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ABSTRACT

For the 2-class detection problem (signal absent/present), the likelihood ratio is an ideal observer in that it
minimizes Bayes risk for arbitrary costs and it maximizes AUC, the area under the ROC curve. The AUC-
optimizing property makes it a valuable tool in imaging system optimization. If one considered a different task,
namely, joint detection and localization of the signal, then it would be similarly valuable to have a decision
strategy that optimized a relevant scalar figure of merit. We are interested in quantifying performance on
decision tasks involving location uncertainty using the LROC methodology. We derive decision strategies that
maximize the area under the LROC curve, ALROC . We show that these decision strategies minimize Bayes risk
under certain reasonable cost constraints. We model the detection-localization task as a decision problem in
three increasingly realistic ways. In the first two models, we treat location as a discrete parameter having finitely
many values resulting in an (L+1) class classification problem. In our first simple model, we do not include
search tolerance effects and in the second, more general, model, we do. In the third and most general model,
we treat location as a continuous parameter and also include search tolerance effects. In all cases, the essential
proof that the observer maximizes ALROC is obtained with a modified version of the Neyman-Pearson lemma
using Lagrange multiplier methods. A separate form of proof is used to show that in all three cases, the decision
strategy minimizes the Bayes risk under certain reasonable cost constraints.

Keywords: LROC, ideal observers, Bayes risk

1. INTRODUCTION

In medical imaging, scalar figures of merit summarizing task performance can be used to objectively optimize
and compare imaging systems or data processing methods. An important task is detection of a lesion or defect,
heretofore referred to as a “signal”. For such detection problems, it is useful to derive optimal decision rules.
For the familiar 2-class detection problem (signal absent or present), the likelihood ratio is an ideal observer in
several senses. In particular, it is ideal (optimal) in the sense that it minimizes Bayes risk for arbitrary costs
and it also maximizes AUC, the area under the ROC curve, or any partial area under the ROC curve.1 The
AUC-optimizing property of this ideal decision strategy makes it an extremely valuable tool in imaging system
optimization and other applications. If one considered a different task, namely, joint detection and localization
of the signal, then it may be similarly valuable to have a decision strategy that optimized a relevant scalar figure
of merit.

Here, we are interested in quantifying performance on decision tasks involving location uncertainty using the
LROC methodology.2 Recall that the LROC curve plots, as an operating threshold is varied, the probability of
correct localization for a single signal versus the probability of false alarm. (We shall define the LROC curve more
precisely below.) The LROC methodology has been used for task-based image quality evaluation in SPECT,3, 4

PET,5 mammography6 and chest radiography.2 Previous studies used human observers2–6 or model observers4, 7

that were not optimal in any sense. We derive decision strategies that maximize a scalar figure of merit, the
area under the LROC curve. We also analyze these optimal decision strategies from a Bayes risk perspective
and show that these decision strategies minimize Bayes risk under certain reasonable cost constraints.
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We model the detection-localization task as a decision problem in three increasingly realistic ways. In the
first two models, we treat location as a discrete parameter having finitely many values. In our first simple model,
we do not include search tolerance effects and this results in an L+1 class classification problem. In the second,
more general, model, we do include search tolerance effects. In the third and most general model, we treat
location as a continuous parameter and also include search tolerance effects. We present our results for the first,
second and third models in Sections 2, 3 and 4, respectively, and conclude with a discussion in Sec. 5. In this
paper, we focus on the formalism and not on any specific medical applications.

2. DISCRETE-LOCATION MODEL WITHOUT SEARCH TOLERANCE
Initially, we will focus on certain (L + 1)-class classification (a.k.a. multiple hypothesis testing) problems where
the classifier needs to decide if an observed N -dimensional data vector x contains a signal and if so, the classifier
needs to decide to which of L signal classes the signal belongs. The L classes correspond to L disjoint regions
where the signal could occur. We will refer to the signal-absent hypothesis as H0 and the L signal-present
hypotheses as Hi, i = 1, · · · , L. Let the prior probabilities (prevalences) of each class be p(Hi), i = 0, · · · , L and
let p(x|Hi), i = 0, · · · , L denote the (L+1) data pdf’s conditioned on the various hypotheses. Note that the data
pdf p(x|H0) corresponds to the presence of a background only, while p(x|Hi), i ∈ {1, · · · , L} corresponds to a
background plus a signal in region i. In our general treatment, there is no presumption of a fixed background,
and signal characteristics can also vary apart from simple location variability.

