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The ideal linear discriminant or Hotelling observer is widely used for detection tasks and image-quality as-
sessment in medical imaging, but it has had little application in other imaging fields. We apply it to detection
of planets outside of our solar system with long-exposure images obtained from ground-based or space-based
telescopes. The statistical limitations in this problem include Poisson noise arising mainly from the host star,
electronic noise in the image detector, randomness or uncertainty in the point-spread function (PSF) of the
telescope, and possibly a random background. PSF randomness is reduced but not eliminated by the use of
adaptive optics. We concentrate here on the effects of Poisson and electronic noise, but we also show how to
extend the calculation to include a random PSF. For the case where the PSF is known exactly, we compare the
Hotelling observer to other observers commonly used for planet detection; comparison is based on receiver op-
erating characteristic (ROC) and localization ROC (LROC) curves. © 2007 Optical Society of America
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. INTRODUCTION
cience images are ultimately acquired to fulfill a particu-

ar purpose or task. How well the task can be performed
epends on the task itself (which could be a classification
r an estimation task), the device that produced the im-
ge(s), and, finally, the way in which the task is per-
ormed. A classification task can be carried out by human
bservers (for example, a radiologist might look at radio-
raphs and classify them according to the presence of a
umor), or we may consider computer algorithms or math-
matical models to make a decision. In the latter case, it
s possible to define an ideal observer that, given the im-
ges produced by the imaging system and the knowledge
f their statistics, achieves the “best” performance on the
ask of interest. Thus, assessment of task performance
ill provide a figure of merit for the imaging system itself
nd also a way to assess the quality of the images it pro-
uces for the particular task of interest. This task-based
nterpretation of image quality has recently become very
opular in the medical field for the evaluation of medical
evices. Tasks of interest include the detection of anoma-
ies (such as tumors) and the estimation of clinical param-
ters. Objective assessment of image quality plays a cru-
ial role in many nonmedical applications; examples can
e found in [1]. However, little has been done so far in as-
ronomy in which, many times, the task of interest is the
etection of a weak signal buried in noise or the estima-
ion of some numerical parameters. In this paper, we
how how the concepts of image quality and signal detec-
ion can be applied to the problem of detection of extraso-
ar planets (exoplanets).

To date, more that 240 exoplanets have been discovered
1084-7529/07/120B13-12/$15.00 © 2
2], most of them by indirect detection methods, such as
adial velocity or Doppler shift. However, indirect meth-
ds are not able to provide very much information about a
ewly discovered exoplanet. Direct exoplanet imaging is
ore attractive and far more could be learned from it. For

xample, a direct imaging method could be coupled with a
pectroscopy analysis for the estimation of methane con-
ent. The presence on the planet (or in its atmosphere) of
rganic substances (such as carbon dioxide), oxygen, and
iquid water or vapor will provide strong evidence of
ife—as we know it—or, at least, that such a planet is
menable to life. Many indirect methods for exoplanet de-
ection are not even able to find planets that may host
ife. Indeed, some indirect methods work well only when
he planet is considerably more massive than the Earth
for example, ten times the mass of Jupiter), making
hese methods unsuited for Earth-like exoplanet hunting.

Adaptive optics (AO) [3,4] has recently made it possible
o perform ground-based imaging of exoplanets [5,6] but,
p to now, only a few planets have been discovered by di-
ect imaging. Consequently, algorithms for direct-imaging
xoplanet detection have mushroomed. Many of these al-
orithms share a common characteristic: No analytical
ay to assess their performances (with respect to a mean-

ngful and objective metric) has been investigated; there-
ore, they do not lend themselves to an image-quality
tudy. In this paper, we propose a strategy for planet de-
ection for which the proof of optimality among all detec-
ion methods can be provided, leading to a way to assess
mage quality in AO [7]. We use the optimal-linear Hotell-
ng detector to solve two problems: simple detection at a
nown location and detection with location uncertainty.
007 Optical Society of America
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This paper is organized as follows. Section 2 provides
he motivation for this research and emphasizes the need
or a meaningful and well-defined definition of task per-
ormance. Section 3 describes the components of an AO
ystem and justifies the investigation of task performance
or long-exposure AO images. Section 4 reviews some key
oncepts from statistical decision theory, describes the
ind of problems with which we are concerned in this pa-
er, and presents the derivations of the optimal observers
or such problems. Section 5 presents the simulation and
omparison results we obtained for the detection tasks.
inally, Section 6 summarizes our work, presents our con-
lusions, and suggests some possible further studies.

. WHY DO WE NEED ANOTHER
LGORITHM?
e begin this section by giving a brief overview of the

tandard practice for the detection of point objects on a
andom background. After a preprocessing step that usu-
lly makes use of dark and flat-field images to obtain the
bserved image from the CCD data, the mean and vari-
nce of the sky (residual) background in the image are es-
imated. Such estimation may be carried out by first
moothing the image with a low-pass filter. The smoothed
mage is then divided into tiles, and the mean and vari-
nce for each tile of the smoothed image are computed.
he sky background is then subtracted from the observed

mage, and objects are detected by searching for pixels
hose intensity exceeds the sky background intensity by
given threshold �. Usually, the threshold is of the form

=k�, where �2 is the sky background variance and k is
n integer between 3 and 10. Many variants of this basic
dea have been used in the past.

