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Maximum-likelihood (ML) estimation in wavefront sensing requires careful attention to all noise sources and
all factors that influence the sensor data. We present detailed probability density functions for the output of
the image detector in a wavefront sensor, conditional not only on wavefront parameters but also on various
nuisance parameters. Practical ways of dealing with nuisance parameters are described, and final expressions
for likelihoods and Fisher information matrices are derived. The theory is illustrated by discussing Shack—
Hartmann sensors, and computational requirements are discussed. Simulation results show that ML estima-
tion can significantly increase the dynamic range of a Shack—Hartmann sensor with four detectors and that it
can reduce the residual wavefront error when compared with traditional methods. © 2007 Optical Society of

391

America
OCIS codes: 010.0010, 010.1080, 010.7350.

1. INTRODUCTION
Measurement of optical wavefronts has a long and storied
history. Classical interferometry uses a reference beam to
learn as much as possible about a wavefront, and phase-
retrieval methods attempt to reconstruct a wavefront
from one or more measurements of optical irradiance
without a reference beam. In recent years, however, a dis-
tinctly different requirement has been imposed on sys-
tems for wavefront measurement: They have to respond
to rapid changes in the wavefront and provide signals
that can be used in adaptive systems that correct for
wavefront distortions. Such adaptive systems are proving
extremely valuable in many applications, including
ground-based astronomy, retinal imaging in ophthalmol-
ogy, and laser machining. In these applications there is no
particular interest in the wavefront itself, but instead the
goal is to sense a distorted wavefront, correct it, and
thereby minimize its influence on the actual task of inter-
est. Wavefront-measurement systems intended for use in
adaptive optics (AO) are referred to as real-time wave-
front sensors, or simply wavefront sensors for short.
Many different wavefront sensors have been developed
for AO; for reviews, see 'Iyson1 and Rousset.? The wave-
front of interest is usually the pupil function of a tele-
scope or other optical instrument, and the sensors differ
in whether they attempt to characterize the wavefront
over the entire pupil aperture at once or over selected re-
gions called subapertures. All of the sensors, however, use
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a set of optical detectors in conjunction with optical ele-
ments intended to make the detector outputs sensitive to
preselected characteristics of the wavefront. For example,
the familiar Shack—-Hartmann sensor attempts to mea-
sure two components of the wavefront tilt over a subaper-
ture by observing the image of a star or other pointlike
source in the back focal plane of a lenslet placed over the
subaperture. Because of the lenslet, the image of the
source is displaced laterally by an amount proportional to
the tilt, and the displacement can be estimated by com-
puting the centroid of the outputs of an array of detectors
in the focal plane.

Other wavefront sensors attempt to measure other pa-
rameters, such as the local curvature of the wavefront at
each subaperture3 or the coefficients in an expansion of
the wavefront in orthogonal basis functions over the
whole aperture. Many clever techniques have been de-
vised for choosing the configuration of optical elements
and the photodetector array and for processing the out-
puts of the photodetectors to obtain measurements of the
parameters of interest.

Most current real-time sensors can be described by the
general block diagram shown in Fig. 1. The wavefront is
assumed to be described by a set of P parameters {6,, p
=1,...,P}, or equivalently by a P X1 parameter vector 6.
Similarly, the raw data are described by a set of M output
signals {g,,, m=1,...,M}, or equivalently by an M X1
data vector g. The photodetector signals are then prepro-
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Fig. 1. Block diagram of a generic wavefront sensor and reconstructor.

cessed, usually by simple, noniterative formulas, to get a
set of I derived quantities, {v;, i=1,...,I} or an I X 1 vec-
tor v, that can be regarded as measurements of some
properties of the wavefront, though not necessarily di-
rectly the components of 6. For example, in a Shack—
Hartmann sensor for one subaperture, /=2 and the com-
ponents of v are estimates of the tilts of the wavefront
over the subaperture in the x and y directions. The pre-
processing step in this case is computation of the centroid.
Note that centroid computation, though fast and efficient,
is a nonlinear operation on the data (because of the divi-
sion by the sum of the signals).