Any classifier for this problem can be specified with the tuple of disjoint regions (R0, R1, · · · , RL) in the data
vector space, where we decide Hi if the data vector x belongs to region Ri. For simplicity, we will assume that
the range of x is �N , where �N is the N -dimensional Cartesian product space of the real numbers. However,
our theory is applicable for the range being any subset of �N . Then R0 = �N − ∪L

i=1Ri .
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Figure 1. Hypotheses and Classifier Regions

For example, consider the 2-pixel object x = (x1, x2) in Fig. 1(a), where H1,H2 correspond to the signal
present in pixel 1, 2 respectively. In this case, Fig. 1(b) shows a plausible contour plot of the pdf’s and partitioning
into regions R0, R1 and R2. Note that L need not equal N . For example, the 3-pixel object in Fig. 1(c) has H2

corresponding to the signal in pixel 2 or 3. Note that the signal can extend across many pixels in the data vector
x. In fact, x could be more abstract. It could be the result of an indirect imaging system such as tomography,
where the signal is physically localized in an underlying space and reveals itself as a distributed signal in the
sinogram (here x).

We are particularly interested in classifiers that have a convenient alternative parametrization in the form
of a 3-tuple (t(x), i(x), τ). Such a classifier works by first computing a scalar test statistic t(x) from the data.
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It decides signal present if t(x) > τ , where τ is some threshold (which determines the operating point) and it
also computes a location i(x), i(x) ∈ {1, · · · , L}, where the signal may have occurred. The regions in the data
vector space corresponding to the 3-tuple (t(x), i(x), τ) are given by: R0 = {x : t(x) < τ} , Rj =

{
x : t(x) >

τ and i(x) = j
}
, j ∈ {1, · · · , L}.

Classification performance on detection-localization tasks is often measured by plotting the LROC curve.
The abscissa of the LROC curve is the false-positive rate given by

PFP =
∫

�N−R0

p(x|H0)dx =
L∑

i=1

∫

Ri

p(x|H0)dx. (1)

The ordinate of the LROC curve is the probability of correct localization, i.e. the probability that the signal is
correctly detected and localized, given by

PCL =
1

1 − p(H0)

L∑

i=1

∫

Ri

p(x|Hi)p(Hi)dx. (2)

(Note that the prior probability that the data contains a signal at location j, j ∈ {1, · · · , L} given that it
contains a signal is p(Hj)

1−p(H0)
). Under the 3-tuple classifier scheme, the false-positive rate and the probability

of correct localization are given by PFP (τ) = Pr
(
(t(x)|H0) > τ

)
and PCL(τ) = 1

1−p(H0)

∑L
j=1 Pr

(
(t(x)|Hj >

τ) and i(x) = j
)
p(Hj), respectively. The classical ROC curve plots the true-positive rate, given by

PTP =
1

1 − p(H0)

∫

�N−R0

L∑

i=1

p(x|Hi)p(Hi)dx. (3)

against the false-positive rate. Fig. 2 shows an example of the LROC and the ROC curves.
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Figure 2. The ROC and LROC curves

The area under the LROC curve, ALROC , is a commonly used figure of merit to summarize performance
on detection-localization tasks.2 We will now present an optimal decision strategy, referred to as the modified
GLRT (generalized likelihood ratio test). It will be shown in Sec. 2.1 that the modified GLRT maximizes the
area under the LROC curve (and also any partial area under the LROC curve). The intuitively pleasing optimal
decision strategy is:

t(x) = max
j∈{1,···,L}

p(x|Hj)p(Hj)
p(x|H0)
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i(x) = arg max
j∈{1,···,L}

p(x|Hj)p(Hj)
p(x|H0)

Decide Hi(x) if t(x) > τ, else decide H0 (4)

Our strategy differs from a conventional GLRT8 often used in the signal-processing literature, in that it uses the
knowledge of the prior probabilities p(Hj). In Sec. 2.2, we will present costs under which the modified GLRT
minimizes the Bayes risk. We may note that for L = 1, our detection-localization problem reduces to a standard
2-class detection problem and as expected, the decision strategy in (4) reduces to the 2-class ideal observer (aside
from an irrelevant scaling factor) that computes the likelihood ratio Λ(x) = p(x|H1)

p(x|H0)
and decides signal present if

Λ(x) > τ .