Although the algorithms for exoplanet detection found
n the literature are very interesting, and the papers in
hich they are presented support the design decisions
ith strong arguments, most of their authors do not ad-
ress an important point: Among all of the possible detec-
ion algorithms, do the ones described in those papers
aximize the probability of a correct detection for any

alue of the probability of a false alarm? If yes, is there a
ay to analytically assess their performance (with respect

o this criterion) and prove their optimality? Questions
ike these are usually overlooked by the astronomy ex-
planet detection community: A formal analytical study—
uch as the one in [8]—is the exception, not the rule. In-
eed, a common way to show that a new detection
lgorithm outperforms a previous one is to create one or
ore test images containing the object(s) that we want to

etect, run both algorithms on such data, and claim that
he new algorithm performs better because it is able to
orrectly find more objects than the previous one. This ap-
roach takes no account of false alarms.
Bayesian approaches to object detection (and/or param-

ters estimation) have been proposed as well. For ex-
mple, Hobson and McLachlan [9] presented an approach
hat uses Bayesian inference for detecting and character-
zing the signal from discrete objects embedded in a dif-
use background. This is accomplished by considering
ach possible alternative Hi and computing the likelihood
r�g �H �, where g is the observed noisy data. The alterna-
i
ive Hi that, for a fixed g, corresponds to the highest value
or pr�g �Hi� is the output of the algorithm. This approach
s optimal in the sense that it returns the alternative that

ost likely has produced the observed data. A similar ap-
roach can be used for parameter estimation: If the pa-
ameter vector � is to be estimated, the likelihood pr�g ���
or different � is considered and the estimate �̂ of � maxi-

izes pr�g ��� as a function of �. Maximum likelihood ap-
roaches have been applied in astronomy for the detec-
ion of cluster galaxies and the estimation of numerical
arameters, such as redshifts [10,11]. Algorithms like
hese, however, are nonlinear and require the knowledge
f the probability density functions of the alternatives/
arameters and of the data vector g given the alternative/
arameter. Such densities might be unknown or difficult
o estimate. In [9], the authors use Markov-chain Monte
arlo (MCMC) sampling [12,13] to evaluate integrals and
ompute the values of the likelihood functions. The com-
utational requirements can, however, be very high. A
ayesian approach has been proposed in [14] as well. In

his paper, the authors analyze the measurement and
oise statistics and devise a second method, based on the
stimation of observation time. Their observation time es-
imates are optimal in the sense that, for a fixed value of
he probability of a false positive detection, the probabil-
ty of a true detection is maximized. Detection occurs
hen the signal estimate irradiance exceeds the back-
round standard deviation by some amount. The prob-
bility of such an event is equated to a desired confidence
alue and, from this condition, the optimal integration
ime is computed. This can be seen as a first attempt to
esign a system/algorithm that is optimized (in a given
ense) for the task of interest. The remarkable result of
14] is that, for high background intensity, the point-
pread function (PSF) matching filter is the optimal lin-
ar detector.

The problem of exoplanet detection via direct imaging
hares a great deal with the problem of tumor detection.
n both cases, the objects that we want to detect are very
mall and dim. In the case of radiology, the smaller the
umor that can be accurately detected and localized, the
ore likely it is that the patient can recover if well

reated. In astronomy, because exoplanets radiate much
ess energy than their parent stars, finding them in an
mage is not easy. In addition, the images we work with in
oth fields are usually noisy and contain other structures
different organs and tissues in the case of radiology,
earby stars or other objects in the case of astronomy),
ence it seems reasonable to take advantage of tech-
iques from medical radiology to study direct exoplanet
etection. Even though such methods and techniques for
ssessment of image quality and task performance in ra-
iology are general enough that they could be applied in
ther areas of imaging as well, they are just beginning to
e applied in astronomy [7].
The goal of this paper is to discuss the use of receiver

perating characteristic (ROC) and localization ROC
LROC) curves for the study of objective assessment of
mage quality and task performance in AO. In particular,
OC/LROC analysis is applied to the problem of ex-
planet detection. Adopting the area under the ROC/
ROC curve as a figure of merit, we devise optimal detec-
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ors and show what improvements over current detection
lgorithms can be attained with them.

. SIGNAL DETECTION WITH ADAPTIVE
PTICS

igure 1 shows the typical configuration of an AO tele-
cope. A distorted wavefront coming from a distant source
s reflected by the telescope’s primary and secondary mir-
ors to a deformable mirror, which attempts to reduce the
avefront distortion due to atmospheric turbulence by
pplying an appropriate phase correction. The light re-
ected by the deformable mirror is then split into two dif-
erent pathways: Some light reaches the imaging camera,
hile the remaining light is sent to a wavefront sensor.
he wavefront sensor estimates the instantaneous aber-
ations; these estimates are then sent to the wavefront re-
onstructor. The wavefront reconstructor uses one or
ore data sets coming from the wavefront sensor to com-

ute the appropriate control signals to be sent to the de-
ormable mirror in order to compensate for atmospheric
urbulence. The deformable mirror then applies the de-
ired wavefront correction (specified by the control sig-
als) to the incoming wavefront. This process repeats in
eal-time in a closed-loop fashion. Sequences of science
mages—usually in a time scale of the order of a few

inutes—are recorded. As the wavefront reconstructor
ccumulates more and more wavefront estimates for dis-
ortion compensation, the signal-to-noise ratio (SNR) in
he science images increases. However, this process is not
erfect: Wavefront estimation is affected by noise in the
avefront sensor, and the computation and application of

he phase correction takes some time (at least some milli-
econds). Atmospheric turbulence is rapidly changing
nd, because of the computational delay mentioned
bove, the applied correction will not be able to perfectly
ompensate and cancel the effect of the turbulence. A
ore subtle problem is that atmospheric phase aberra-

ions can be mathematically described as elements of an
nfinite-dimensional vector space, whereas the finiteness
f the number of control signals supplied to the deform-
ble mirror implies that the vector space of phase correc-
ions is finite-dimensional. This dimension mismatch