No matter how the specific boxes in Fig. 1 are realized,
it is usually assumed that there is a linear relation be-
tween the mean values of v and the actual wavefront pa-
rameters; this linear relation is expressed as

v=H6# or v=HO+n, (1.1)

where H is an I X P matrix, n is a zero-mean I X 1 vector
describing the noise in v, and the overbar denotes an av-
erage over that measurement noise. Recovery of the un-
known @ from the output of the preprocessing stage is
then treated as a matrix inversion or pseudoinversion
implemented in a separate stage called a reconstructor.
The output of the reconstructor can be the final estimates
of @ or correction signals to be applied to a control element
(deformable mirror or spatial light modulator) in an AO
system.

There are several difficulties with this general ap-
proach. An immediate concern is the linearity assumed in
Eq. (1.1). Even in our example of a Shack—Hartmann sen-
sor and centroid estimation, it is well known that the
mean centroid is a nonlinear function of the tilts if the
number of photodetectors is small. Moreover, if wavefront
parameters other than tilt influence the data, then there
is no chance that Shack—Hartmann tilt estimates will be
linear functions of the additional parameters.

A more serious issue concerns the dimensionality re-
duction in going from the M-dimensional raw data g to
the I-dimensional vector v; as I is often much less than M,
there could be a considerable information loss in this step.
In the Shack—Hartmann example, we can expect wave-
front curvature and other parameters to influence the
data unless the lenslet diameter D; is significantly
smaller than the Fried parameter ry. The usual choice,
however, is to make D; approximately equal to the mean
ro at a particular observing site, and it is not clear in that
case how much information is lost in centroid estimation.

A related problem is that parameters other than ones
associated with the wavefront can influence the data. A

simple example is the overall brightness of the guide star
or other source, which is one additional scalar parameter.
A more complex example is irradiance variations (e.g.,
scintillation) over the aperture being sensed, which would
potentially require a large set of additional parameters.
These extraneous parameters, called nuisance param-
eters, can have important effects on the data statistics.

In contrast to nuisance parameters, null functions are
properties of the wavefront that might be of great interest
but that do not influence the data. Since the matrix H in
Eq. (1.1) has dimensions I X P, with I often very small
compared with P, there is a null space representing char-
acteristics of @ that cannot be recovered from knowledge
of v, even in the absence of noise.

Another area of difficulty is in describing the statistical
properties of both g and v. A centroid or other simple way
of computing v from g takes no account of the noise prop-
erties of g, and better performance might be obtainable if
we used accurate models of the data statistics. Even if we
do not use detailed statistical information in the prepro-
cessing stage, it is still possible to compute the variances
in the resulting components of v by simple propagation of
errors® if we assume that the components of g are uncor-
related, but this assumption is not always justified.

Considerable work has been reported on optimal ap-
proaches to the reconstruction step, starting with the pio-
neering paper by Wallner.® This work starts with the as-
sumption that the available data are noisy measurements
of the wavefront tilts averaged over subapertures and
that these measurements are unbiased and uncorrelated,
both with each other and with the random wavefront it-
self. From this starting point, Wallner derives an optimal
reconstructor that minimizes the mean-square wavefront
error, accounting for unmeasured components by using
Kolmogorov statistics as prior knowledge. His approach
and subsequent related research thus optimize the recon-
struction stage in Fig. 1, but they do not consider possible
information loss in the preprocessing stage. As we shall
demonstrate numerically in Section 6, that information
loss can be considerable.

Moreover, the common assumption that the compo-
nents of v are uncorrelated is almost never correct. Cor-
relations are introduced by the preprocessing stage, and
the statistics of v can be complicated, even when g is de-
scribed by simple uncorrelated Gaussian or Poisson noise.
At the least, any discussion of the statistics of the wave-
front sensor output should give its mean (or bias), vari-
ance, and covariance matrix; a full multivariate probabil-
ity density function would be desirable for rigorous design
of the reconstruction stage.
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Finally, there is a need for rigorous methods of evalu-
ating wavefront sensors and comparing competing ap-
proaches. Most of the literature on this topic uses the
Strehl ratio of the final AO system as the figure of merit,
but it is difficult to discern the contribution of the wave-
front sensor to this metric or to devise strategies for im-
proving the sensor. Moreover, it is not clear how Strehl ra-
tio itself relates to objective or task-based figures of
merit® for the final system.