2.1. Modified GLRT Maximizes ALROC

We will show that the modified GLRT in (4) maximizes ALROC and any partial area under the LROC curve
parametrized by two thresholds We do this by proving the following lemma (which we called the modified
Neyman-Pearson lemma), analogous to the 2-class Neyman-Pearson lemma in Fukunaga,9 Kay,8 Duda and
Hart10 and Casella and Berger11:

Lemma For all classifiers satisfying PFP = α, the modified GLRT in (4) maximizes PCL.
Proof 1

We will first give a proof for the modified Neyman-Pearson lemma analogous to the proof of the 2-class
Neyman-Pearson lemma in Fukunaga9 and Kay.8

We need to maximize

E = PCL + λ(PFP − α) (5)

where λ denotes a Lagrange multiplier. Using (2) and (1), we get:

E =
1

1 − p(H0)

L∑

i=1

∫

Ri

(
p(x|Hi)p(Hi) + (1 − p(H0))λp(x|H0)

)
dx − λα (6)

We need to find regions Ri so that E is maximized. Clearly, the maximum is achieved when the term cor-
responding to each data point is positive and adds maximally to the total integral, i.e. the region Ri, i ∈
{1, · · · , L} corresponds to i = arg maxj∈{1,···,L}

(
p(x|Hj)p(Hj) + λ(1 − p(H0))p(x|H0)

)
and

(
p(x|Hi)p(Hi) +

λ(1 − p(H0))p(x|H0)
)

> 0. This decision strategy is identical to the modified GLRT with τ = −(1 − p(H0))λ.
Proof 2

A more elementary proof of the 2-class Neyman-Pearson lemma is given in Casella and Berger11 that does
not use the mechanism of Lagrange multipliers. We provide a second proof of our modified lemma which also
does not use Lagrange multipliers.

Let (R∗
0, R

∗
1, · · · , R∗

L) denote the regions for our modified GLRT, i.e. the modified GLRT assigns x to R∗
i , i =

1, · · · , L iff. p(x|Hi)p(Hi) > τ∗p(x|H0) and p(x|Hi)p(Hi) > p(x|Hj)p(Hj), ∀j ∈ {1, · · · , L}. Note that R∗
0 =

�N − ∪L
i=1Ri. Let (P ∗

CL, P ∗
FP ) denote the corresponding correct localization and false positive probabilities for

the modified GLRT. Let (R′
0, R

′
1, · · · , R′

L) specify any other classifier with the same false positive probability
P ′

FP = P ∗
FP . Let P ′

CL denote the correct localization probability for this classifier. We will show that P ′
CL ≤ P ∗

CL.
Note that for any region R, R = ∪L

j=0(R ∩ R∗
j ) = ∪L

j=0(R ∩ R′
j). Since P ′

FP = P ∗
FP ,

∫

�N−R∗
0

p(x|H0)dx =
∫

�N−R′
0

p(x|H0)dx

⇒
∫

(�N−R∗
0)∩(�N−R′

0)

p(x|H0)dx +
∫

(�N−R∗
0)∩R′

0

p(x|H0)dx

=
∫

(�N−R∗
0)∩(�N−R′

0)

p(x|H0)dx +
∫

(�N−R′
0)∩R∗

0

p(x|H0)dx

⇒
∫

(�N−R∗
0)∩R′

0

p(x|H0)dx =
∫

(�N−R′
0)∩R∗

0

p(x|H0)dx (7)
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Therefore,

(1 − p(H0))P ∗
CL =

L∑

i=1

∫

R∗
i

p(x|Hi)p(Hi)dx

=
L∑

i=1

[ L∑

j=1

∫

R∗
i
∩R′

j

p(x|Hi)p(Hi)dx +
∫

R∗
i
∩R′

0

p(x|Hi)p(Hi)dx
]

≥
L∑

i=1

L∑

j=1

∫

R∗
i
∩R′

j

p(x|Hj)p(Hj)dx +
L∑

i=1

∫

R∗
i
∩R′

0

p(x|Hi)p(Hi)dx

=
L∑

j=1

[ ∫

R′
j

p(x|Hj)p(Hj)dx −
∫

R′
j
∩R∗

0

p(x|Hj)p(Hj)dx
]
+

L∑

i=1

∫

R∗
i
∩R′

0

p(x|Hi)p(Hi)dx

≥ (1 − p(H0))P ′
CL −

L∑

j=1

∫

R′
j
∩R∗

0

τ∗p(x|H0)dx +
L∑

i=1

∫

R∗
i
∩R′

0

τ∗p(x|H0)dx

= (1 − p(H0))P ′
CL − τ∗

∫

(�N−R′
0)∩R∗

0

p(x|H0)dx + τ∗
∫

(�N−R∗
0)∩R′

0

p(x|H0)dx

= (1 − p(H0))P ′
CL (8)

This proves the lemma.