Fig. 1. Configuration of an adaptive optics telescope.
akes it impossible for the deformable mirror to perfectly
atch and correct every possible phase distortion. The

verall effect is that the PSF of the science images will
ave a residual halo.
In [7], fourth in a series [15–17] of papers on objective

ssessment of image quality, the authors derived a very
eneral formulation for the statistical properties of AO
mages, including the effects of measurement noise, ran-
omness in the astronomical scene, and the turbulent at-
osphere. It presented a fairly complete basic theory, but

t stopped short of being a practical tool that one could use
o assess and optimize the design of systems. A first at-
empt to provide a practical tool and, at the same time,
vercome the heavy computational requirements for a full
mplementation of the spatiotemporal detector presented
n [7] is to estimate the AO long-exposure PSF and apply
uch detection techniques to the long-exposure AO image.
onsiderable progress has been made in reconstructing

he long-exposure PSF from recorded control-loop data
18], and this justifies this research on optimal-linear ex-
planet detection when the long-exposure PSF is known.
n addition, the quasi-static component of the PSF can be
uppressed with a technique known as angular differen-
ial imaging [19]. In angular differential imaging, se-
uences of short-exposure images with an altitude/
zimuth telescope are taken while the field derotator is
urned off. Therefore, only the field of view (not the PSF)
ill rotate with time. The short-exposure images are then

otated to compensate for field of view rotation and added
ogether to obtain a long-exposure image: Dim peaks due
o companion objects get smeared, and the resulting long-
xposure image represents the quasi-static component of
he PSF. This component is then subtracted from the ob-
erved short-exposure images. It has been reported [19]
hat this technique allows quasi-static PSF distortion to
e reduced by a factor of about 5.

. HOTELLING AND IDEAL OBSERVERS IN
DAPTIVE OPTICS

he goal of a classification task is to assign the object that
roduced an image to one of two or more classes or hy-
otheses. A signal-detection task is a particular case of a
lassification task: In a signal-detection task, we have
nly two hypotheses that we call here signal absent and
ignal present. We will refer to these two hypotheses as
0 and H1, respectively. Given a data vector g, the clas-

ification task performed by an observer (i.e., a binary
lassifier [1]) is made by computing a numerical value t�g�
nd comparing it to a threshold �. If t�g���, then the ob-
erver will assign the object that generated g to the class
0; if t�g���, the observer will opt for H1 [1].
The threshold � controls the trade-offs between the

robability of correctly classifying the signal as present
nd the probability of classifying the signal as present
hen it is in fact absent. In signal-detection applications,

he first probability is usually called true-positive fraction
TPF), while the second is called false-positive fraction
FPF) [1]. The threshold � parameterizes a curve on the
PF–FPF plane; such a curve is called the ROC curve.
eaningful figures of merit for a detection task include
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he area under the ROC curve (AUC) and some detect-
bility indexes such as dA [1].
A detection task may also include a localization step: If

�g��� and the signal location is not known, the observer
ill return an additional parameter that represents the
stimated location of the signal. In this case, the TPF can
e defined as the probability of correct classification of the
mage as signal present and localization of the signal
ithin a given tolerance � from the true location. A TPF–
PF plot for a detection and localization problem is called
LROC curve [1,20]. LROC curves can be seen as gener-

lizations of estimation ROC (EROC) curves [21].
Statistical decision theory is concerned with how a

ecision-maker makes decisions and how such decisions
an be made optimal in a well-defined sense. To our
nowledge, statistical decision theory and methodology of
bjective assessment of image quality are just being ap-
lied to AO imagery. In a recent theoretical study, Barrett
t al. [7] rigorously extended the theory of image-quality
ssessment to temporal sequences of AO images with ran-
om PSFs and derived general formulations and compu-
ational methods for detection and estimation tasks. The
uthors analyzed the structure of the data covariance ma-
rix and showed how it can be rigorously decomposed into
hree terms representing the effect of the measurement
oise (Gaussian for electronic readout noise and Poisson

n the case of photon-counting statistics), the random
SF, and the random nature of the astronomical scene.
ecause AO systems deliver sequences of images, we will
enote with G= �g�1� , . . . ,g�J�� the complete data set from
he science camera, with F= �f�1� , . . . , f�J�� the sequence of
ontinuous-space objects, and, finally, with P
�p�1� , . . . ,p�J�� the sequence of all continuous-space ran-
om PSFs. Formally, the mean image, given the object se-
uence F and the sequence P of PSFs, can be written as

¯ = �G�G�P,F, where the notation �. . .�G�P,F is understood as
he average over noise for fixed P and F. Likewise, G�

�Ḡ�P�F is the mean image (averaged over noise and PSF

andomness) given the object sequence F and, finally, G
�

�G��F is the overall mean image averaged over noise,
SFs, and object variability. The data covariance matrix
G can then be written as [7]

KG = K�G
noise + K̄Ḡ

PSF + KG�
obj, �1�

here

K�G
noise = ���	G − Ḡ
	G − Ḡ
T�G�P,F�P�F�F, �2�

K̄Ḡ
PSF = ��	Ḡ − G�
	Ḡ − G�
T�P�F�F, �3�

KG�
obj = �	G� − G

�

	G� − G

�

T�F, �4�

n which K�G
noise is the contribution to KG due to the noise,

¯
Ḡ
PSF is the contribution due to the PSFs and, finally, KG�

obj

s the contribution due to the object being imaged. The de-
omposition in Eq. (1) is rigorous in the sense that it does
ot require any hypothesis of independence [7]. We re-
ark, however, that in typical AO applications where the
mages can be large, say, 512�512 pixels, and a sequence
of noisy images can contain hundreds of such images,

he size of KG can be of the order 107�107 or more. Han-
ling such huge matrices is clearly a challenge [7]. In this
aper, we avoid such difficulties by considering a prelimi-
ary simplified case. We will assume no object random-
ess (and so KG�

obj is the zero matrix), and we will assume
hat G reduces to just a single long-exposure image g
ather than a sequence �g�1� , . . . ,g�J�� of J short-exposure
mages (we will therefore denote the overall covariance

atrix KG as Kg). Finally, the assumptions from the sec-
nd part of this section will imply that K̄Ḡ

PSF is diagonal
or, at least, approximable with a diagonal matrix).