Likelihood theory offers a potential way of addressing
all of these concerns. A likelihood is a comprehensive sta-
tistical description of a data set, showing how the data
probability law depends on various parameters and vari-
ous noise sources. This probability law can then be used
to define a maximum-likelihood (ML) estimator, which
has many desirable properties to be enumerated in Sec-
tion 2. The likelihood is also required for Bayesian esti-
mation methods, which augment the likelihood with prior
knowledge of the parameters to be estimated.

From the likelihood it is possible to compute a Fisher
information matrix (FIM), which describes the informa-
tion content of a data set for the purpose of estimating the
parameters that enter into the likelihood. It is well known
that the FIM can be used to compute a fundamental lower
bound, the Cramér—Rao bound (CRB), on the variance of
the parameter estimates. It is less well known, but the
FIM can also be used to find a good approximation to the
covariance matrix of the ML estimates, and in this form it
can be incorporated into objective theories of image
quality.® In addition, likelihood theory provides a system-
atic way of discussing nuisance parameters.

Application of likelihood methods to wavefront sensing
is not new, though their full potential has not yet been ex-
ploited. We can trace the beginnings of this line of re-
search to three seminal 1974 papers by Bahaa Saleh,'*12
in which he studied the statistical limitations in localiz-
ing a spot of light and derived ML estimators. Elbaum
and Greenebaum®® used similar methods for angular
tracking, and Winick! derived a CRB for spot localization
and used it to discuss system design. Various papers by
Lane et al.'> " have applied ML methods and the CRB to
wavefront sensors with the assumption that the positions
of individual detected photons were available. Welsh et
al.'® used the CRB to compare the performance of Shack—
Hartmann sensors and shearing interferometers. Lofdahl
and Duncan'® gave an ML treatment of the Shack—
Hartmann sensor based on an additive Gaussian likeli-
hood model, and they showed how to use the Shack—
Hartmann for curvature estimation. Extension of ML
methods to Bayesian MAP (maximum a posteriori) esti-
mation is discussed by Sallberg et al.,”® who used a Pois-
son likelihood and a prior on the correlation of wavefront
slopes across subapertures in a Shack—Hartmann sensor.

An important paper by Cannon?! considered ML esti-
mation of global wavefront parameters from Shack—
Hartmann data without the intermediary step of tilt esti-
mation. His likelihood function took account of the
polychromatic nature of the data, but it used an additive
Gaussian model and did not consider photon noise.

Several papers'®?*? consider simultaneous ML or
MAP estimation of a wavefront and an object from phase-
diversity data without an explicit wavefront sensor; this
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problem does not fit into the general schema of Fig. 1, and
it is not considered further in this paper.

Perhaps surprisingly, there is also some closely related
work in a completely different area, namely gamma-ray
detection with scintillation cameras in nuclear medicine.
Gray and Macovski®® suggested ML and MAP methods for
localizing the spot of light produced by a single gamma
ray in this application, and subsequent work at the Uni-
versity of Arizona and elsewhere? 3! has refined the
methodology and applied it to many practical gamma-ray
imaging systems.

The objective of this paper is to develop rigorous likeli-
hood models and FIMs for wavefront sensing under vari-
ous noise assumptions and choices of parameters to esti-
mate. In Section 2 we review some basic concepts in
estimation theory, including the effect of null functions
and nuisance parameters. In Section 3 we consider vari-
ous stochastic models for the raw data in a WFS. These
models are in the form of conditional probabilities or
probability density functions (PDF's) on the photodetector
outputs, conditioned on all parameters that influence
those probabilities, but they are not yet likelihoods since
we have not specified which of the parameters are to be
estimated and how to handle those that will not be esti-
mated. These topics are taken up in Section 4, where we
consider various parametric descriptions of the wavefront
and various choices of parameters to estimate. In Section
5 we combine the results from Sections 3 and 4 into prac-
tical likelihood functions and construct the corresponding
FIMs. Section 6 applies these ideas specifically to a
Shack—Hartmann sensor, and Section 7 discusses ways of
finding ML estimates in a time compatible with astro-
nomical adaptive optics.