2.2. Costs for which the modified GLRT minimizes the Bayes Risk

The Bayes risk is given by:

R =
L∑

i=0

L∑

j=0

cijp(Hi|Hj)p(Hj) (9)

Here, cij is cost of deciding Hi when the true hypothesis is Hj and p(Hi|Hj) is the probability of deciding Hi

when the true hypothesis is Hj . The classifier minimizing the Bayes risk is given by8, 9:

Decide Hk ⇔ k = arg min
i∈{0,···,L}

Ci(x) where Ci(x) =
1

p(x)

L∑

j=0

cijp(x|Hj)p(Hj) (10)

For our classification task, the following cost constraints seem reasonable:

cij = CFN , if i = 0, j ∈ {1, · · · , L} (11-a)
cij = CFP , if j = 0, i ∈ {1, · · · , L} (11-b)
cij = CFL, if i, j ∈ {1, · · · , L}, i 
= j (11-c)
cii = CCL, if i ∈ {1, · · · , L} (11-d)
c00 = CTN (11-e)

CFL > CCL and CFP > CTN (11-f)

where the subscripts FN = false negative, FP = false positive, TN = true negative, CL = correct detection
and correct localization, and FL = correct detection but false localization. Equation (11-a) above expresses
the constraint that the false negative costs are the same regardless of the true location of the signal. Equation
(11-b) indicates that the false positive costs are the same regardless of the reported location. Equation (11-c)
indicates that the false localization costs are the same regardless of the distance of the reported location from the
true location. Equation (11-d) says that the correct localization costs are independent of the reported (or true)
location. Equation (11-e) above merely develops notation and is not a constraint. Equation (11-f) expresses
some natural constraints on the costs.
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With these costs, we get

C0(x) =
1

p(x)
[
CTNp(x|H0)p(H0) + CFN

L∑

j=1

p(x|Hj)p(Hj)
]

Ci(x) =
1

p(x)
[
CFP p(x|H0)p(H0) + CFL

L∑

j=1

p(x|Hj)p(Hj) − (CFL − CCL)p(x|Hi)p(Hi)
]

i ∈ {1, · · · , L}

Ci(x) < Ci′(x) i, i′ ∈ {1, · · · , L} and i 
= i′ ⇔ p(x|Hi)p(Hi) > p(x|Hi′)p(Hi′) (12)
C0(x) < Ci(x) i ∈ {1, · · · , L}

⇔ (CFP − CTN )p(x|H0)p(H0) > (CFL − CCL)p(x|Hi)p(Hi) + (CFN − CFL)
L∑

j=1

p(x|Hj)p(Hj)

C0(x) < Ci(x) ∀i ∈ {1, · · · , L}

⇔ (CFP − CTN )p(H0)
(CFL − CCL)

> max
i∈{1,···,L}

p(x|Hi)p(Hi)
p(x|H0)

+
(CFN − CFL)
(CFL − CCL)

L∑

j=1

p(x|Hj)p(Hj)
p(x|H0)

With the additional assumption that CFN = CFL, we get

C0(x) < Ci(x) ∀i ∈ {1, · · · , L} ⇔ (CFP − CTN )p(H0)
(CFL − CCL)

> max
i∈{1,···,L}

p(x|Hi)p(Hi)
p(x|H0)

(13)

Thus, from (12) and (13), we may observe that the optimal Bayes classifier reduces to the modified GLRT with
τ = (CF P −CT N )p(H0)

(CF L−CCL) .

Thus, we have established that for our first simple model of a detection and localization task, the decision
strategy in (4) maximizes the area under the LROC curve and that it minimizes the Bayes risk with the cost
constraints in (11-a)-(11-f) and the additional constraint CFN = CFL. In Sec. 5, we further discuss the
applicability of this additional constraint.

3. INCLUDING SEARCH TOLERANCE

A more realistic model of an LROC study (though not completely realistic because location will still not be
considered a continuous quantity) is the following: The observer (classifier) searches for a signal in x and she
reports a candidate location. We decide that she has correctly localized the signal if the reported location is
reasonably close to the true location, i.e. within a tolerance region surrounding the true location.

