
nside the region and zero outside. We assume that all re-
ions are identical, so Sj�r�=S�r−rj�, and we assume that
ifferent regions do not overlap. Local tilt functions in the
and y directions can now be defined by

�k�r� = �S�r − rj��x − xj� j = �k + 1�/2 if k odd

S�r − rj��y − yj� j = k/2 if k even
.

�4.3�

hese functions are orthogonal for square apertures, but
hey are not normalized.

With the tilt functions, a representation similar to Eq.
4.2) can be given as

W�r� = �
k=1

2J

�k�k�r� + �W�r�. �4.4�

his representation is particularly useful if the region is
mall enough (e.g., much smaller than the Fried param-
ter in the atmospheric case) since then it may be a good
pproximation to say that the wavefront in the region is
escribed completely by its tilts and pistons. The tilts are
ccounted for by the sum in Eq. (4.4), and the pistons are
ontained in �W�r�. For a square aperture, the local pis-
on is orthogonal to the tilt function so Eq. (4.4), like Eq.
4.2), is an orthogonal decomposition of the wavefront.

. Nuisance Parameters
here are two distinct classes of nuisance parameters in
avefront sensing: intrinsic nuisance parameters related

o the wavefront expansion itself and extrinsic nuisance
arameters that arise from other sources.
Examples of extrinsic nuisance parameters include the

rightness of the guide star, length of the sodium column
hen a laser guide star is used, level and distribution of
ackground light, and scintillation effects. Which of these
e need to consider depends on the application and the
ata-acquisition system; in Section 5 we shall consider
rightness of the guide star and background light level as
xamples.

Intrinsic nuisance parameters are the ones needed to
epresent the residual in Eq. (4.2) or (4.4). Since the re-
idual is an infinite-dimensional function (technically a
ector in the Hilbert space L2�R2�), it might appear that
n infinite set of parameters would be needed, but not all
omponents of the residual influence the data.

One way to parameterize the residual is to recognize
hat the sum in Eq. (4.2) or (4.4) defines a vector in a sub-
pace of L2�R2�. Following terminology introduced by
axman,49 we can refer to this subspace as interest space
nd to its orthogonal complement as indifference space. If
e are interested in estimating the signals needed to con-
rol a deformable mirror as in Eq. (4.2), for example, the
irror influence functions form a (nonorthogonal) basis

or interest space, and all functions in indifference space
re orthogonal to all influence functions.
We can define an orthonormal basis ��k�r�� for indiffer-

nce space by use of projection operators (see Barrett and
yers6 for details), and then we can represent the re-

idual as


W�r� = �
k=1

�

�k
int�k�r�. �4.5�

hough this sum is infinite, only a finite subset of the
erms, say K of them, will influence the data significantly,
nd we can use those coefficients to define a K�1 vector
int that describes the intrinsic nuisance parameters.

. Summary of Parameters
he vectors that will be needed in Section 5 are summa-
ized in Table 1.

. PRACTICAL LIKELIHOOD FUNCTIONS
ND FISHER INFORMATION MATRICES

he goal of this section is to show how the general prin-
iples discussed above can be used to construct practical
ikelihood functions and FIMs. Emphasis in this section
ill be on the problem of directly estimating the mirror
odes without the intermediary of the reconstruction

tage in Fig. 1, but in Section 6 we consider the more com-
on problem of estimating local tilts from Shack–
artmann data.
Any of the likelihood functions developed in this section

an be used for MAP estimation as well, provided one has
meaningful prior on the parameters to be estimated.

. General Considerations on Nuisance
arameters
he first decision we have to make in constructing a prac-

ical likelihood function is what to do about intrinsic and
xtrinsic nuisance parameters. The possibilities were
numerated in Subsection 2.C; which option we use de-
ends in large part on the dimensionality of the nuisance
arameter.

Table 1. Vectors Relevant to Wavefront Sensing

Vector Meaning Dimension

g Raw data (photodetector outputs) M�1
� Parameters of interest

(e.g., mirror modes)
N�1

�int Intrinsic nuisance parameters K�1
�ext Extrinsic nuisance parameters L�1
� All nuisance parameters �K+L��1
� All parameters that influence data P�1,

�P=N+K+L�
� Parameters in exact wavefront

representation
��1

� Coefficients of local tilt functions in
J subapertures

2J�1
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To be explicit, consider two specific extrinsic nuisance
arameters in astronomical wavefront sensing: the
rightness of the guide star and the average sky back-
round. These two numbers form the components of a 2
1 extrinsic nuisance parameter vector. Both can affect

he mean data strongly, so they should not be ignored [op-
ion (1) in Subsection 2.C]. Both vary significantly with
ite, guide star chosen, and position in the sky, so typical
alues [option (2)] would not be reliable, and prior PDFs
option (5)] would be broad and relatively uninformative.
s we shall see below, however, both parameters can be
stimated from the same data as used to estimate the
avefront parameters [option (3)] or from some expanded
ata set [option (4)], and these would have to be the rec-
mmended options.

Often, however, intrinsic and extrinsic nuisance pa-
ameters require high-dimensional parameter vectors.
he sky background, for example, might be a complicated
patial distribution rather than just a single number, and
any different modes can contribute to the intrinsic nui-

ance parameter �int. In these cases any attempt to esti-
ate all components will increase the dimension and con-

ition number of the FIM and thereby increase the CRB
n the parameters of interest. (For a proof of this state-
ent, see Barrett and Myers,6 Sec. 13.3.8.). If the number

f nuisance parameters is larger than the number of mea-
urements, the FIM is singular and the CRB is infinite.

With high-dimensional nuisance parameters, therefore,
he only remaining options are to ignore them [option (1)]
r to marginalize over them [option (5)]. To reiterate a
oint from Subsection 2.C, marginalization is optimal in
erms of risk if a meaningful prior is known.

. Marginalizing Intrinsic Nuisances
f we are interested in estimating � from a data set g by
L (or MAP) methods, we need the likelihood pr�g ���.
hat we know from Section 3, however, is pr�g ��� or

r�g �� ,��. If we want to marginalize over all nuisance pa-
ameters, we need

pr�g��� =� dK+L� pr�g��,��pr�����, �5.1�

nd if we want to marginalize over just the intrinsic nui-
ance parameters and estimate the extrinsic ones, we
eed

pr�g��,�ext� =� dK�int pr�g��,�ext,�int�pr��int���.

�5.2�

ote that we do not write pr��int �� ,�ext� in Eq. (5.2) be-
ause there is no apparent way that extrinsic parameters
ike guide-star brightness and sky background can influ-
nce the wavefront being sensed.

In both Eqs. (5.1) and (5.2), a conditional prior on � is
eeded, and in keeping with the spirit of this paper, it has
o be a prior with experimental justification.

In astronomy, there is a large body of experimental evi-
ence supporting the Kolmogorov theory of atmospheric
urbulence. Central to that theory is the assumption that
hase perturbations are zero-mean Gaussian random pro-
esses, so the coefficient of any term in any linear repre-
entation of a wavefront must be a Gaussian random
ariable. We may therefore safely take pr��int� as a
-dimensional zero-mean multivariate normal density.
hat we need in Eq. (5.2), however, is pr��int ��� rather

han pr��int�, and the dependence on � is a complication
ince that is the main parameter we want to estimate.