Appendixes A and B provide some statistical details
needed in the main text, and Appendixes C and D exam-
ine statistical issues particular to a Shack—Hartmann
sensor.

2. BASIC CONCEPTS IN ESTIMATION
THEORY

Random data are described by a probability law with one
or more free parameters, and the goal of estimation is to
obtain numerical values for the parameters from a given
data set. Excellent general references on estimation
theory include Melsa and Cohn,>? Van Trees,?® and
Scharf.3* An overview using a notation and approach
similar to this paper is given by Barrett and Myers,6
Chap. 13.

A. Notation and Terminology
Let g be an M X1 vector describing random data. The
probability law on g is a PDF denoted pr(g| ) for the case
of continuous-valued data, and it is a probability denoted
Pr(g| 0) for the case where the data can take on only dis-
crete values. In both cases it is assumed that the probabil-
ity law is characterized by a P X 1 parameter vector 6. In
the remainder of this section we shall consider continuous
random variables, but the results are easily translated to
discrete data.

The PDF describes the sampling distribution of the
data, and we say that an individual sample of g is drawn
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from pr(g|#). Once a data vector is measured, however,
pr(g| 6 can be regarded as a function of @ called the like-
lihood of @ for the given g and is denoted by

L(6lg) =pr(g|0). 2.1)

Note that L(6|g) is not a PDF on 6.

An estimate of the parameter is denoted 0, in most
cases the estimate is a deterministic function of the data,

so we can also write it as é(g). Since g is random (even for

a given 0), so is (;(g).

In wavefront sensing, we can choose either the raw
photodetector output g or the derived quantities v as the
data from which we wish to perform an estimation. In the
latter case, the likelihood will be denoted L(@|v) or

pr(v|#), and an estimate will be denoted o).

B. Performance Metrics

There are three distinct approaches to specifying the per-
formance of an estimation procedure (or, indeed, any sta-
tistical inference task). There is the classical or frequen-
tist method, which envisions repeated sampling of the
data vector from its sampling distribution pr(g|6) and
bases its performance criteria on averages of the resulting
estimates. In this view the parameter is unknown but not
considered random. A Bayesian approach, on the other
hand, considers the parameter being estimated to be ran-
dom and assigns it a prior probability pr(6), though this
probability may be regarded as a degree of belief rather
than something that is necessarily verifiable by repeated
experiments. By using pr(6) and pr(g| #) in Bayes’s rule, it
is possible to assign a probability pr(6|g), called the pos-
terior to the value of @ after the data vector is observed,;
all performance metrics are derived from the posterior.

The third approach to specification of estimation per-
formance is to consider the use to which the estimate will
be put. In an AO system, for example, we are not inter-
ested in the parameters of the wavefront but rather in the
performance of the overall closed-loop system that uses
the estimate. As noted in the introduction, a common way
of specifying the overall performance in astronomical AO
is in terms of Strehl ratio, but it is also possible to con-
sider specific astronomical tasks such as detection of ex-
oplanets and use a detectability measure as the final per-
formance metric.>> This approach is classical in the sense
that it uses long-run averages, but they are averages re-
lated to the final task rather than to the estimates them-
selves.

In this paper we adopt the classical viewpoint. All prob-
abilities and PDF's will be regarded as quantities that in
principle can be verified by repeated sampling. Quantities
like bias and variance of an estimator will thus have a fre-
quentist (experimental) interpretation, but they will also
serve as necessary inputs to a task-based assessment.

1. Bias, Variance, and Covariance of Estimates
In classical estimation theory, the accuracy of an estimate

is specified in terms of its sampling distribution pr(é| 0),
interpreted as the distribution of é(g) that would be ob-
tained by drawing repeated samples of g from pr(g| 6) and
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performing the estimation procedure on each. In terms of
the sampling distribution, the mean of the P X 1 vector of
estimates is given by

0= f d?0pr(6)0)6. (2.2)

If the estimation rule and the sampling distribution on g
are known, we can also express the mean (expectation) of
the estimate as

0= f dg pr(gl0)d(e) = (8(e), (2.3)

We shall use the overbar and the angle brackets inter-
changeably to denote means; the latter has the advantage
that the subscript can show explicitly which PDF is im-
plied in the averaging process.