The problem we are concerned with in this paper is the
etection of a planet located at rp in focal plane coordi-
ates. Generally speaking, a digital image is a 2-D array
f M pixel values. Such data can be arranged in a column
ector of size M�1 by reading (for example, in a raster-
can fashion) all of the M values in the array and storing
hem in a column vector. This rearrangement makes it
ossible to work with images using no more than the
sual matrix operations. If we denote with ḡ0 the mean

noise-free) image vector when the planet is not present,
nd with ḡ1,rp

the mean (noise-free) image vector when
he planet is present and at location rp, we can express
he signal we want to detect as srp

= ḡ1,rp
− ḡ0. Further-

ore, recalling the meaning of the hypotheses H0 and H1,
e can model the noisy images under these hypotheses as

H0:g = ḡ0 + n, �5�

�6�

here n denotes the randomly distributed zero-mean
oise vector. The mean image vectors ḡ0 and ḡ1,rp

are the
mages without noise; such mean vectors can be obtained
y averaging a large number of realizations of g under
he hypotheses H0 and H1, respectively.

We will denote with hm�r� the mth pixel of the raster-
can ordering of the discretized (pixel-averaged) version
f the long-exposure PSF centered at the focal plane loca-
ion r (at which the long-exposure PSF assumes the value
); A the postdetection intensity of the star (in electron
nits, e− per pixel); a the postdetection intensity of the
lanet in e−; bm the background intensity in e− per pixel;
nd, finally, �m

2 the variance of the readout noise at the
th detector pixel. If we denote r� the location of the star

nd rp the location of the planet, then the mth pixel of the
ean images under the two hypotheses can be written as

ḡ0,m = Ahm�r�� + bm, �7�

ḡ1,m = Ahm�r�� + ahm�rp� + bm, �8�

here, again, the ḡi,m are measured in electron units. The
oise in the image g is assumed to be readout Gaussian
oise from the detector and Poisson photon noise from the
tar (plus, if present, the planet) and background.

Many authors have studied the statistical properties of
round-based AO-corrected images [22–26], and it was
oted that ground-based AO observations are limited by
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peckle noise, which is particularly problematic in ex-
planet detection [22]. Indeed, one component of speckle
oise, the lowest-order term leading to “speckle pinning”
23,24,27], can create bright speckles at specific locations
hat could look like exoplanets, leading to false positives.
hus, speckle noise, if not accounted for, reduces the per-

ormance of exoplanet detection at or near the diffraction
imit. Many techniques are available to reduce speckle
oise and increase the contrast. Simultaneous differential

maging (SDI) is a technique that can be used to suppress
r reduce speckle noise. In SDI, pairs of images are taken
imultaneously in two different and adjacent narrow
ands for which the companion planet is expected to be
ery dim or absent in one and only one of such narrow
ands. The speckle pattern will be the same in both im-
ges, but the contrast between a star and its companion
lanet (if present) will not be the same for the two bands.
n such a case, subtracting one (scaled) image from the
ther will reduce the speckle while almost preserving the
ntensity of the science object (for example, a planet)
resent in the original images [28–32].
In this paper, we are concerned with single long-

xposure images for which additional assumptions make
t possible to derive an analytical expression for Kg. In
ome applications, it could be reasonable to assume that
he PSF is nonrandom and known by the observer. This is
he case of space telescopes (such as the Hubble Space
elescope) or when the long-exposure PSF is recon-
tructed from control loop data [18]. For these cases, we
an assume that the actual PSF is known. Another impor-
ant case is the one in which speckle noise has been re-
oved or reduced by applying one of the techniques de-

cribed above.
Let ḡi,m denote the mth component of the vector ḡi. We

ote that the ḡi,m are measured in electrons �e−�, and we
ay thus assume ḡi,m�1 for all m� �1, . . . ,M�. Therefore,

y dint of the central limit theorem, the probability den-
ity functions under the two hypotheses [33] are

pr�g�H0� = � 1

�2	�M det�Kg��1/2

�exp�−
1

2
�g − ḡ0�TKg

−1�g − ḡ0�� , �9�

pr�g�H1,rp� = � 1

�2	�M det�Kg��1/2

�exp�−
1

2
�g − ḡ0 − srp

�TKg
−1�g − ḡ0 − srp

�� ,

�10�

here Kg is the covariance matrix of the data vector g.
he matrix Kg is assumed to be the same under both hy-
otheses. This assumption is acceptable provided that the
ignal srp

is very weak compared to ḡ0. In a general case
nd if a sequence of short-exposure images is used, the co-
ariance matrix Kg cannot be written analytically [7], and
imulation of the whole AO system may be a possible way
o estimate K .
g
For the case of astronomy, the sky background can be
stimated either from an image (or sequence of images) of
source-free field or by assuming that it is spatially con-

tant and by applying a median filter to the actual image
f the object. We will refer to this case as background
nown exactly (BKE). The signal can be assumed known
n brightness and location for the pure detection problem
signal known exactly, or SKE) and only known in bright-
ess for the detection and localization problem. If the
rightness of the signal is not known, we will still talk
bout SKE because, as evident throughout the discussion,
he optimality of the observers analyzed here does not de-
end on the value of the brightness of the signal. As an
lternative, we can consider a hybrid detection and esti-
ation task [1] (the brightness of the signal is the value

eing estimated) for which we will obtain the same opti-
al observers described here. Finally, as we noted, the
SF can be assumed known [18] for the long-exposure im-
ge, and we call this case PSF known exactly (PKE).
With these assumptions and the exact knowledge of the

SF, the matrix Kg is diagonal, and its �m ,m��-th element
an be written as

	Kg
m,m� = 	Ahm�r�� + bm + �m
2 

m,m�, �11�

here 
m,m� is the Kronecker delta function. This expres-
ion for Kg ignores the small contribution to the covari-
nce matrix due to the Poisson photon noise from the
lanet. We remark that the presence of the uncorrelated
oise makes the matrix Kg invertible (because Kg is diag-
nal and 	Kg
m,m�0 for all m). If we substitute Eqs. (9)
nd (10) into the general expression of the likelihood ratio
1] and take the logarithm (a strictly increasing function)
f ��g �rp�, we obtain the log-likelihood ratio [1]