There are two ways we can justify replacing pr��int ���
n Eq. (5.2) with a multivariate normal independent of �.
he obvious one is simply to assume that �int is indepen-
ent of �. A more subtle approach is to recognize that in a
losed-loop system where � represents the coefficients of
he mirror modes, the effect of the AO system is to drive �
lose to zero. We can formalize this notion by the closed-
oop approximation:

pr��int��� � pr��int�� = 0�. �5.3�

t is shown in Appendix B that pr��int ��=0� is itself a
ero-mean multivariate normal of the form

pr��int�� = 0� = N exp
− 1
2 ��int�tC−1��int�� , �5.4�

here N= 
�2��Kdet�C��−1/2 and C is a covariance matrix
nown as a Schur complement; if �int and � were uncor-
elated, C would be just the covariance matrix of �int.
ith Eqs. (5.3) and (5.4), the desired likelihood function

Eq. (5.2)] becomes

pr�g��,�ext� � N� dK�int pr�g��,�ext,�int�

�exp
− 1
2 ��int�tC−1��int�� . �5.5�

To proceed, we must choose a form for the likelihood
onditional on all relevant parameters, pr�g �� ,�ext ,�int�.
he simplest choice is the i.i.d. normal model presented in
ubsection 3.C. Using Eqs. (3.11) and (5.5), we can write

pr�g��,�ext� � N��
�

dK�int

�exp�− �
m=1

M 
gm − ḡm��,�ext,�int��2

2�2 �
�exp
− 1

2 ��int�tC−1��int�� , �5.6�

here the integral runs from −� to � over all K variables
nd N�=N�2��2�−M/2. This integral would be the convolu-
ion of two Gaussians, immediately yielding another
aussian, except that �int enters into the first factor in

he integrand in a complicated way through the mean
m�� ,�ext ,�int�; we can fix this problem by assuming that
he effect of �int is small, performing a Taylor expansion
f the mean, and retaining only the first two terms. De-
ails are given in Appendix B, where it is shown that

pr�g��,�ext� � N�exp�− 1
2 
g − ḡ��,�ext,0��t

�Ktot
−1
g − ḡ��,�ext,0��t� , �5.7�

here N = 
�2��Mdet�K ��−1/2 and
� tot
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Ktot � �2I + ACAt, �5.8�

ith A being a matrix defined in the appendix. Note that
he fact that ḡm�� ,�ext ,�int� is evaluated at �int=0 does
ot mean that the unwanted modes are being set to zero;
ather it comes from the assumption that �int has zero
ean and that excursions about the mean are small

nough to allow a first-order Taylor expansion.
To the first order, Eq. (5.7) shows that the likelihood af-

er marginalizing over the intrinsic nuisance parameters
s a multivariate normal with mean determined without
ny consideration of the nuisance parameters. To this or-
er, the only effect of the unwanted modes is to add a new,
ondiagonal term to the covariance matrix. This result
eneralizes easily to include readout noise that varies
rom detector to detector, gain noise, and even photon
oise so long as the Poisson can be approximated by a
aussian.
In practice, neither C nor A is known, but it is straight-

orward to simulate realizations of Kolmogorov turbu-
ence, either fully digitally or with a spatial light modula-
or, and to find a sample covariance matrix that is an
xperimental approximation to ACAt. The matrix inver-
ion required in Eq. (5.7) can then be performed by meth-
ds described in Chap. 14 of Barrett and Myers,6 even if
he sample covariance matrix is not full rank.

To summarize this subsection, we have seen that there
re several possible approaches to choosing a prior with
hich to marginalize over the nuisance parameters. In

he view of the authors, the final justification for making
his choice will have to come from a meaningful, task-
ased performance assessment of the overall AO
ystem.35

. Poisson Data with Negligible Intrinsic Nuisances
ometimes we can get away with the assumption that
here are no intrinsic nuisance parameters. In Shack–
artmann sensors with relatively small subapertures, for

xample, it is probably valid to neglect aberrations other
han piston and tilt; piston does not affect the data, and
ilt is what we want to estimate, so there are no intrinsic
uisance parameters.
If there are no significant intrinsic nuisance param-

ters and we choose to estimate the extrinsic ones, then
ll of the likelihood functions and FIMs derived in Section
are immediately applicable, just by identifying

� = � �

�ext� .

n particular, for pure Poisson data, the log-likelihood is
iven by Eq. (3.2), which we can rewrite as

ln Pr�g��,�ext� = �
m=1

M

�− ḡm��,�ext� + gm ln
ḡm��,�ext���.

�5.9�

he term ln gm! has been dropped since it is independent
f the parameters and hence does not affect the likelihood
Pr�g ��� regarded as a function of � for fixed g].
Consider the case where the extrinsic nuisance param-
ter is only the brightness of the guide star (or other point
ource), denoted I0. In that case we can express the mean
ata as

ḡm��,I0� = I0fm���, �5.10�

here fm��� is a characteristic of the individual detector
lement, defined in such a way that I0fm��� is the mean
umber of photons detected by the mth element when the
avefront is fully described by the vector �. The log-

ikelihood is now given by

ln Pr�g��,I0� = − I0 �
m=1

M

fm��� + �
m=1

M

gm ln
fm���� + Ntot ln�I0�,

�5.11�

here Ntot��m=1
M gm is the total number of detected pho-

ons.

. Fisher Information with One Nuisance Parameter
f � is an N�1 vector and the only nuisance parameter
s the guide-star brightness, then the FIM is �N+1�

�N+1�. The derivatives needed in the FIM are

�

��n
ln Pr�g��,I0� = �

m=1

M �gm − ḡm��,I0�

fm��� � �fm���

��n
,

�5.12�

�

�I0
ln Pr�g��,I0� =

1

I0
�
m=1

M


gm − ḡm��,I0��. �5.13�

he statistical average needed in the FIM is

�
gm − ḡm��,I0��
gm� − ḡm� − ��,I0��	g��,I0
= ḡm��,I0��mm�,

�5.14�

nd the elements of the FIM are found to be

Fnn� = I0 �
m=1

M 1

fm���

�fm���

��n

�fm���

��n�

�n,n� � N�,

�5.15�

Fn,N+1 = FN+1,n = �
m=1

M �fm���

��n
�n � N�, �5.16�

FN+1,N+1 =
N̄tot

I0
2 =

1

I0
�
m=1

M

fm���, �5.17�

e see, therefore, that the FIM for this problem is a par-
itioned matrix with the structure

F = �AN�N BN�1

B1�N
t C1�1

� , �5.18�

here the elements of A [given by Eq. (5.15)] scale as I0,
he elements of B [given by Eq. (5.16)] are independent of
, and C is proportional to 1/I .
0 0
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. Inclusion of Sky Background
ow we consider an additional nuisance, the sky back-
round treated as a uniform incoherent source. This ad-
itional radiation does not spoil the Poisson assumptions,
ut instead modifies the mean data with an additional
erm. If each detector receives the same amount of sky ra-
iation on average, then Eq. (5.10) becomes

ḡm��,I0,b� = I0fm��� + b, �5.19�

here the scalar b, defined as the mean number of de-
ected background photons per pixel, is now one addi-
ional nuisance parameter. If dark current is significant,
ts effect can also be included in b.

With two nuisance parameters, the log-likelihood Eq.
5.11) becomes

ln Pr�g��,I0,b� = − I0 �
m=1

M

fm��� − Mb

+ �
m=1

M

gm ln
I0fm��� + b�. �5.20�

he FIM is now �N+2�� �N+2�, and the derivatives
eeded for its computation are

�

��n
ln Pr�g��,I0,b� = I0 �

m=1

M �gm − ḡm��,I0,b�

ḡm��,I0,b� � �fm���

��n
,

�5.21�

�

�I0
ln Pr�g��,I0,b� = �

m=1

M


gm − ḡm��,I0,b��
fm���

I0fm��� + b
,

�5.22�

�

�b
ln Pr�g��,I0,b� = �

m=1

M �gm − ḡm��,I0,b�

ḡm��,I0,b� � . �5.23�

he elements of F can now be computed with the help of a
light generalization of Eq. (5.14).

. Maximum-Likelihood Estimation from Gaussian
easurements

ubsection 5.C dealt with purely Poisson noise, but we
aw earlier that there are several situations in which the
oisson model is incorrect. Electronic readout noise and
ain noise are continuous random variables and hence
ot Poisson, and we saw in Subsection 5.B that margin-
lizing over unwanted wavefront modes can yield a mul-
ivariate Gaussian likelihood.