The bias in an estimate specifies its average deviation
from the true value of the parameter. For a vector param-
eter, the bias is a vector given by

b(6)=0-0

Ef dMg[d(g) - Olpr(g|6)

©

=J a’o[0 - 01pr(6]6). (2.4)

©

A parameter is said to be be estimable or identifiable with
respect to some data set if there exists an unbiased esti-
mator of it for all true values of the parameter.

If we denote the mean of the pth element of the random

vector @ by (ép>, the variance of the pth element is given
by

Var(6,) = <[ép - <ép>][ép - <ép>:r>glo

= f d¥gld,() - (6,(2)) Por(g| 6)

%

=f dPo16,-(6,)pr(6l0), (2.5)

©

and the full covariance matrix is given by

[(Kolpp = <[ép - <ép>][ép’ - <0Ap’>:|*>g|0

or

Ké=<(é— 5)(6-5)*> (2.6)

glo’

where the dagger denotes adjoint (conjugate transpose),
or simply transpose for real vectors and matrices.
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2. Mean-Square error

The mean-square error (MSE) is a way of specifying the
overall error, including bias and variance, in a single sca-
lar quantity; it is defined by

MSE = (|0~ 6[2) - f a'g | ée) - o preglo

= tr[K;] + tr[bb'], 2.7

where tr(-) denotes the trace. Note that the MSE mea-
sures the squared deviation from the true value of the pa-
rameter, while the variances relate to deviations from the
mean of the estimate.

In general, bias, variance, and MSE will all depend on
the true value of the parameter. If a realistic sampling
distribution of the parameter is known, it can be used to
average the MSE, forming a quantity called the ensemble
MSE, defined by

EMSE = ({|6(g) - 6),,) . (2.8)

The EMSE can often be estimated by Monte Carlo sam-
pling even when we do not have enough detail about the
prior to use it in Bayesian estimation.

3. Cost and Risk
A general approach to estimation is to define a cost func-
tion C(é, 0) and to define the risk R as an average cost,
R=(C(0,0)). Depending on the statistical philosophy be-
ing adopted, the angle brackets here can have one of three
distinct meanings. In a purely frequentist approach, the
brackets imply averaging over g for a given 6, so the risk
is a function of @. In a purely Bayesian view, the average
is over @ for a given g, so the risk is a function of the par-
ticular data set g and no other data set is ever considered.
A pragmatic view is to average over both g given 0 and
then over 0, so that the risk is a pure number. The EMSE
in Eq. (2.8) is an example of risk defined this way for a
quadratic cost function.

No matter what cost function and definition of risk are
used, a nuisance parameter can be defined as one that
does not appear in the cost function.

C. Nuisance Parameters and Null Functions

The performance metrics discussed above must be inter-
preted carefully when the measurement system has null
functions or when there are nuisance parameters in the
problem.

Null functions do not influence the data and in prin-
ciple cannot be determined from the data. An example in
the context of wavefront sensing is the piston component
of the wave over a lenslet in a Shack—-Hartmann sensor.
We need to know this component to reconstruct the wave-
front, but the sensor is not responsive to it. A second ex-
ample is the so-called waffle effect, which arises when the
deformable mirror in an AO system has modes that the
wavefront sensor cannot detect; the resulting corrected
wavefront then has a corrugated or waffled appearance.

Nuisance parameters do influence the data but are not
of interest to the estimation problem, perhaps because
they do not influence performance of the real task of in-
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terest. An example in astronomical applications is the
brightness of the guide star. Like all nuisance param-
eters, the brightness of the guide star influences the bias
and/or variance of the estimates of the parameters of in-
terest, but the value of the brightness itself is irrelevant
to further application of the output of the WFS. If there is
atmospheric scintillation or if the guide star is laser-
induced and hence noisy, however, fluctuations in the
brightness can be a serious nuisance.