We will establish some notation as we introduce our model that incorporates search tolerance. Here, we will
denote the power set (i.e. the set of all subsets) of a set S by P(S). We model the observer as deciding upon one
of L̃+1 actions. For a direct imaging system where the signal appears localized in x, L̃ is naturally chosen equal
to the number of pixels N . We will denote the actions taken by the observer as Ai, i ∈ {0, · · · , L̃}. In the LROC
task, action A0 corresponds to deciding that no signal is present and each action Ai, i ∈ {1, · · · , L̃} corresponds
to reporting signal present at one of L̃ locations. The data will still have L + 1 classes (hypotheses). Class H0

corresponds to the signal-absent class and the signal-present class Hi, i ∈ {1, · · · , L} is defined as before. We do
not require the number of actions to equal the number of classes, though this might typically be the case.

There exists a point-to-set mapping, which we call the correct localization mapping, given by Y : {1, · · · , L} →
P({1, · · · , L̃}). This mapping indicates that class Hj , j ∈ {1, · · · , L} is correctly identified when any of the actions
in the set Y(j) are taken. For our LROC task, the set Y(j) corresponds to all pixel locations that fall within a
tolerance region around the true location j. In the absence of any search tolerance, with L = L̃, this point-to-set
mapping will reduce to a point-to-point identity mapping. There also exists an inverse point-to-set mapping
Ỹ : {1, · · · , L̃} → P({1, · · · , L}) which indicates that action Ai, i ∈ {1, · · · , L̃} is equivalent to considering all
the classes in the set Ỹ(i) as possibly correct candidates. We may equivalently represent these two point-to-set
mappings with a bipartite graph as shown in Fig. 3. Figure 3 corresponds to an N = 4 pixel object and
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L = L̃ = 4. The mappings are illustrated by the bipartite graph (middle) and the definitions for Y, Ỹ on either
side of the graph. For example, if H3 were correct, the classifier could choose actions A2, A3, A4 to obtain a
correct classification. In this case, there is a search tolerance of ±1 pixel.
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Figure 3. Bipartite graph illustrates search tolerance effects. Here L = L̃ = N = 4.

Any classifier for this task can be specified with the tuple of disjoint regions (R0, R1, · · · , RL̃) where we take
action Ai if the data vector x belongs to region Ri. Note that there are now L̃ + 1 disjoint regions, not L + 1
disjoint regions as in Section 2. The false positive rate and the probability of correct localization are now given
by:

P̃FP =
L̃∑

i=1

∫

Ri

p(x|H0)dx. (14)

P̃CL =
1

1 − p(H0)

L∑

j=1

p(Hj)
∑

i∈Y(j)

∫

Ri

p(x|Hj)dx =
1

1 − p(H0)

L̃∑

i=1

∫

Ri

∑

j∈Ỹ(i)

p(x|Hj)p(Hj)dx. (15)

Once again, we wish to find an optimal classifier that maximizes ALROC . It turns out that this optimal
classifier is given by:

t(x) = max
i∈{1,···,L̃}

∑

j∈Ỹ(i)

p(x|Hj)p(Hj)
p(x|H0)

i(x) = arg max
i∈{1,···,L̃}

∑

j∈Ỹ(i)

p(x|Hj)p(Hj)
p(x|H0)

Take action Ai(x) if t(x) > τ, otherwise take action A0 (16)

We shall refer to this classifier as the max-sum classifier. Note that if the point-to-set mappings constitute a
complete bipartite graph, i.e. we do not care about the location reported, then the max-sum classifier reduces

to the two-class ideal observer that computes a test statistic q(x) =
∑L

i=1
p(x|Hi)p(Hi)

p(x|H0)
and decides signal-present

if q(x) > τ . In the case that the point-to-set mappings constitute an identity mapping, i.e. L = L̃ and Ỹ(i) = i,
the max-sum classifier reduces to the modified GLRT in (4). The optimality of the max-sum classifier can be
proven with the following lemma:

Lemma For all classifiers satisfying P̃FP = α, the classifier in (16) maximizes P̃CL.

We will provide a proof of this lemma that is very similar to the first proof in Sec. 2.1. We have also derived
a different proof similar to the second proof in Sec. 2.1, but do not provide it here for lack of space. Using (15)
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and (14), we now need to maximize:

E =
1

1 − p(H0)

L̃∑

i=1

∫

Ri

( ∑

j∈Ỹ(i)

p(x|Hj)p(Hj) + (1 − p(H0))λp(x|H0)
)
dx − λα (17)

The maximum is achieved when the region Ri, i ∈ {1, · · · , L̃} corresponds to
i = arg maxk∈{1,···,L̃}

∑
j∈Ỹ(k) p(x|Hj)p(Hj) + λ(1 − p(H0))p(x|H0) and∑

j∈Ỹ(i) p(x|Hi)p(Hi) + λ(1 − p(H0))p(x|H0) > 0.
This corresponds to the max-sum classifier with τ = −λ(1 − p(H0)).