It is well known that ML estimation with Gaussian
ata is basically LS fitting. If the mean data are linear
unctions of the parameters to be estimated, then ML es-
imation is the same as linear regression, with the regres-
ion function being the negative of the log-likelihood. The
L solution in this case is obtained by matrix inversion

r pseudoinversion.6 In wavefront sensing and many
ther applications, however, the mean data depend non-
inearly on the parameters, so no linear method will de-
iver ML estimates.
. Independent Gaussian Measurements
general likelihood for statistically independent Gauss-

an measurements is given in Eq. (3.13). If we allow the
ariance to depend on � for generality, the corresponding
og-likelihood boils down to

ln pr�g��� = − 1
2 �

m=1

M 
gm − ḡm����2

�m
2 ���

+ constant. �5.24�

ecause of the leading minus sign, maximizing the log-
ikelihood is the same thing as minimizing a weighted
orm of the difference between the measured data vector
and the predicted mean data ḡ���. ML estimation from

ndependent Gaussian data is a nonlinear regression.

. Correlated Gaussian Measurements
etectors with gain may deliver inherently correlated
aussian data, and marginalizing over nuisance param-
ters may induce correlations even when the detectors
hemselves do not. The log-likelihood in these cases is
iven by

ln pr�g��� = − 1
2 �

m=1

M

�
m�=1

M


gm − ḡm����
K−1�mm�
gm� − ḡm�����

= − 1
2 
g − ḡ����tK−1
g − ḡ����, �5.25�

here K is a covariance matrix which, in the most gen-
ral case, can depend on �.

. APPLICATION TO A SHACK–HARTMANN
ENSOR
hough the likelihood models developed above are appli-
able to any wavefront sensor, the familiar Shack–
artmann sensor provides an instructive example. In its

implest form, a Shack–Hartmann sensor consists of an
rray of lenslets in, say, the plane z=0, and an array of
hotodetectors in a parallel plane, z=z0 (where z0 is not
ecessarily the focal length of the lenslets). The data from
he entire detector array can, in principle, be used to es-
imate the full set of parameters of interest �, but in prac-
ice a subset of the data associated with a single lenslet is
sed to estimate local tilts, which are then used to esti-
ate � in a separate reconstruction step. In this section
e first look at the conventional problem of estimation of

ocal tilts and then discuss the application of likelihood
rinciples to estimation of �.

. Estimation of Local Tilts from Poisson Data
f the geometry in a Shack–Hartmann sensor is chosen so
hat radiation passing through one lenslet falls only on
ne subset of the detector pixels, then the local wavefront
arameters for each lenslet can be estimated indepen-
ently of those for other lenslets. Moreover, if the wave
ver one lenslet is well described as a pure tilt, then there
re no intrinsic nuisance parameters, and the likelihood
unctions given in Subsections 5.C and 5.D are applicable
f we simply replace the general parameter � with the 2D
ilt vector � for the lenslet of interest.

In particular, if the noise is Poisson and the unknowns
re the guide-star brightness and two components of the
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ocal tilt, then the log-likelihood, given by Eq. (5.11), is
pecified by the set of functions �fm����, where the index m
ow runs over only those detector elements that receive
adiation from the particular lenslet. For a normally inci-
ent plane wave in a Shack–Hartmann sensor, the lenslet
roduces an irradiance distribution on the detector plane
a “spot”) denoted by s�r�. If z0 is the focal length of the
enslet, then s�r� is the squared modulus of the (suitably
caled) Fourier transform of the pupil function, but in
eneral it can also be a defocused image of the pupil. In
ither case, the effect of a pure tilt is to shift the spot, and
he mean output of the mth detector element is obtained
y multiplying the irradiance by the responsivity function
f that element, dm�r�, and integrating

fm��� =�
�

d2r dm�r�s�r − z0��. �6.1�

he units are again chosen so that I0fm��� is the mean
umber of photons from the guide star detected in ele-
ent m. Thus fm��� is the mean response of the detector

lement as a function of the shift of the spot.

. Some Simplifying Assumptions
common assumption made in analyzing Shack–

artmann sensors is that there is no light loss as the spot
hifts, so that

�
m=1

M1

fm��� � ftot = constant, �6.2�

here M1 is the number of detector elements associated
ith a particular lenslet and � is the 2D vector of x and y

ilts over that lenslet. The assumption in Eq. (6.2) is valid
f (a) there are no gaps between detector elements; (b) the
esponsivity of all detector elements is the same; (c) obliq-
ity and other angular factors are neglected; (d) the spot
oes not fall off the area of the detector associated with
he lenslet; and (e) that detector area does not receive
ight from adjacent lenslets. With these restrictive physi-
al assumptions and the assumptions of pure Poisson
oise, no intrinsic nuisance parameters and no sky back-
round, the log-likelihood from Eq. (5.11) becomes

ln Pr�g��,I0� = − ftotI0 + �
m=1

M1

gm ln
fm���� + Ntot ln�I0�,

�6.3�

here � is now a 2D vector specifying the x and y compo-
ents of tilt over that lenslet.
Equation (6.3) is the form of the log-likelihood used
ost commonly in the literature on wavefront sensing,

hough it is also common to go further and consider a very
arge number of small detector elements so that dm�r� can
e treated as a delta function.
One advantage of assumption (6.2) is that the FIM be-

omes block diagonal since
�
m=1

M1 �fm���

��n
=

�

��n
�
m=1

M1

fm��� = 0. �6.4�

hus, as shown by Eq. (5.16), the off-diagonal blocks B in
q. (5.18) vanish, and the CRBs on � and I0 are readily

omputed.
A consequence of the block-diagonal FIM is that the

RB on the estimates of the parameters of interest, �, is
btained just by inverting the A block in Eq. (5.18).
herefore it is the same as if C were not present, and

here is no penalty in the performance bound for includ-
ng I0 in the parameter list.

Another consequence of model (6.3) and the block-
iagonal FIM is that I0 and � can be estimated separately.
he ML estimate of I0 is obtained by setting

ln Pr�g �� ,I0�� /�I0 as given by Eq. (5.13) to zero and by
sing Eq. (5.10); the result is

Î0 =
�m=1

M1 gm

�m=1

M1 fm���
=

Ntot

�m=1

M1 fm���
. �6.5�

f Eq. (6.2) holds, the denominator is independent of the �
nd the guide-star brightness can be estimated indepen-
ently of the tilts. The ML tilt estimates �̂ are then found
y setting �
ln Pr�g �� ,I0�� /��n

as given by Eq. (5.12) to
ero. The result is

�
m=1

M1 gm

fm���

�fm���

��n
= 0 when � = �̂. �6.6�

his result does not require knowledge of the guide-star
rightness, so we may as well ignore it; we emphasize,
owever, that this result requires that there be no light

oss, no overlapping with adjacent lenslets, no sky back-
round, and pure Poisson noise.

. Joint Estimation of Tilts and Nuisance Parameters
f Eq. (6.2) does not hold or if there is a sky background,
ll parameters associated with a single subaperture must
e estimated jointly. The derivative formulas are not par-
icularly useful, and the best we can say is that the log-
ikelihood from Eq. (5.20) must be maximized:

− I0 �
m=1

M1

fm��� − Mb + �
m=1

M1

gm ln
I0fm��� + b� = maximum

at � = �̂,I0 = Î0,b = b̂. �6.7�

n this general case, the FIM is not block diagonal and the
RB is increased by having to estimate I0 and b.

. Auxiliary Data
ne way to simplify the ML estimation of the parameters
f interest and to avoid the increase in variance that re-
ults from having to estimate nuisance parameters is to
cquire more data. Additional telescopes could be used to
easure the guide-star brightness and sky background.
heir collection apertures could be much larger than that
f a single lenslet in a Shack–Hartmann sensor, and if
cintillation effects are not important their integration
ime could be much longer. The resulting estimates of I
0
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nd b could have very low variance, so these parameters
ould be regarded as known.

If additional monitors are not practical, the data from
ll lenslets could be used to estimate I0 and b. With J
enslets and the wavefront described by pure tilt, the com-
lete data set is described by 2J+2 parameters (two tilts
er lenslets plus two global nuisance parameters), which
s an improvement over the 4J we would have if two tilts
nd two nuisance parameters were to be estimated from
he data associated with each lenslet. Even if scintillation
oes occur, it will not affect the diffuse sky background, so
t least b can be treated as a global parameter.