In a sense it is trivial to deal with null functions. Since
they do not affect the data and cannot be estimated from
the data, we can just omit them from the likelihood func-
tion and the FIM. On the other hand, if we do try to esti-
mate them, for example by trying to solve Eq. (1.1) for the
case P>1I, then the FIM is singular®® and the CRB is in-
finite. Stated differently, 0 is not estimable. This difficulty
often goes unrecognized in the wavefront-sensing litera-
ture and in other areas of inverse problems.

In contrast to null functions, it is never correct to omit
nuisance parameters from the likelihood, though in fact it
is often done. A correct statistical description of the data
has the form pr(g|#), where the vector @ contains all of
the parameters that influence the data, not just those we
might want to estimate.

Methods of dealing with nuisance parameters are sum-
marized in Barrett and Myers.® If we write

)

where « contains the parameters of interest and B con-
tains the nuisance parameters, we can

(1) Ignore the problem and assume a form for pr(g|a).

(2) Replace B with some typical value B, and assume
that pr(g|e, B) ~pr(g| e, By).

(3) Estimate @ and B simultaneously from g and dis-
card the estimate of .

(4) Estimate B from some auxiliary data set and use it
as in option (2).

(5) Assume (or measure) some prior pr(8) and margin-
alize over B.

It is shown by Barrett and Myers6 (Sec. 13.3.8) that op-
tion (5) is optimal in terms of minimizing a particular cost
function (the one that leads to MAP estimation), provided
that the cost is independent of the nuisance parameter. It
is assumed there, however, that pr(B) is a meaningful
sampling prior, not something based on belief or chosen
for mathematical convenience. For a good discussion of
marginalization from a Bayesian perspective, see
Berger.37

These five approaches to dealing with nuisance param-
eters will be discussed further in the context of wavefront
sensing in Section 5.

D. Fisher Information and Cramér-Rao Bounds

For a vector parameter with P real components, the FIM,
denoted F, is a P X P symmetric matrix with components
given by
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J J
Fy, =<[(9_9J In pr(g|0)] {0_0;@ In I‘»)l”(g|0)]>g‘9

1 4
— M, _
—Ld gpr(glo){pr(gw)aej r(g|0)]

{ ! ’ (/) ] 2.9
X — pr : .
—ry (gl0) (2.9)
Note that the FIM is fully determined by the likelihood
function; it is the covariance matrix of the gradient of the
logarithm of the likelihood, and the average itself is with
respect to the likelihood function. In general the FIM will
depend on the true parameter 6.

An important use of the FIM is to determine the lower
CRB on the variance of the estimate. It is shown in any
standard text®>®? that the variance of any unbiased esti-
mate must satisfy

(Kl = Var{6,} = [F],,. (2.10)
Note that inversion of the Fisher information is required
to find the lower bound on the variance of a component of
the estimate. An unbiased estimator that achieves the
bound of inequality (2.10) is called “efficient.”

Inequality (2.10) is a special case of a more general re-
lation, which can be stated with the help of a notational
convention known as Loewner ordering (see Barrett and
Myers,6 Appendix A). If we have two PXP positive-
definite matrices A and B, the statement A=B does not
hold on an element-by-element basis. Rather, it means
that A-B is positive-semidefinite, or equivalently that
x"Ax=x"Bx for all x.

With this convention, it can be shown that the covari-
ance matrix for any unbiased estimator must satisfy

K,=F' (2.11)

The corresponding relation for a biased estimator is

K;= (Vb + DF (Vb + I, (2.12)
where I is the P X P unit matrix. Thus the bias of an es-
timator alters the lower bound on the variance by an
amount that depends on the bias gradient. Note that bias
can decrease the variance if the bias gradient is negative.

E. Maximum-Likelihood Estimation

So far we have not talked about ways of actually finding
an estimate. One general method is ML estimation, de-
fined by

dy, = argmax pr(g|0), (2.13)
0

where the argmax operator returns the # argument at
which pr(g|#) is maximized. Since the logarithm is a
monotonic function of its argument, Eq. (2.13) can also be
written as

Oy, = argmax In [pr(g|0)]. (2.14)
0

Note that we are not maximizing the probability of @; we
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are choosing the value of @ that maximizes the probability
of occurrence of the g that we actually observed.