Now, we will show that for a choice of costs very similar to those in Sec. 2.2, the optimal classifier in (16)
minimizes the Bayes risk. The Bayes risk is now given by:

R =
L̃∑

i=0

L∑

j=0

cijp(Ai|Hj)p(Hj) (18)

The classifier minimizing the Bayes risk10 is given by:

Take action Ak ⇔ k = arg min
i∈{0,1,···,L̃}

Ci(x) where Ci(x) =
1

p(x)

L∑

j=0

cijp(x|Hj)p(Hj) (19)

Suppose we choose the following reasonable cost constraints similar to those in Sec. 2.2:

cij = CFN , if i = 0, j ∈ {1, · · · , L}
cij = CFP , if j = 0, i ∈ {1, · · · , L̃}
cij = CFL, if j ∈ {1, · · · , L}, i ∈ {1, · · · , L̃}, i /∈ Y(j)

cij = CCL, if j ∈ {1, · · · , L}, i ∈ {1, · · · , L̃}, i ∈ Y(j)
c00 = CTN

CFL > CCL and CFP > CTN

with CFN = CFL (20)

With these costs, we get

C0(x) = CTN
1

p(x)
p(x|H0)p(H0) + CFL

1
p(x)

L∑

j=1

p(x|Hj)p(Hj)

Ci(x) =
1

p(x)
[
CFP p(x|H0)p(H0) + CFL

L∑

j=1

p(x|Hj)p(Hj) −

(CFL − CCL)
∑

j∈Ỹ(i)

p(x|Hj)p(Hj)
]

i ∈ {1, · · · , L̃}

Ci(x) < Ci′(x) i, i′ ∈ {1, · · · , L̃} i 
= i′ ⇔
∑

j∈Ỹ(i)

p(x|Hj)p(Hj) >
∑

j∈Ỹ(i′)

p(x|Hj)p(Hj) (21)

C0(x) < Ci(x) ∀i ∈ {1, · · · , L̃} ⇔ (CFP − CTN )p(H0)
CFL − CCL

> CFL max
i∈{1,···,L̃}

∑

j∈Ỹ(i)

p(x|Hj)p(Hj)
p(x|H0)

(22)

We may observe that as in Sec. 2.2, the classifier in (19) reduces to the classifier in (16) with τ = (CF P −CT N )p(H0)
CF L−CCL

.

Thus, we have established that for the discrete model including search tolerance, the decision strategy in (16)
maximizes the area under the LROC curve and that it minimizes the Bayes risk with the cost constraints in
(20).
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4. LOCATION AS A CONTINUOUS PARAMETER

So far, we have modeled location as a discrete parameter with finitely many values, but it is more naturally
treated as a continuous parameter. Now, we shall model signal location r as continuous, though x remains
an N -dimensional vector. Let pR(r) denote the pdf of the true location of the signal under the signal-present
hypothesis. Given a data vector x, our decision strategy will decide whether it belongs to R0 (signal absent) or
R1 (signal present), and also report a location r(x) where the signal may be present. If the true location of the
signal is r′, we deem correct localization to have occurred if |r(x) − r′| < T , where T is a tolerance radius. (We
need not choose a ball-type tolerance region to obtain our results below, but we make this assumption without
loss of generality simply because it seems quite reasonable.) We get:

P̆FP =
∫

R1

p(x|H0)dx (23)

P̆CL =
∫

pR(r′)dr′
∫

x ∈ R1 :|r(x)−r′|<T

p(x|r′,H1)dx =
∫

R1

∫
pR(r′)p(x|r′,H1)circ(

|r(x) − r′|
T

)dr′dx (24)

It turns out that the optimal decision strategy maximizing ALROC is given by:

t(x) = max
r′′

∫
p(x|r′,H1)
p(x|H0)

pR(r′)circ(
|r′′ − r′|

T
)dr′

r(x) = arg max
r′′

∫
p(x|r′,H1)
p(x|H0)

pR(r′)circ(
|r′′ − r′|

T
)dr′

Decide H1 if t(x) > τ else decide H0 (25)

We shall again refer to this strategy as the max-sum decision strategy since it is almost the same as the max-sum
strategy in (16) with the summation over the discrete locations now replaced by a integral over the continuous
location parameter r′. Note that as T → 0, the max-sum decision strategy reduces to a modified GLRT in
continuous space and as T → ∞, the max-sum decision strategy reduces to a 2-class ideal observer. The
optimality of this decision strategy can be proven with the following lemma:

Lemma For all decision strategies satisfying P̆FP = α, the decision strategy in (25) maximizes P̆CL.