. Estimation of Global Wavefront Parameters
bove we considered the traditional operation of a Shack–
artmann sensor in which the goal is assumed to be es-

imation of local tilts from data associated with individual
enslets. Once that is accomplished, the true goal of esti-

ating global parameters in an expansion like Eq. (4.2) is
ften considered to be a separate problem.

This dichotomy is tenable in a Shack–Hartmann sensor
nly if radiation passing through one lenslet does not
each the detector pixels associated with an adjacent lens-
et, but this condition is quite restrictive. Even if the de-
ectors lie in the focal plane of the lenslet, the tails of the
oint-spread function from the lenslet of interest can
verlap the pixels associated with an adjacent lenslet. Ap-
roaches to dealing with this problem and arriving at fi-
al ML estimates of global parameters are discussed be-

ow.

. Likelihood Models with Overlap
uppose we want to estimate local tilts using only the
ata from detector elements under a particular lenslet,
ven though light from other lenslets contributes to the
ata from those elements. We could simply ignore the
roblem and find ML estimates of the local tilts from an
rroneous likelihood model. A rigorous mathematical
reatment of the errors resulting from misspecified likeli-
ood models is given by Halbert White,50 who showed
hat there are many circumstances under which such
uasi-ML estimators (QMLEs) have very useful proper-
ies. As with true ML estimators, the PDFs of QMLEs
ay asymptotically approach multivariate normals,

hough not necessarily with the inverse of the FIM as the
ovariance matrix, and they may be consistent estima-
ors. White also gives several useful tests of the degree of
isspecification of the likelihood model. No research has

ppeared on applying White’s theories to wavefront sens-
ng, so it is not yet clear what can be said about QMLEs of
ocal tilts or when the likelihood specification is adequate.

Rather than ignoring the overlap problem, an alterna-
ive would be to treat the tilts in adjacent lenslets as nui-
ance parameters for the purpose of estimating the tilts
ver a given lenslet. Then the general theory developed in
ubsection 5.B would be applicable and a multivariate
ormal model, like Eq. (5.7) but with the 2D vector � in
lace of �, would result after marginalization.
Finally, we could consider inserting physical dividers

etween the lenslets to prevent the overlap, ensuring that
he local likelihood model was valid. An immediate conse-
uence would be that assumption (6.2) would not hold
nd hence it would be necessary to estimate the guide-
tar brightness (or measure it independently) along with
he local tilt.

. Maximum-Likelihood Estimation of Mirror-Mode
oefficients
here are several possible ways of getting ML estimates
f the vector of mirror-mode coefficients �, depending on
hat we use as the initial data.
If we have valid ML estimates of local tilts, we may be

ble to get ML estimates of � by use of the ML invariance
rinciple (2.15), at least when J (the number of lenslets)
nd N (the number of mirror actuators) are both large.
etails of this approach and conditions for its validity are
iven in Appendix C, but the conditions are difficult to
eet in practice.
Alternatively, if we have any estimates at all of local

ilts, even centroid estimates, we can use them as data
rom which to estimate � so long as we can construct the
elevant likelihood model. If we denote the estimates as �̂,
he likelihood we need is pr��̂ ���. As we show in Appendix
, however, finding the relevant likelihood can be compli-

ated, and without an accurate likelihood, neither ML nor
AP estimation of � can be considered optimal in any

ense.
A better approach is to start with the raw data g (the

etector outputs �gm� for all m, not just the ones associ-
ted with a single lenslet). The likelihood function in that
ase is pr�g ���, which is just what we have been discuss-
ng throughout this paper. Any of the likelihood models
rom Section 5 can be used.

. Simulation Results
o illustrate the theory developed in this paper, we per-
ormed several simulation studies of a Shack–Hartmann
ensor.

In the first study, designed to test the ability of the ML
ethod to reduce nonlinearity in a Shack–Hartmann sen-

or, only a single lenslet was considered, and a 2�2 array
f photodetectors (often called a quad cell) was placed in
ts focal plane. The irradiance for a given tilt, s�r−z0�� in
q. (6.1) was assumed to be a 2D Gaussian function, and

he mean response functions, fm��� , m=1, . . . ,4, were
ound by performing the integral in Eq. (6.1) numerically;
he results are shown in Fig. 3.

These response functions were then used to generate
ure Poisson data for an 8�8 array of tilts. For each po-
ition in the array, 200 realizations of a 4D Poisson ran-
om vector (one component for each detector in the quad
ell) were generated. These data were used in both a stan-
ard centroid estimator (see Appendix D) and a simple
L estimator based on the Poisson statistics. There were

o nuisance parameters, and the log-likelihood was given
y Eq. (6.3) with I0 assumed known. The maximization of
he likelihood was performed by a Nelder–Mead algo-
ithm implemented in the Matlab function fminsearch.
ach of the resulting estimates was plotted as a point in a
D image, one image for the centroid estimates and one
or ML. These images, shown in Fig. 4, are thus approxi-
ations to the PDFs of the tilt estimates when the true

alues are delta functions on an 8�8 array of points.



i
w
t
n
m
o
W
i
n
s
n
t

m
a
n
p

w
p
f
n
p
s
r

p
H
d
F
1
h
p
l
t

i
1
e

F
u
l
t
y

F
P
e

F
e
p
c
s
T
a
w
F
s
5

F
r
t

406 J. Opt. Soc. Am. A/Vol. 24, No. 2 /February 2007 Barrett et al.
With the centroid estimator, only a 6�6 array of points
s seen on the left in Fig. 4; the outermost points overlap
ith their neighbors, and information about these larger

ilts is irretrievably lost. This problem cannot be elimi-
ated by any form of nonlinearity correction; no transfor-
ation of the left image in Fig. 4 can remove the complete

verlap of the outermost points with their neighbors.
ith the ML estimator, on the other hand, the nonlinear-

ty is almost completely eliminated (the estimator is
early unbiased), and the dynamic range of the quad-cell
ensor is approximately doubled. Both estimators are
early unbiased and efficient for a point in the center of
he array.

A more extensive comparison of ML and centroid esti-
ations of tilts, taking account of nuisance parameters

nd null functions and exploring a much wider range of
oise characteristics and photodetector arrays, will be
ublished separately.
A second simulation study considered estimation of

avefront parameters directly from photodetector out-
uts without an intermediate estimation of tilts. A wave-
ront aberration was simulated using the 12 Zernike poly-
omials between the 2nd and the 4th radial order with
ositive coefficients that followed Noll’s51 mean-square re-
idual error distribution for D /r0=16 (the total wavefront
ms was 3.28 rad). A pixellated (CCD) image of the spot

ig. 3. (Color online) Display of the response functions fm���
sed in simulation of a Shack–Hartmann sensor with a single

enslet and a 2�2 array of photodetectors. Each plot represents
he mean response of one photodetector as a function of the x and
components of the wavefront tilt.

ig. 4. Left, centroid estimates of an 8�8 array of tilts from
oisson data in a quad-cell Shack–Hartmann sensor; right, ML
stimates from the same data.
attern of the wavefront aberration in a Shack–
artmann sensor was simulated on a computer using the
iscrete Fourier transform (DFT) implementation of the
resnel diffraction formula. The simulated detector had
28�128 square pixels, and the Shack–Hartmann sensor
ad 16 square lenslets across the diameter of the full pu-
il (8�8 pixels on the detector for each lenslet). The focal
ength of the lenslets was set to approximately 50 times
he lateral size of each lenslet.