��g�rp� = ln	��g�rp�
 �12�

=
1

2
�g − ḡ0�TKg

−1�g − ḡ0�

−
1

2
�g − ḡ0 − srp

�TKg
−1�g − ḡ0 − srp

�. �13�

ote that the matrix Kg is symmetric (because it is a co-
ariance matrix) and so is its inverse Kg

−1. Expanding the
atrix products in Eq. (13) and simplifying, we can re-
rite the log-likelihood ratio ��g �rp� as

��g�rp� = −
1

2
	− gTKg

−1srp
+ g0̄

TKg
−1srp

− srp

T Kg
−1g + srp

T Kg
−1ḡ0

+ srp

T Kg
−1srp

T 
 �14�

=−
1

2
	2srp

T Kg
−1ḡ0 − 2srp

T Kg
−1g + srp

T Kg
−1srp

T 
. �15�

or a fixed rp and ḡ0 (as in the SKE case), the first and
hird terms that appear in Eq. (15) between brackets do
ot vary with g; hence, they can be included in the con-
tant against which ��g �rp� will be compared. Therefore,
he expression for the logarithm of the likelihood ratio
hen the densities are as in Eqs. (9) and (10) can be re-
ritten as
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��g�rp� = tHot�g�rp� = wTg, �16�

here

w = Kg
−1srp

�17�

s called a template vector [1]. The expression for
Hot�g �rp� in Eq. (16), which requires the knowledge of the
ean vectors and covariance matrix under the two hy-

otheses, is the so-called Hotelling observer [1,7,15,34,35]
nd is a linear function of g. As pointed out in [36], the
otelling observer is still analytically tractable in realis-

ic cases (for example, when the background can be de-
cribed by a stationary random process), whereas comput-
ng the likelihood ratio in practical cases is, in general, a
ifficult problem. The derivation above shows that, if the
ata are normally distributed, the Hotelling observer is
quivalent to the likelihood ratio, in the sense that they
iffer by an additive or positive multiplicative constant.
aking into account the particular structure of the matrix
g [see Eq. (11)] and observing that the components of srp

re of the form ahm�rp�, we obtain

tHot�g�rp� = 
m=1

M

wmgm = 
m=1

M ahm�rp�

Ahm�r�� + bm + �m
2 gm.

�18�

he expression in Eq. (18) is ideal in the SKE/BKE/PKE
ases when the location rp of the planet is known. This ex-
ression shows that the knowledge of the exact value of a
s not required because such a scaling factor can be ab-
orbed into the threshold against which tHot�g �rp� will be
ompared.

If the location of the planet is unknown, we can define a
et T of test locations and introduce scanning observers.
n observer can then be defined by introducing the costs
i,j of opting for the ith hypothesis when in fact the jth
ypothesis is true. Actually, for detection with localiza-
ion, the costs depend—in general—on the values of the
rue and estimated planet locations. An optimal detector
an be defined as the one that minimizes the expected
ost associated to the decision. If the expected cost is to be
inimized, the optimal observer takes the form [21,37]

��g� = max
rp�T

��g�rp� = max
rp�T

pr�g�H1,rp�

pr�g�H0�
, �19�

hich is called the generalized likelihood ratio [1]. If the
bserver concludes that a planet is present in the image,
ts estimated location r̂p is computed as

r̂p = arg max
rp�T

��g�rp�. �20�

We still assume that the densities pr�g �H0� and
r�g �H1 ,rp� are as defined in Eqs. (9) and (10), respec-
ively. Repeating the same process that led to Eq. (18), we
an obtain expressions for the optimal observer and the
stimated planet location when rp is unknown. Substitut-
ng Eqs. (9) and (10) into Eq. (19) and taking the loga-
ithm, we obtain

��g� = ln	��g�
 �21�
=max
rp�T

�1

2
�g − ḡ0�TKg

−1�g − ḡ0�

−
1

2
�g − ḡ0 − srp

�TKg
−1�g − ḡ0 − srp

�� . �22�

s before, the fact that Kg is an invertible covariance ma-
rix allows us to rewrite ��g� as

��g�ḡ = max
rp�T

�−
1

2
�− gTKg

−1srp
+ g0̄

TKg
−1srp

− srp

T Kg
−1g

+ srp

T Kg
−1ḡ0 + srp

T Kg
−1srp

T �� �23�

=max
rp�T

�−
1

2
�2srp

T Kg
−1ḡ0 − 2srp

T Kg
−1g + srp

T Kg
−1srp

T �� .

�24�

his time, however, the quantities srp

T Kg
−1ḡ0 and srp

T Kg
−1srp

T

ary as rp is varied over T; they cannot be ignored be-
ause that will change the location r̂p of the maximum.
he quantity that appears in Eq. (24) in square brackets

s linear (or, more appropriately, affine) in g; therefore,
�g� is the expression of the scanning Hotelling observer
e were seeking. Again, the particular structure of the co-
ariance matrix Kg makes it possible to obtain an expres-
ion for the scanning Hotelling observer tHot�g� similar to
q. (18):

tHot�g� = max
rp�T


m=1

M ahm�rp�

Ahm�r�� + bm + �m
2

��gm − ḡ0,m −
1

2
ahm�rp��; �25�

lso,

r̂p = arg max
rp�T


m=1

M ahm�rp�

Ahm�r�� + bm + �m
2

��gm − ḡ0,m −
1

2
ahm�rp�� . �26�

. SIMULATION RESULTS
n this section, we report some simulation results for the
etection at a known location and detection with location
ncertainty. We adopt the area under the ROC/LROC
urve as a figure of merit for performance assessment.
ests involve both simulated and real data.