ML estimates have many desirable properties.G’38 First,
they are efficient if an efficient estimate exists for a par-
ticular problem. And even when no efficient estimator ex-
ists, the ML estimate is asymptotically efficient and as-
ymptotically unbiased in a sense to be explained in the
next paragraph. Moreover, the PDF on ML estimates,

pr(é\ 0), is asymptotically a multivariate normal with the
covariance matrix given by taking the equality sign in ex-
pression (2.11).

The asymptotic properties listed above are usually
stated by assuming that N independent samples of g are
drawn from the same pr(g| ) and then letting N — ; but
in fact they hold also when one gets better data, for ex-
ample by collecting more photons if the primary noise is
Poisson or by letting the variance go to zero for Gaussian
noise. With better data, therefore, the ML estimate ap-
proaches an efficient estimate, and its PDF approaches a
fully specified multivariate normal law.

Another useful property of ML estimation arises when
you want to estimate some function of the 0 that appears
in the likelihood, rather than @ itself. If we let a(6) be a
prescribed one-to-one vector-valued function, then under
mild conditions it can be shown that®*

ayy = a(éML)~ (2.15)

This property is referred to as the invariance of ML esti-
mates.

3. STOCHASTIC DATA MODELS

In this section we present various probability laws for the
raw data g (the output of the photodetector array in Fig.
1), and we briefly consider models for the derived mea-
surements v. The probability laws will depend on some
set of parameters 6, so we shall give expressions for the
conditional probability laws, pr(data|#), along with the
corresponding FIM that would be relevant if we wanted to
estimate all components of #. In practical applications
such as wavefront sensing, however, we may not want (or
be able) to estimate all components of €. In Section 4 we
shall look more closely at what we can and should esti-
mate, and in Section 5 the probability laws presented in
this section will be converted to practical likelihoods and
FIMs.

A. Pure Poisson Statistics

If we consider an array of ideal photon-counting detectors
and a radiation source that satisfies the conditions for
Poisson statistics (see Barrett and Myers6 for an exten-
sive discussion), then g,, is the observed number of pho-
tocounts (photoelectric interactions) in the mth detector
element. Similarly, dark current is frequently modeled as
Poisson.

Since Poisson events are inherently independent and
the Poisson probability is determined fully by its mean,
the multivariate conditional probability on the data (the
likelihood for estimation of #) is given by
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(En(OF"

gn!

m*

M
Pr(g|6) = [] exp[-5,.(0)] (3.1)
m=1

and its logarithm is

M
In Pr(g|6) = >, {-5,.(0) +g,, In[5,,(0)] - In(g,, )}
m=1

(3.2)

If the vector @ includes all parameters that influence
the data, and all of these parameters are to be estimated,
then Eq. (3.2) can be interpreted as a log-likelihood. The
FIM in that case is readily derived from its definition [Eq.
(2.9)].

The derivative of the log-likelihood with respect to a
component of @ is

) M
ﬁlnPr(gM): >a-1+

J m=1

&m }ﬁgm(w
. (3.3

gn(0) | 9

Poisson random variables are uncorrelated and have a
variance equal to their mean,

([8n—8n(O]En ~ 8 (0)])=5,(0)8,,,  (3.4)
so it follows from Eq. (2.9) and a little algebra that

. _% 1 98,(6) 9,(6) 35
= NC R '

To reiterate, these expressions for likelihood and FIM
hold rigorously only if @ includes all parameters that can
influence the data (including, for example, the brightness
of the guide star).

An example of the pure Poisson model occurs in the
work of Winick,* who considered Poisson noise arising
from a light spot projected onto a CCD detector and also
from a dark current in the detector. The parameter vector
0 in his case consisted of just the x and y coordinates of
the spot.