Fifty realizations of pure Poisson deviates of the CCD
mage were generated for each of six different light levels:
0−1/2, 1, 10−1/2, 10, 103/2, and 100 photons/lenslet. The co-
fficients of the 12 Zernike polynomials included in the

ig. 5. Comparison of traditional LS estimation of wavefront co-
fficients from centroid data versus direct ML estimation from
hotodetector outputs. Parameters used in the simulation in-
lude: 	=680 nm; pupil diameter=24 �m�128=3072 �m; lenslet
ize=192 �m; CCD pixel size=24 �m; and focal length=9.9 mm.
he wavefront was sampled at 1726 points across the pupil di-
meter, and 322 rows and columns of zeros were used to pad the
avefront function to a 2048�2048 array before computing the
FT. The markers represent the mean, and the error bars repre-
ent the standard deviation of the residual wavefront rms of the
0 estimations for each light level.

ig. 6. Same as Fig. 5 except that global tip and tilt were not
emoved from the simulated wavefront and were also included in
he coefficients to estimate.



w
b
t
a
b
r

u
(
s
l
c
t
t

w
p
O
i
i
v
o
t

7
A
1
a
l
t
m
v
e
i
o
h
h
t
p

A
I
I
t
fl
j
e
t
b
a
e
2

t
t
c
e
p
a
p
v

t
c
t

m
t
b
t
e
p
p

f
d
t
g
e

a
p
t

w
p
E
o
e
n
f

t
�
f
s
b
c
l
a
�
ḡ
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avefront were estimated from the same data by using
oth ML and traditional centroiding with LS reconstruc-
ion. The results of the simulations are shown in Fig. 5. In
nother study, the aberrated wavefront also included glo-
al tip and tilt, for a total of 14 unknown coefficients; the
esults in that case are shown in Fig. 6.

As seen from the figures, direct ML estimation can offer
p to a fourfold advantage in residual wavefront error
ninefold if the global tip and tilt terms are not corrected
eparately), suggesting that there is indeed a significant
oss of information in the tilt-estimation step (the prepro-
essing stage in Fig. 1). Such a loss is not surprising since
ilt estimation in this case reduces an 8�8 array of pho-
odetector outputs to just two centroids.

It is also noteworthy that a significant reduction in
avefront error can be achieved with an average of 0.32
hotons/subaperture, or 0.005 photons/detector element.
f course this level of performance would not be obtained

f sky background or readout noise were considered, but it
s possible that ML methods would have even larger ad-
antages over traditional methods in these cases because
f more accurate statistical modeling. A detailed study of
hese issues is in progress.

. COMPUTATIONAL METHODS
stronomical WFSs must respond on a time scale of
0–100 ms, depending on wavelength and wind speed,
nd any computations performed by the sensor must be at
east this fast. Since ML estimation usually uses an itera-
ive search for the maximum, it might seem difficult to
eet this requirement, but we can draw on methods de-

eloped for the closely analogous problem of ML position
stimation in scintillation cameras for gamma-ray imag-
ng. In that application, the computation must be carried
ut in a few microseconds rather than milliseconds, but
ardware and software approaches that meet this goal
ave been demonstrated. In this section we summarize
hese approaches and then discuss how they can be ap-
lied to wavefront sensing.

. Computational Approaches from Gamma-Ray
maging
n a scintillation camera, a gamma ray interacts in a scin-
illation crystal such as sodium iodide and produces a
ash of light that illuminates an array of PMTs. The ob-

ective is to determine the coordinates of the interaction
vent and the strength of the light flash, which is propor-
ional to the gamma-ray energy. Since the estimate must
e obtained for each gamma-ray photon, and the photons
rrive randomly at mean rates that can exceed 105

vents/s, it is desirable to carry out the estimation in 1 to
�s.
If the scintillation crystal is relatively thin, it suffices

o estimate the lateral coordinates �x ,y� of the scintilla-
ion event, but at high gamma-ray energies a thicker
rystal must be used, and the z coordinate (normal to the
ntrance face of the crystal) also influences the data. De-
ending on the application, the z coordinate, referred to
s the depth of interaction, can be regarded as a nuisance
arameter or as another parameter to estimate. If the
ariables to be estimated are x, y and the brightness of
he flash I0, then the estimation problem in a scintillation
amera is equivalent to estimating the two components of
ilt and the guide-star brightness in wavefront sensing.

In some problems two gamma rays can be absorbed si-
ultaneously in the scintillation crystal, either because

he radioisotope emits two photons in a rapid cascade or
ecause of Compton scatter in the crystal. In these cases
he number of parameters to estimate can be as large as
ight (three spatial coordinates and energy for each of two
hotons). Alternatively, the properties of the secondary
hoton can be treated as additional nuisance parameters.
For the scintillation cameras developed at the Center

or Gamma-Ray Imaging of the University of Arizona, the
ata dimension M is either 4 (a 2�2 array of photomul-
ipliers), 9 (a 3�3 array), or 64 (an 8�8 array). Thus the
oal of the processing is to estimate a set of 2–8 param-
ters from a set of 4–64 measurements in about 2 �s.

The statistical models used with scintillation cameras
re remarkably similar to those considered in this
aper.52 In most cases the log-likelihoods have the struc-
ure

ln pr�g��� = �
m=1

M

ln pr
gm�ḡm����, �7.1�

here � is the set of parameters to be estimated. In this
aper the only log-likelihood not in the form of Eq. (7.1) is
q. (5.25), where a correlated multivariate normal was
btained by marginalizing over intrinsic nuisance param-
ters. Similarly, in a scintillation camera, a multivariate
ormal can be used to describe the likelihood that results
rom marginalizing over the depth of interaction.

When the log-likelihoods have the form of Eq. (7.1),
heir dependence on � is determined by the set of means
ḡm����, which we refer to as mean detector response
unctions or MDRFs.27,28 The MDRFs can either be mea-
ured directly with a collimated source of gamma rays or
e simulated by an optical transport code that models the
amera. Once they are known, they can be stored as
ook-up tables, even when the dimension of � is as large
s 8. For N=2, when the problem is just to estimate the
x ,y� coordinates of each scintillation event, then each
m��� can be stored as a Kx�Kx image, where Kx is the
umber of discretization steps in x or y (Kx=128 or 256,
ay). Even with 64 PMTs, therefore, the storage require-
ents are modest. If we add the depth of interaction z as
parameter to estimate, the necessary storage increases

y a factor of Kz, the number of steps in z, but this is typi-
ally only 10 or so. Adding the photon energy to the list of
arameters requires no additional storage since the
DRF factorizes in the same way as in Eq. (5.10). Esti-
ating the coordinates of two simultaneous events in-

reases N to 8 but does not increase the storage required
or the MDRFs, since the total light incident on any PMT
rom the two events is just the sum of the contributions
rom the individual event, to a good approximation.

With stored MDRFs, evaluation of the log-likelihood at
ny � can be accomplished rapidly by looking up the
alue of ḡm��� for each m, using a second look-up table to
nd each ln pr
gm � ḡm����, and adding the results. The
econd look-up table has Km�Kḡ entries, where Km is de-
ermined by the analog-to-digital (A/D) converter used to
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igitize the photomultiplier signals and Kḡ is related to
he resolution used for ḡm���; the dimension of � is irrel-
vant in this table.

Since it is not so easy to compute and store derivatives
f the MDRFs, search algorithms for finding the ML esti-
ates in scintillation cameras have concentrated on
ethods that require the value of the log-likelihood but

ot gradients or Hessians. For searching over just the x
nd y coordinates, it is feasible to choose a reasonable
tarting point, say the coordinates of the PMT that gets
he largest signal, and then do an exhaustive search over
subset of x and y in this vicinity.
Exhaustive search fails when additional parameters

re to be estimated, and in those cases useful search al-
orithms include iterative coordinate descent, variations
n the Nelder–Mead simplex, and multigrid algorithms.
terative coordinate descent performs a sequence of 1D
earches on each of the N individual components of � in
urn, while simplex methods compute the log-likelihoods
n a set of N+1 points in the N-dimensional parameter
pace at each iteration and use some rules for modifying
he coordinates of the points in order to go to the next it-
ration. Multigrid techniques are similar to simplex
ethods in that the log-likelihood is computed on a set of

oints at each iteration, but the points are regularly
paced in parameter space; a coarse spacing is used ini-
ially and is then reduced as the iteration proceeds. Con-
ugate gradient searches, as suggested by Cannon21 for
lobal wavefront estimation, are very effective when gra-
ients can be calculated analytically. All of these methods
ork well when the function being searched is smooth
nd unimodal, as is usually the case with log-likelihoods
or scintillation cameras.