. ROC Curves for Simulated Data
n this test, we consider a detection problem for which the
ocation of the planet (if present) is known. We use simu-
ated data and assume that the atmospheric turbulence
as been completely and perfectly corrected. This means
hat the mean image of the star (before sampling by the
etector array) is an Airy disk. The location of the first
ero of the Airy disk depends on the parameters (such as
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avelength, size of the aperture, focal length of the tele-
cope, etc.) of the simulation. The images we simulated
ere of size 255�255 pixels. The Airy disk generated by

he star was located at the center of the images, and its
rst zero was about 7.78 pixels away from the center of
he image [see Fig. 2(a)]. The intensity (in electrons e− per
etector pixel) of the star was set in such a way that the
rightness of the central pixel in Fig. 2(a) is A=107 e−.
he constant sky background bm=10 e− was then added to

he image. We simulated a mean image containing a
lanet by adding to the image ḡ0 of the star plus back-
round a copy of the same image but scaled and shifted.
n doing so, we assumed that the intensity of the pixels
utside the region of support of the image was zero. The
mount we shifted the image depended upon where we
anted the planet to be located. For this test, we assumed

hat the planet was 30 pixels to the right and 30 pixels
own from the star. The shifted image was then scaled in
uch a way that the intensity of its brightest pixel was
qual to the desired planet intensity a=10 e−. The image
f the planet was then added to the image ḡ0; the result-
ng image ḡ1 is shown in Fig. 2(b).

The detector readout noise variance was �m
2 =100 for all

� �1, . . . ,M�. We simulated 10,000 noisy images of the
tar without the planet and 10,000 noisy images with the
lanet present. In this test—and in those that follow—the
hoton noise for any mth pixel of either g0 or g1 followed
Poisson distribution with parameter ḡ0,m or ḡ1,m, respec-

ively. For each noisy image g, we computed tHot�g� and
tored the values in the 10,000�1 vector t0 (for the im-
ges where the planet was absent) and in t1 (for the im-
ges where the planet was present). By comparing the el-
ments t0,i and t1,i to a threshold �, the FPF and TPF as
unctions of � were computed as

FPF��� =
��i such that t0,i � �, i = 1, . . . ,10,000��

10,000
,

�27�

TPF��� =
��i such that t1,i � �, i = 1, . . . ,10,000��

10,000
,

�28�

here the notation �S� denotes the cardinality (number of
embers) of set S. The FPF��� and TPF��� were then plot-

ed as an ROC curve.
For this first test, we decided to compare the Hotelling

bserver with another linear observer. Because we are as-
uming that the PSF, the background, and the location r�

f the star are known, we may consider an observer that
imply subtracts off the background and the image of the
tar and does pixel-based thresholding on the resulting
mage. More formally, if k is an odd integer number and
he test location is rp (in focal plane coordinates), we can
efine the set N�rp ,k�� �1, . . . ,M� that contains the pixel
ndices m of the k�k square neighborhood of the pixel
hat corresponds to rp in the image g. Having defined
�rp ,k�, we can introduce the background-and-PSF-

ubtraction observer as follows:
tsub
�k� �g�rp� = 

m�N�rp,k�
	gm − bm − Ahm�r��
. �29�

s we commented in Section 2, this way to operate—
hich gives rise to an affine observer—is one of the first

teps for many state-of-the-art algorithms for point-
ource detection. Such algorithms then apply heuristic
trategies which, to the authors’ knowledge, have not
een analyzed in ROC terms. We decided to compare the
otelling observer against the background-and-PSF-

ubtraction observer defined in Eq. (29) because the latter
mbodies the general idea on which many detection meth-
ds used today are based. The notation used in Eq. (29)
nderlines the fact that the background-and-PSF-
ubtraction observer requires the additional parameter k
nd, as we shall see later, the performance of such an ob-
erver is greatly influenced by the value of k (we note,
owever, that in a practical case, an appropriate value of
can be estimated from assumptions on the relative size

f the planet to the star, the apparent separation at which
e are looking, and so on). More elaborate state-of-the-art
lgorithms for point-source detection may require dozens
f parameters, which represents a major practical draw-
ack of such algorithms: Detection performance depends
n such parameters, and it may not always be easy to se-
ect the most appropriate values for a given image.

The Hotelling observer defined in Eq. (16) and the ob-
erver defined in Eq. (29) were run on the noisy images
enerated from ḡ0 [shown in Fig. 2(a)] and from ḡ1
shown in Fig. 2(b)], and the corresponding values t0,i and
1,i for both observers were collected. From these values,
he detectability dA can be estimated as follows [1]:

dA
�t0,t1� =

�t1,i�i − �t0,i�i

�1
2�t0,i

2 + 1
2�t1,i

2
, �30�

here �. . .�i denotes ensemble average over the index i,

nd �t0,i

2 and �t1,i

2 are the variances of the t0,is and the t1,is,

espectively. The detectability can also be expressed in
erms of the AUC as [1]

dA
�AUC� = 2 erf−1�2 AUC − 1�, �31�

here erf−1 is the inverse of the error function erf�x�
2	−1/2�xe−t2

dt.

ig. 2. Log-scale simulation of (a) image ḡ0 of the star and (b)
mage ḡ1 of the star and the planet. The intensity of the planet
as set to a=106 e− only in this figure and to make the planet

ocation visible.
0
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Table 1 shows the values of the AUC, dA
�t0,t1�, and dA

�AUC�

or the test statistics tHot�g �rp� and tsub
�k� �g �rp� as k is

hanged. Based on the values reported in Table 1, we se-
ected the values k=7 and k=1 for the ROC curves re-
orted in Fig. 3. The case k=1 is the single-pixel version
f the background-and-PSF-subtraction observer. In this
est, the ratio A /a was 106; if this ratio increases, we
ould obtain smaller values for the AUCs for the different
ethods, but their rank ordering should be the same. We

lso note that, for any test statistic, the values of dA
�t0,t1�

nd dA
�AUC� are very close to each other. That was ex-

ected, as they would be the same for normally distrib-
ted data [1].