Proof We will provide a proof that is similar to the first proof in Sec. 2.1 and the proof in Sec. 3. We
have also derived a different proof similar to the second proof in Sec. 2.1, but do not provide it here for lack of
space. Using (23) and (24), we now need to find r(x) and R1 in order to maximize:

E =
∫

R1

( ∫
pR(r′)dr′p(x|r′,H1)circ(

|r(x) − r′|
T

) + λp(x|H0)
)
dx − λα (26)

The maximum is achieved when r(x) = arg maxr′′
( ∫

pR(r′)dr′p(x|r′,H1)circ(
|r′′−r′|

T )+λp(x|H0)
)

and the region
R1 corresponds to

( ∫
pR(r′)dr′p(x|r′,H1)circ(

|r(x)−r′|
T ) + λp(x|H0)

)
> 0. This corresponds to the max-sum

classifier with τ = −λ.

The Bayes risk in the continuous case is given by:

R = c00p(H0|H0)p(H0) +
∫

dr c10(r)p(H1, r|H0)p(H0) +
∫

dr′ c01(r′)p(H0|H1, r′)p(H1, r′)

+
∫

dr′
∫

dr c11(r, r′)p(H1, r|H1, r′)p(H1, r′) (27)

where
c00 = cost of reporting that the signal is absent when the signal is absent,
c10(r) = cost of reporting that the signal is present at location r when the signal is absent,
c01(r′) = cost of reporting that the signal is absent when the signal is present at location r′ and
c11(r, r′) = cost of reporting that the signal is present at location r when the signal is located at r′.
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Lemma A set of costs for which the max-sum decision strategy minimizes the Bayes risk in (27) are given
by:

c01(r′) = CFN

c10(r) = CFP

c11(r, r′) = CFL

(
1 − circ(

|r − r′|
T

)
)

+ CCLcirc(
|r − r′|

T
)

c00 = CTN

CFL > CCL and CFP > CTN

with CFN = CFL (28)

(Note that the expression for c11(r, r′) is slightly subtle. It says that if the reported location is within the search
tolerance, then c11(r, r′) = CCL as in (20). Otherwise, c11(r, r′) = CFL.)

Proof With the costs in (28), the Bayes risk becomes:

R =
∫

R0

dxCTNp(x|H0)p(H0) +
∫

R1

dxCFP p(x|H0)p(H0) +
∫

R0

dx
∫

dr′CFLpR(r′)p(H1)p(x|r′,H1) +
∫

R1

dx
∫

dr′
[
CFL

(
1 − circ(

|r − r′|
T

)
)

+ CCLcirc(
|r − r′|

T
)
]
p(x|r′,H1)pR(r′)p(H1)

=
∫

dxCTNp(x|H0)p(H0) + CFL

∫
dr′pR(r′)

∫
dxp(x|r′,H1)p(H1)

+
∫

R1

dx
(
(CFP − CTN )p(x|H0)p(H0) −

∫
dr′(CFL − CCL)circ(

|r − r′|
T

)p(x|r′,H1)pR(r′)p(H1)
)

= CTNp(H0) + CFLp(H1) +

(CFL − CCL)p(H1)
∫

R1

dx
( (CFP − CTN )p(H0)

(CFL − CCL)p(H1)
p(x|H0) −

∫
dr′circ(

|r(x) − r′|
T

)p(x|r′,H1)pR(r′)
)

(29)

Noting the similarity between the integral in (26) and the integral in the last equality in (29), we can conclude
that the Bayes risk is minimized by the max-sum strategy in (25) with τ = (CF P −CT N )p(H0)

(CF L−CCL)p(H1)
.