Furenlid31 and Hesterman53 have recently imple-
ented a multigrid method for scintillation cameras. In

nitial experiments, a 4�4 grid of points was used in a
wo-dimensional parameter space, and the grid spacing
as halved at each iteration. The algorithm converged in

ix iterations to exactly the same estimates as those
ound by an exhaustive search. The calculation requires
6 �s in C on a single Macintosh G5 computer, but Furen-
id has shown that it can be converted to a pipeline pro-
ess in a field-programmable gate array (FPGA). In that
ase all likelihood calculations are done in parallel, and J
terations of the algorithm require just J clock cycles,
here each clock cycle is a few nanoseconds with modern
PGAs. There should be no difficulty in principle in using
similar pipeline architecture with a simplex search.
Finally, we mention that for the special case of estima-

ion from four measurements, as with a 2�2 array of
hotodetectors, the entire search process can be per-
ormed offline and stored in a look-up table for all possible
ombinations of the four signals. If Km A/D levels are used
or each measurement, then there are 4Km locations in the
able, and the final ML estimate of up to four parameters
an be stored at each location. A useful practical trick is to
ake the square root of the measurements before coarse
iscretization in order to make the variance approxi-
ately constant, and with this measure it is found that

-bit quantization �Km=64� suffices, so the look-up table
s easily stored in memory. No real-time search is needed,
nd the estimate is available in the time required to do a
ingle memory access. This method has been used rou-
inely for two decades with four-PMT scintillation cam-
ras at the University of Arizona.27,28

. Methods for Maximum-Likelihood Estimation in
avefront Sensing

he methods discussed above for scintillation cameras are
mmediately applicable to estimation of tilts over one sub-
perture of a Shack–Hartmann sensor, even with one or
wo nuisance parameters. The multigrid method with an
PGA devoted to each subaperture will give the estimate

n less than a microsecond for any realistic number of de-
ectors per subaperture, and data from multiple subaper-
ures can readily be multiplexed through a single FPGA.
ven when the multigrid method is implemented on a
ingle processor, it appears that it will allow estimation of
ll subaperture tilts in less than a millisecond. Moreover,
f a Shack–Hartmann sensor with nanosecond response
hould ever be required, it can be achieved by using 2
2 arrays of fast detectors at each subaperture and

ook-up tables for the final ML estimates of subaperture
ilts.

The computational difficulties in ML estimation in-
rease with the number of parameters being estimated
nd the number of independent measurements, and it is
ot so obvious that the speed requirements for astronomi-
al wavefront sensing can be met if we choose to estimate
large number of modal coefficients ��n , n=1, . . .N� from

he entire set of detector measurements directly. If these
oefficients specify the possible configurations of a de-
ormable mirror, then N is the number of actuators, which
anges from 20 to 40 in laboratory systems to hundreds or
ven thousands in large telescopes.

The dimension of the data vector is also a concern. The
umber of independent measurements does not exceed
he number of pixels in the detector array in the wave-
ront sensor, but in many cases it can be much less. With

Shack–Hartmann or any other sensor that divides the
avefront into subapertures, the local parameters associ-
ted with one subaperture (e.g., local tilts and/or curva-
ures) can be estimated from the data associated with
hat subaperture. Moreover, many of the data values will
e near zero in practice and can be omitted from the data
ector. For example, a diffraction-limited spot in a Shack–
artmann sensor will illuminate a fraction ��	fl�2 /Dl

4 of
he detector pixels, where Dl is the diameter of the lenslet
nd fl is its focal length; other pixels can be set to zero by
hresholding. Similarly, if the readout noise is low enough
hat a single photon can be detected, the number of non-
ero measurements after thresholding does not exceed the
umber of detected photons.
The dimension of the data vector used for an estimation

roblem can be also reduced by computing functions of
he raw data called sufficient statistics. By definition, a
et of sufficient statistics contains the same information
bout the estimation problem as the raw data does, but if
he dimension of the set is much less than the number of
riginal measurements, a considerable computational
aving can be achieved. There is some current activity in
nding sufficient statistics for position estimation in scin-
illation cameras,52 and these methods are potentially
seful in wavefront sensing as well.
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The complexity of the search algorithm depends on the
imensions of both the data and the parameter space. To
llustrate the point, consider the Poisson model [Eq. (5.9)],
here the only nuisance parameter is a global guide-star
rightness I0; this model is valid if N is large and there is
o atmospheric scintillation. Under these same assump-
ions, the total light reaching the detector plane is inde-
endent of the wavefront parameters �, and if the detec-
ors are identical and there are no gaps between them, we
an write

�
m=1

M

fm��� = ftot = constant. �7.2�

his assumption for modal estimation is more defensible
han its counterpart for local tilt estimation, [Eq. (6.2)],
ince we do not need to worry about light that misses a
ubset of the detectors or overlap of light from different
ubapertures; Eq. (7.2) is simply a statement of conserva-
ion of energy. With this model, the ML estimate of I0 is
ust Î0=Ntot / ftot [cf. Eq. (6.5)], and the ML estimate of �

ust satisfy [cf. Eq. (6.3)]

�
m=1

M

gm ln
fm���� = maximum. �7.3�

The functions �fm���� are the counterparts of the
DRFs for scintillation cameras, but there are more of

hem and each is a function in a higher-dimensional
pace. Precomputing and storing them is difficult, and the
easibility of ML estimation of the modal parameters de-
ends on being able to compute the fm��� rapidly.
There are several factors that simplify the problem.

irst, numerical studies (to be published separately) show
hat the log-likelihood for the modal parameters is
mooth and slowly varying, especially at low light level.
hus it suffices to compute fm��� on a sparse grid in pa-
ameter space and use, say, spline interpolation to find it
t intermediate points.
Second, in almost all applications the parameters will

hange slowly from frame to frame of the wavefront-
ensor data, so an estimate found on one frame will be an
xcellent starting point for the next frame. Moreover, in a
losed-loop system with good correction, we need to
earch only in the vicinity of the origin of parameter
pace, where all �n=0.

Third, the problem is amenable to parallel computation
n several possible ways. In a simplex or multigrid algo-
ithm, for example, different processors can be assigned
o different points in parameter space. In an
-dimensional estimation problem, a simplex requires

omputing the log-likelihoods at N+1 values of �, which
an be performed with N+1 processors. If a full
iffraction-theory model is used for the computation, the
se of dedicated fast Fourier transform (FFT) chips in
ach processor might be advantageous.

A less obvious way to parallelize the problem is to di-
ide the data space into subsets, perhaps corresponding
o subapertures even if the goal is not to estimate local
ilts. The advantage of this division is that the wavefront
n the local region is described by a small set of param-
ters such as the local tilts and curvatures, and these lo-
al parameters are easily computed as linear combina-
ions of the components of interest ��n�. With this
implification we are back to efficient calculations or even
ook-up tables to find the values ln
fm���� for each m in
he data subset, and the overall log-likelihood is found by
ollecting the results from individual processors and sum-
ing as in Eq. (7.3). Again, simplex or multigrid methods

an be used for efficient search without computing deriva-
ives.