. LROC Curves for Simulated Data
n this test, we consider the performance of the Hotelling
bserver for detection with localization. We used again
he image shown in Fig. 2(a) as the image of the star, and
e set A=107 e−. We simulated 100 planets located as

hown in Fig. 4(a). The intensity of each planet was a
20 e−. The background intensity and readout noise stan-
ard deviation were set to bm=100 e− and �m=10 e−, re-
pectively.

Table 1. Comparison between tHot„g �rp… and
tsub
„k…

„g �rp… for Simulated Data and Known rp

Fig. 3. (Color online) ROC curves for the simulated data.
For each location, we simulated 100 noisy images
here the planet was present at the desired random loca-

ion and another 100 noisy images in which the planet
as absent. The noisy images were generated in the same
ay as before. We used both the scanning Hotelling ob-

erver [see Eqs. (25) and (26)] and a scanning version of
he background-and-PSF-subtraction observer

tsub
�k� �g� = max

rp�T


m�N�rp,k�
	gm − bm − Ahm�r��
, �32�

r̂p = arg max
rp�T


m�N�rp,k�

	gm − bm − Ahm�r��
. �33�

e set k=7 and k=1 for the background-and-PSF-
ubtraction scanning observer defined above. The set T of
est locations is shown in Fig. 4(b): For each row or col-
mn, every other pixel location within a ring was in T.
his means that the tolerance � for the planet location we
ust use when we compute the TPF must be at least �2

n pixel units. In our simulation, we set �=1.45 pixel units
o avoid biased results due to numerical approximation.

ig. 5. (Color online) LROC curves for simulated data (A
107 e−, a=20 e−, b =100 e−, � =10 e−).

ig. 4. Images used for the simulated data case and unknown
p: (a) locations of the planets for the test with the simulated im-
ge (Airy disk) and (b) test locations.
m m
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or each observer, we obtained 100 LROC curves—one for
ach true planet location shown in Fig. 4(a). These LROC
urves were then averaged to obtain the mean LROC
urve for any of the observers considered here. The mean
ROC curves for the Hotelling scanning observer and the
ackground-and-PSF-subtraction scanning observer are
hown in Fig. 5, and the corresponding areas under the
ROC curve (ALROC) are listed in Table 2. The LROC
urve for the background-and-PSF-subtraction scanning
bserver when k=1 shows that, for this observer, the
robability of detection and correct localization is very
lose to 0 at any false alarm rate (indeed, the LROC curve
or tsub

�1� �g� almost always overlaps the horizontal axis).

. LROC Curves for Real Data
or this test, we used a real image of the star GJ 450. The

mage was generated by averaging 380 0.3596 s short-
xposure images of GJ 450 taken in the L� band (central
avelength �=3.809 m; bandwidth ��=0.623 m). In

rder to reduce the background and subtract glints and
ther artifacts due to the telescope and/or the dome, the
hort-exposure images were obtained in nodded pairs.
oving the telescope periodically (nodding) and subtract-

ng the images in each pair reduced the sky background
n the short-exposure images at the expense of doubling
he variance of the pixel intensities. The images were
aken on the night of April 11, 2006 with the Clio 3–5 m
lanet-finding AO camera [38] installed on the 6.5 m Mul-
iple Mirror Telescope (MMT) [39] at the University of
rizona. It was reported [40] that the Strehl ratio for

he MMT AO system can be as high as 80% in the L�
and. The pixel scale for these images was
.048574±0.000090 arcsec/pixel. The apparent magni-
ude (in the L� band) of GJ 450 was determined from the
aw counts using photometric calibration parameters and
anged from 5.27 to 5.29. Important parameters of the de-

able 2. Comparison between tHot„g… and tsub
„k…

„g… for
Simulated Data and Unknown rp

ig. 6. Images used for the real data case and unknown rp: (a)
he planets, (c) test locations.
ector are as follows: approximate well depth 3.3�106 e−,
eadout noise standard deviation 700 e−, gain 87.6 e−/DN
where DN stands for digital number), and linearity 1%.
he background intensity was estimated from a set of 254

mages of the same star with an exposure time of
.0596 s. This longer exposure time resulted in the detec-
or elements at the star location being always saturated.
he long-exposure background was 16390 DN, which cor-
esponds to about 250680 e− for the averaged image. This
veraged image is the long-exposure image from which
e obtained the image used in this test.
The central 141�141 pixel area [see Fig. 6(a)] of the

riginal averaged 500�500 pixel image was used in this
tudy; this was the image ḡ0 for the tests. We decided to
se the central 141�141 pixel area of the original image
o leave out of the field of view the artifacts due to nod-
ing. The residual background was estimated by averag-
ng the intensities of pixels more than 40 pixels away
rom the center of the star. This residual background was
ubtracted from the image before further processing: The
esulting image is assumed to be the long-exposure re-
idual halo. The image of each planet was simulated by
caling and shifting a copy of the image ḡ0 (padded with
eros outside its support region) and adding it to ḡ0 to ob-
ain ḡ1. The intensity of the star was A=3066000 e−,
hile the intensity of the planet was a=1533 e−. The mag-
itude in the L� band of the planet was about 13.53, while
he magnitude of the star was about 5.28.