Our model in this section is a special case of the hybrid detection-estimation model treated in Sec. 13.3.9
of Barrett and Myers.1 However, in Barrett and Myers,1 the following optimal decision strategy is adopted:
First apply a 2-class ideal observer to decide if the signal is present, and if present, estimate its location using a
MAP estimator. It turns out that this strategy minimizes the Bayes risk for a particular choice of costs. In the
notation comparable to (28), the costs take the form:

c01(r′) = CFN

c10(r) = CFP

c11(r, r′) = CFL

(
1 − rect(

|r − r′|
ε

)
)

ε → 0

c00 = CTN (30)

This form of observer does not maximize ALROC and, correspondingly, does not include a notion of search
tolerance T . It may seem that our cost constraints (28) may be made a special case of (30) by taking the limit
as T → 0 and CCL = 0. However, the derivation in Barrett and Myers1 has an implicit assumption CFN 
= CFL.
Our derivation requires the opposite constraint, CFN = CFL, and hence even in the case T → 0, the two optimal
strategies differ.

Thus, we have established that for the case of continuous signal location, the decision strategy in (25)
maximizes the area under the LROC curve and that it minimizes the Bayes risk with the cost constraints in
(28).
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5. DISCUSSION

For the joint detection and localization task, we have proposed decision strategies optimal in the sense that they
maximize ALROC . While ALROC maximization is useful in itself, the same decision strategy can also be shown
to minimize Bayes risk under certain cost constraints previously described. All of these cost constraints are
fairly non-restrictive with the exception of the one constraint that the cost for a false negative equals that for a
false localization (CFN = CFL). Such an assumption seems appropriate in certain medical tasks, for example,
in diagnostic mammography scenarios where a patient is subjected to biopsy only at the location identified as
suspicious from the mammogram. This assumes that the primary cost incurred is in not detecting the lesion and
the cost of conducting the biopsy is ignored∗. Even if this cost constraint does not hold for an application, our
decision strategies are still useful in maximizing ALROC .

It is interesting to consider the task of detection only, but with signal location uncertainty. In this case,
one would seek a decision strategy to maximize AUC, which is the scalar task performance metric for this case.
The implementation of such a 2-class decision strategy is discussed in Barrett et al.12 and Park et al. 2003,13

with location a real-valued parameter. In terms of our own notation, for the problem setup in Sec. 2, the
optimal decision strategy maximizing AUC then requires the computation of a likelihood ratio test statistic

q(x) =
∑L

i=1
p(x|Hi)p(Hi)

p(x|H0)
and we decide signal-present if q(x) > τ .

We also note that our (L + 1) class classification problem in Sec. 2 has a superficial similarity to the 3-class
classification problem discussed in Edwards, Metz and Nishikawa.14 There, the classifier needs to first decide if
a tumor is present or not and then, if present, decide if it is malignant or benign. However, a quantity analogous
to PCL(τ) is inappropriate for summarizing performance on this task since it aggregrates all correct tumor-
present and correctly identified decisions (i.e. when we correctly identify a tumor as malignant or benign) and
we lose the ability to separately observe how often we correctly identified a tumor as benign and how often we
correctly identified a tumor as malignant. From a Bayes risk perspective, it seems unreasonable to assign equal
costs (analogous to CFL) for misclassifying benign and malignant tumors (assuming that it has been correctly
established that a tumor is present). The assumption analogous to CFN = CFL, namely that the costs for
missing tumors and misclassifying them are equal, also seems unreasonable for this problem. Hence a metric
analogous to ALROC seems to be inappropriate for this task.

We note that ideal observers for the N -class classification task have been investigated in Edwards, Metz and
Kupinski.15 These ideal observers minimize the Bayes risk and an N -class version of the Neyman-Pearson lemma
has been derived to show that they also minimize the hypervolume under a certain ROC hypersurface. However,
these decision strategies are not designed to optimize any joint detection-localization performance measure.

We note that in Swensson,2 under certain assumptions and for certain decision strategies, it was shown that
ALROC = 2 AUC − 1. We make no assumptions in computing ALROC . In fact, the assumptions are tantamount
to committing to a particular search tolerance, and in our models, search tolerance is user-specified. Therefore,
the relation ALROC = 2AUC − 1 does not generally hold for our decision strategies.

We note that it may be possible to implement the optimal decision strategies (modified GLRT and max-sum)
of Sec. 2.1, 3 and 4 for emission imaging systems with realistic background models by modifying the MCMC
procedure developed for 2-class ideal observers in Park et al. 200313 and Park et al. 2005.16 The performance
of these optimal decision strategies might be used for imaging hardware design. It may also be used for assessing
the efficiency16 of human observers (or model observers emulating humans), which may be useful in optimizing
the image processing that is performed on the data delivered by the imaging hardware. It remains to be seen
whether the optimal system or data processing parameters change significantly when the task changes from a
detection to a joint detection-localization task.
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