. SUMMARY AND CONCLUSIONS
aximum-likelihood estimation offers several theoretical

dvantages in general. An ML estimate is efficient if an
fficient estimator exists, and it is asymptotically unbi-
sed, efficient, and consistent as more data are acquired
n any case. Compared with other computational methods
n wavefront sensing, ML can reduce the bias and vari-
nce of the estimates of tilts, modal coefficients, or any
ther wavefront parameters, basically by taking advan-
age of the knowledge of the data statistics and using a
ore accurate model of the deterministic properties of the

ensor. Unlike MAP or other Bayesian estimates, ML es-
imates do not incorporate any prior knowledge of the pa-
ameters to be estimated, but accurate likelihood models
re essential to good MAP estimation also.
It is relatively straightforward to write down condi-

ional PDFs for the data produced by the detectors in a
avefront sensor, but these PDFs are not the likelihoods
eeded for ML (or MAP) estimation of wavefront param-
ters for two reasons. First, not all parameters associated
ith the wavefront influence the data significantly; the
nes that do not are called null functions. Second, there
ay be parameters that do influence the data but that we

re not interested in estimating; they are called nuisance
arameters. This paper has been concerned largely with
he effect of null functions and nuisance parameters in
avefront sensing.
The basic stochastic models considered here included

oisson noise from the photoelectron statistics, Gaussian
oise from the electronics, and a mixture of the two. Ex-
ess noise from detectors with internal gain was not con-
idered explicitly, but most of the theory is easily adapted
o that case. As in all ML problems, the parameters to be
stimated were not considered to be random, but nui-
ance parameters were, and the final likelihoods of inter-
st were obtained by marginalizing with respect to some
rior distribution on the nuisance parameters. General
xpressions for both log-likelihoods and FIMs were de-
ived on this basis. The theory was illustrated by discuss-
ng the estimation of local tilts and modal parameters
rom Shack–Hartmann data.

Computational issues associated with both the Shack–
artmann subaperture problem and the more general
roblem of estimating coefficients in a modal expansion of
he wavefront were discussed. For the subaperture case it
as seen that ML estimation in microseconds or even
anoseconds is feasible, and several approaches that
hould lead to millisecond computation of modal coeffi-
ients were outlined. Work on the latter problem is ac-
ively underway and will be reported at a later date.
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PPENDIX A: FISHER INFORMATION
ATRIX FOR COMBINED POISSON AND
AUSSIAN NOISE

n this appendix we derive the FIM with both Poisson and
aussian noise. The basic statistical model is the
oisson–Gaussian mixture developed by Snyder et al.41

he starting point for this appendix is Eq. (3.16), which
or a single detector element can be written without the

ubscripts as

�

w
s

T
t

o
l
t
t
t
p
(
c
a
c
j

a

pr�g��� =
1

�2��2�
k=0

�

exp�−
�g − Rk�2

2�2 � 
k̄����k

k!
exp
− k̄����.

�A1�

The FIM is the covariance matrix of the score vector,
efined as the gradient of the log-likelihood with respect
o the parameters being estimated. For the PDF of Eq.
A1), the nth component of the score is given by
�

��n
ln pr�g��� =

1

pr�g���

�

��n
pr�g��� =

1

pr�g���

1

�2��2�
k=0

�

exp�−
�g − Rk�2

2�2 � 1

k!

�

��n
�
k̄����kexp
− k̄�����

=
1

pr�g���

1

�2��2�
k=0

�

exp�−
�g − Rk�2

2�2 � 
k̄���k�

k!
exp
− k̄����� 1

k̄���
− 1� �k̄���

��n
. �A2�

change of variables k�=k−1 and some algebra yields

�

��n
ln pr�g��� = ��k�=0

�
exp
− �1/2�2��g − R − Rk��2�exp
− k̄����
k̄����k�/k�!

�k=0

�
exp
− �1/2�2��g − Rk�2�exp
− k̄����
k̄����k/k!

− 1��k̄���

��n
. �A3�
he difference between numerator and denominator is in
he shift of the Gaussian factor.

A more explicit notation may clarify the result; if we let
r�g ��� be denoted by prg���g� to indicate a specific func-
ion of g, then Eq. (A3) becomes

�

��n
ln prg���g� = �prg���g − R�

prg���g�
− 1� �k̄���

��n
�A4�

r

�

��n
prg���g� = 
prg���g − R� − prg���g��

�k̄���

��n
. �A5�

ince prg���g� is, for example, the PDF depicted in Fig.
(a), and prg���g−R� is the same function shifted to the
ight by an amount R (i.e., shifted over one peak in Fig.
(a), Eq. (A5) looks like the chain rule of differentiation
ith one derivative replaced by a finite difference, but in

act the result is exact.
Elements of the FIM (for a single detector) are given by

Fnn� =�� �

��n
ln prg���g��� �

��n�

ln prg���g��

g��

=��prg���g − R�

prg���g�
− 1�2


g��

�k̄���

��n

�k̄���

��n�

. �A6�

he expectation can be written in detail as
�prg���g − R�

prg���g�
− 1�2


g��

=�
−�

�

dg prg���g��prg���g − R�

prg���g�
− 1�2

=�
−�

�

dg

prg���g − R��2

prg���g�
− 1, �A7�

here the normalization of PDFs has been used to get the
econd line.

Thus the FIM for one detector element is given by

Fjk = ��
−�

�

dg

prg���g − R��2

prg���g�
− 1� �k̄���

��j

�k̄���

��k
. �A8�

his expression is exact and numerically tractable since
he integral is one dimensional.

The reader versed in statistical decision theory will rec-
gnize prg���g−R� /prg���g� as a likelihood ratio �. The
ikelihood ratio is the ideal test statistic for deciding be-
ween two hypotheses, in this case the null hypothesis H0
hat g is drawn from the unshifted density prg���g� and
he alternative hypothesis H1 that g is drawn from
rg���g−R�. With that interpretation, the integral in Eq.
A8) is the expectation of � under H1, a quantity that is
losely related to performance on discrimination tasks,6

nd Eq. (A8) establishes a relationship between that dis-
rimination task and the estimation task that is the sub-
ect of this paper.

The factor in square brackets in Eq. (A8) can be evalu-
ted in several limits. For pure Poisson noise ��2→0�, it is
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/ k̄���. Pure Gaussian noise corresponds to the limit
���→� and R→0 in such a way that Rk̄��� remains con-
tant, and in that limit the factor tends to R2 /�2. Numeri-
al studies show that a useful approximate form in all
ases (even when the PDF is highly non-Gaussian) is

Fjk �
R2

�2 + R2k̄���

�k̄���

��j

�k̄���

��k
. �A9�

f there are M detectors but the measurements are statis-
ically independent, as we assumed in Subsection 3.D,
hen the final expression for the FIM [Eq. (3.17)], is ob-
ained by reinstating the subscripts on gm and k̄m��� and
hen summing over m.

PPENDIX B: MARGINALIZING OVER
UISANCE PARAMETERS

n this appendix we fill in some details needed in Subsec-
ion 5.B regarding marginalizing intrinsic nuisance pa-
ameters. Extrinsic nuisance parameters are not consid-
red here, so the P�1 vector of all parameters that
nfluence the data can be written as �= �� ,��t, where � is

�1, � is K�1, and N+K=P.
It is assumed that the prior PDF describing � is a mul-

ivariate normal of the form

pr��� = pr��,�� = N� exp
− 1
2 �� − �̄�tK�

−1�� − �̄�� ,

�B1�

here the covariance matrix can be written in the parti-
ioned form

K� = �K�� K��

K��
t K��

� , �B2�

nd N�= 
�2��Ndet�K���−1/2 is the normalizing constant.
Some well-known results from multivariate

tatistics54,55 show that the marginal density needed in
q. (5.2) has the form

pr����� = N��� exp
− 1
2 �� − �̃�tK���

−1 �� − �̃�� , �B3�

here

�̃ = �̄ + K��K��
−1 �� − �̄�, �B4�

K��� = K�� − K��K��
−1 K��. �B5�

he matrix K���, which arises from taking the inverse of a
artitioned matrix, is known as the Schur complement of
��. The results in Eqs. (B3)–(B5) are specialized to a
avefront sensor used in a closed-loop AO system dis-

ussed in Subsection 5.B.
We also need to evaluate the integral in Eq. (5.6) when

he intrinsic nuisance parameters make a small perturba-
ion to the mean data, in which case we can expand the
ean data as
ḡm��,�ext,�int� � ḡm��,�ext,0� + �
k=1

K

Amk�k
int

�where Amk =
�ḡm��,�ext,�int�

��k
int �

�int=0

.