We simulated 200 planet locations distributed as
hown in Fig. 6(b). Each of these planet locations had in-
eger pixel coordinates. For each location, we simulated
00 noisy images where the planet was present at the de-
ired random location and another 100 noisy images in
hich the planet was absent. We ran the scanning Hotell-

ng observer [see Eqs. (25) and (26)] and the scanning ver-
ion of the background-and-PSF-subtraction observer [see
qs. (32) and (33)] on these images. This time, we decided

o include in our tests one of the most commonly used al-
orithms for point-source detection. We opted for
EXTRACTOR [41,42], version 2.5.0. To the authors’ knowl-
dge, an ROC performance analysis of SEXTRACTOR has
ot been performed yet. We decided to use SEXTRACTOR

ecause of its wide use for point-source detection, astrom-
try, and photometry. Implementations of this algorithm
n different architectures have been developed, which has

age ḡ0 of the star (plotted on logarithmic scale), (b) locations of
real im
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ontributed to its popularity (see, for example, [43–49]).
EXTRACTOR is able to perform deblending of overlapping
xtended objects and can use a neural network to perform
lassification. Therefore, if correctly configured, SEXTRAC-

OR should perform well on separating and classifying one
r more planets orbiting a star. SEXTRACTOR returns a list
f objects it found in the image along with some informa-
ion for each object. Every time SEXTRACTOR found ex-
ctly one object in the image, we assumed that no planet
as found in the image. This is because the star is very
right, and SEXTRACTOR was always able to find and lo-
ate it. On the other hand, if SEXTRACTOR returned a list
f two or more objects, we assumed that a planet was
ound, and its location was that of the second brightest
bject SEXTRACTOR found. Configuration parameters
stored in a file) are required for running SEXTRACTOR. We
tarted with the default parameters for version 2.5.0 and
hanged them to try to obtain the best performance with
espect to the area under the LROC curve. The values of
he parameters that differ from the default are reported
n Table 3. The parameters “DETECT_THRESH” and “ANALY-

IS_THRESH” were changed to obtain the LROC curves.
espite our thorough parameter space search, SEXTRAC-

Table 3. SEXTRACTOR Parameters

arameter Value

ATALOG_TYPE ASCII

ETECT_MINAREA 1

HRESH_TYPE ABSOLUTE

ILTER_NAME gauss_5.0 _9� 9.conv
EBLEND_NTHRESH 64

EBLEND_MINCONT 0.00001

LEAN N

ATUR_LEVEL 40000

ACK_FILTERSIZE 10

ERBOSE_TYPE QUIET

ig. 7. (Color online) LROC curves for real data (A
3,066,000 e−, a=1533 e−, b =250,680 e−, � =700 e−).
m m
OR seemed to perform poorly on the task of interest.
We set k=5 and k=1 for the background-and-PSF-

ubtraction scanning observer. The set T contained 1984
est locations distributed as shown in Fig. 6(c). For this
imulation, we set the localization tolerance to �=1.45
ixel units. For each observer, we obtained 200 LROC
urves—one for each true planet location shown in Fig.
(b). These LROC curves were then averaged to obtain
he mean LROC curve for any of the observers considered
ere. The mean LROC curves for the Hotelling scanning
bserver, the background-and-PSF-subtraction scanning
bserver, and SEXTRACTOR are shown in Fig. 7. The corre-
ponding values of the ALROC are listed in Table 4. We
mphasize the fact that, for this image, the Hotelling ob-
erver markedly outperformed the other methods; in par-
icular, SEXTRACTOR did not perform well, even if the
lanets we simulated had an apparent magnitude of
bout 13.53. If the apparent magnitude of the planet in-
reases (i.e., the planet gets dimmer), the values of the
LROC decrease, but their rank ordering would still be

he same, showing that the Hotelling observer still out-
erforms the other methods.

. SUMMARY AND CONCLUSIONS
n this paper, we addressed the problem of objective as-
essment of image quality in AO, and we applied statisti-
al decision theory to the problem of point detection in as-
ronomy. Starting from the optimal (with respect to the
rea under the ROC/LROC curves) observers, we rigor-
usly derived the Hotelling observers for both detection at
known location and detection with location uncertainty.
or Gaussian noise, these observers are also optimal and
re linear (or affine) functions of the data. We applied the
otelling observers to long-exposure AO images for which
e assumed that the atmospheric distortions were com-
letely corrected by the AO system. Our derivations of the
otelling observers from the optimal ones used the fact

hat, for large parameters, Poisson distributions can be
pproximated with Gaussian distributions. For this rea-
on, the Hotelling observers derived here are optimal. A
igorous approach for assessment of image quality in AO
tems from the application of these optimal observers to
he problem of exoplanet detection.

We compared the Hotelling observers with other ob-
ervers and algorithms, including one widely used in as-
ronomy for point detection and photometry. Our tests,
hich we carried out on both simulated and real data,

orroborate the theoretical superiority (with respect to
he area under the ROC/LROC curves) of the Hotelling
bservers over the other methods. The promising results
e obtained suggest that a similar approach could be

Table 4. Comparison between tHot„g…, tsub
„k…

„g…, and
SEXTRACTOR for Real Data and Unknown rp
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sed to derive optimal estimators, such as the generalized
iener estimator, for the estimation of flux in different
avelength ranges, or physical properties such as tem-
erature, age, or mass. In turn, this will lead to a method
or the assessment of image quality and task performance
or estimation tasks.

The Hotelling observer can be applied to sequences of
hort-exposure AO images as well. Spatiotemporal infor-
ation about the statistics of the random PSFs and ran-

om objects can be incorporated in the Hotelling observer
s additional terms in the expression for the data covari-
nce matrix. We commented that, for a sequence of AO
mages, the data covariance matrix can be written rigor-
usly as the sum of three terms, referred to as the noise,
SF, and object terms. The data covariance matrix will no

onger be diagonal, and the number of elements in it will
ncrease by the square of the number of short-exposure
mages in each sequence. This will require efficient algo-
ithms for the computation of the Hotelling test statistics.
ow well the Hotelling observer would perform in the

ase of short-exposure AO images is the topic of a future
tudy.

Finally, we note that these observers are not limited to
he case of AO systems but can also be applied to
iffraction-limited images obtained from space.
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