�B6�

or notational simplicity we let ḡ�� ,�ext ,�int�= ḡ and
�� ,�ext ,0�= ḡ0, so Eq. (B11) reads

ḡ = ḡ0 + A�int. �B7�

hen the integral in Eq. (5.6) can be written as

pr�g��,�ext� � N�� dK�int

�exp�−
1

2�2 �g − ḡ0 − A�int�2�
�exp
− 1

2 ��int�tC−1��int�� , �B8�

e can perform the integral by representing each prob-
bility density in terms of its characteristic function. The
DF of an M-dimensional multivariate normal vector x of
ean x̄ and covariance matrix K can be written as

pr�x� = 
�2��Mdet�K��−1/2exp
− 1
2 �x − x̄�tK−1�x − x̄��

=�
�

dM� exp
2�i�t�x − x̄��exp�− 2�2�tK��. �B9�

xpanding both densities in Eq. (B8) this way yields

pr�g��,�ext� =�
�

dK�int�
�

dM��
�

dK� exp�− 2�2�2���2�

�exp
− 2�i�t�ḡ0 + A�int��exp�2�i�tg�

�exp�− 2�2�tC��exp�2�i�t�int�. �B10�

he integral over �int yields the K-dimensional delta
unction ���−At��, which can then be used to perform the
ntegral over �. The final result is

pr�g��,�ext� =�
�

dM� exp�− 2�2�2���2�

�exp�− 2�2�2ACAt��exp
2�i�t�g − ḡ0��

= 
�2��Mdet�Ktot��−1/2

�exp�− 1
2 
g − ḡ0�tKtot

−1
g − ḡ0�t� , �B11�

here Ktot��2I+ACAt.

PPENDIX C: USE OF
AXIMUM-LIKELIHOOD INVARIANCE

N A SHACK–HARTMANN SENSOR
uppose we have used data from a Shack–Hartmann sen-
or to obtain ML estimates of tilts. Can we apply the ML
nvariance principle [Eq. (2.15)] to get ML estimates of
he mirror-mode coefficients �� �? The answer is yes if we
n
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an find a matrix B such that �=B�, in which case Eq.
2.15) shows that �̂ML=B�̂ML.

To seek such a matrix, we first take the scalar product
f Eqs. (4.2) and (4.4) with one of the tilt functions defined
n Eq. (4.3); the result is

��k,W� = �
n=1

N

�n��k,�n� + ��k,
W� =
1

���2�k + ��k,�W�,

�C1�

here we have used the orthogonality of the tilt func-
ions, and the division by ���2 is needed since the func-
ions were not normalized. (We assume that all lenslets
re identical, so that ���2���k ,�k� is the same for all k.)
As we noted in Subsection 4.A, Eq. (4.4) is an orthogo-

al decomposition if the region defined by the lenslet is
mall enough; in that case, ��k ,�W�=0, and we find

�k = �
n=1

N

Mkn�n + ��k,
W�, �C2�

here Mkn= ��k ,�n� / ���2.
To proceed, we need to argue that ��k ,
W�=0, but we

annot do so on the basis of orthogonality. The best we can
o is assume that N is large so that the sum in Eq. (4.2)
epresents the wave exactly and the residual 
W�r� is not
eeded. In that case we have

� = M�. �C3�

here M is a 2J�N matrix.
The N�N matrix MtM will be nonsingular if 2J�N,

nd the functions ��n�r�� are linearly independent, which
hey always will be in practice. Then we can write

� = 
MtM�−1Mt� � B�. �C4�

To summarize, we can write �=B� only for a high-order
O system (large N) in which all wavefronts of interest
re well represented by a linear superposition of mirror
nfluence functions, and then only if the regions defined
y the Shack–Hartmann sensor are small and 2J�N.

PPENDIX D: STATISTICS OF CENTROID
STIMATES IN A SHACK–HARTMANN
ENSOR
raditional data processing in a Shack–Hartmann sensor
ttempts to estimate the centroids of the irradiance dis-
ribution I�r� produced by each lenslet on the detector
lane. For simplicity we consider a single lenslet centered
n the origin of coordinates, and we delete the index j
sed to distinguish lenslets.
The centroid location is defined in vector form as

rc =

�
�

d2r rI�r�

�
�

d2r I�r�

, �D1�

here rc��xc ,yc� is a 2�1 column vector giving the x–y
oordinates of the centroid on the detector plane. The tra-
itional centroid estimator is
r̂c�g� =
1

gtot
�
m=1

M

rmgm, �D2�

here rm is a 2�1 vector specifying the center location of
he mth detector, gm is the signal from that detector, and
tot is the total signal, given by

gtot = �
m=1

M

gm. �D3�

A useful way of rewriting Eq. (D2) is

r̂c�g� =
1

gtot
Rg, �D4�

here g is the usual M�1 data vector and R is a 2�M
atrix with elements Rkm=xm for k=1 and Rkm=ym for
=2. This form shows that r̂c�g� is almost but not quite a

inear function of the data g; the linearity is spoiled by
he factor 1/gtot.

From the estimated centroid, an estimate of the 2D tilt
ector associated with a given lenslet is traditionally ob-
ained by

�̂�g� � r̂c/z0, �D5�

here z0 is the distance from the lenslet pupil to the de-
ector plane (usually but not necessarily the focal length).
t is hoped (and usually assumed) that �̂�g� is an unbiased
stimator of the true local tilts �, that the x and y compo-
ents of the estimate are uncorrelated Gaussian random
ariables, and that the estimate is optimal in some sense.
he likelihood theory developed in this paper gives us the

ools to examine these properties in detail.
A complete treatment of the statistical properties of r̂c

equires its conditional PDF pr�r̂c ���, where of course �
ust include all parameters that influence the data. It is

onvenient to approach this problem by use of the bivari-
te characteristic function, defined by

�r̂c����� � �exp
2�i�tr̂c�	r̂c��, �D6�

here � is a 2�1 vector and the angle brackets indicate
xpectation with respect to the PDF pr�r̂c ���. Since r̂c is a
nown function of g, we can equally well perform this ex-
ectation with respect to pr�g ���. Using Eq. (D4), we can
ewrite Eq. (D6) as

�r̂c����� =��exp�2�i
1

gtot
�tRg�


g��,gtot



gtot��

. �D7�

The inner expectation in Eq. (D7) is related to the con-
itional characteristic function of the data (conditioned on
tot as well as �), defined by

�g��,gtot
�	� � �exp
2�i	tg�	g��,gtot

, �D8�

here 	 is an M�1 vector. Thus,

�r̂c����� � ��ĝ��,gtot� 1

gtot
Rt��


gtot��t

. �D9�

his result shows that the characteristic function (and
ence all statistical properties) of the centroid estimates
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an be found from the M-dimensional conditional charac-
eristic function of the data by making the substitution
ndicated in Eq. (D9) and then performing a final one-
imensional average over gtot. If the PDF pr�r̂c ��� is de-
ired, it can be obtained by performing an inverse 2D Fou-
ier transform.

In two important special cases, the conditional charac-
eristic function of the data can be expressed analytically.
f g follows Poisson statistics without the condition on
tot, then the conditional probability law, for gtot detected
hotons, is multinomial.6

The corresponding conditional characteristic function
s56

�g��,gtot
�	� = ��

m=1

M

pm���exp�2�i�m��gtot

, �D10�

here pm��� is the probablility that a detected photon will
e detected in the mth detector element: pm���
ḡm��� / ḡtot.
If g follows a multivariate normal law without the con-

ition on gtot, then the conditional PDF is also normal,
nd the requisite conditional mean and covariance matrix
an be found from Eqs. (B4) and (B5), respectively. The fi-
al average over gtot spoils the normal character of the
entroid statistics, however, even with normally distrib-
ted data.
No analytic form for the final characteristic function of

he centroid estimates has been found for either the Pois-
on or the normal case, but the average is easily per-
ormed numerically since it is one-dimensional.
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