B. List-Mode Data

One interesting special case of Eq. (3.2) that has been con-
sidered in the literature on wavefront sensing'®™!" is the
limit of very small detector elements. In that case, no el-
ement will detect more than one photon and the array
will provide the coordinates of every detected photon. If K
photons are detected, the data set, denoted G to distin-
guish it from the usual binned data, is a set of K+1 quan-
tities, namely each 2D position vector r;,=(x;,y;) as well
as K itself. This way of expressing information about a
collection of photons is known in the nuclear-medicine lit-
erature as list mode; the coordinates and other param-
eters (e.g., time of arrival, photon energy if it can be mea-
sured) are stored in a list. List-mode likelihood and image
reconstruction from list-mode data have been well studied
in the medical literature %4

The likelihood for a photon list can be expressed as

pr(G|0) = pr({r,},K|0) = pr({r,}|K, O)Pr(K|0), (3.6)

where pr({r;},K|6) is a multivariate PDF on the photon
positions r;, but a probability on the discrete random vari-
able K. Under the same assumptions that lead to the in-
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dependent Poisson form in Eq. (3.1), the photons are in-
dependent, and we can write

K

pr(G|6) = Pr(K|0)[ | pr(r,|0), (3.7)
k=1

where pr(r;| 0) is the PDF for the location of the k£th pho-
ton; since the photons are indistinguishable, this PDF
must be the same for all . In fact, it is known from the
theory of Poisson random processes® that

b(ry;0)
pr(r0) = ———, (3.8)
d%rb(r;0)
det

where b(r; 0) is the photon fluence (the mean number of
photons per unit area for parameter 6), and the integral is
over the area of the detector array.

Since K is a Poisson random variable, the likelihood for
the list is given by

[K(o)FF X

K!H

k=t J d%rb(r; 0)
det
exp[- K(0)] X

=— || b(@;0), 3.9
7 kf:[l(m (3.9)

_ b(ry; 0)
pr(G|6) = exp[- K(0)]

where the last step follows since [,,d%rb(r; ) is the total

mean number of detected photons, K(6). The log-
likelihood is

K

Inpr(G|6)=-K(6) -InK! + D, Inb(r,;6). (3.10)
k=1

C. Electronic Noise

Electronic noise comes from electrons, and in any practi-
cal system a very large number of electrons contribute
more or less independently. It therefore follows from the
central-limit theorem that electronic noise is accurately
described by Gaussian statistics. Moreover, if we consider
a discrete array of individual detector elements with no
electronic coupling from one element to another, then the
noise in different elements is statistically independent.
Finally, if we assume that the elements are identical, the
noise is modeled as i.i.d. (independent and identically dis-
tributed) zero-mean Gaussian. The optical illumination
creates a signal that does not have zero mean, but if we
assume that all noise sources are independent of the illu-
mination, the effect of the illumination is to shift the
noise PDF. Thus the only place that the parameter @ can
enter into the PDF on the data is in its mean. The PDF for
purely electronic noise (without any photonic contribu-
tion) is given by

( |0) g 1 l [gm _gm(o)]Z
T = exp|l —-————5—
prig i \2md? P 202

1, (3.11)

and its logarithm is
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M

1 1
In pr(gl6) = - SM In(2mo®) - - > [gm-En(OT.
m=1

(3.12)

Of the various assumptions that enter into Eqgs. (3.11)
and (3.12), the one that is the most suspect in practice is
that the detector elements are identical. The pixels in
commercial CCD detectors, for example, have consider-
able variation in dark current and responsivity. Postac-
quisition digital processing can correct these effects on av-
erage by subtracting a measured dark-current map and
dividing the result by a measured gain map, but these
corrections do not produce a uniform variance in each el-
ement; in fact, they may increase the variance nonunifor-
mity since a pixel with low response will be divided by a
small gain factor. A more accurate approach would be to
measure the variances after the corrections and express
the PDF on the corrected data as

Moo (8 —En(O)
pr(glo) =[] R R

/
m=1 AY ’7T(Tm

} (3.13)

The FIM corresponding to Eq. (3.13) is readily shown to
be

M _ _
1 98,n(0) 38,,(0)
Fp=> — (3.14)
! m=1 O%n ﬁej (99k

As with Poisson data, the only dependence of the likeli-
hood or the Fisher information on the parameter is
through g,,(0).

D. Combined Poisson and Gaussian Noise

So far we have discussed Poisson and Gaussian noise as if
only one or the other were present, but in practice both
will contribute in most cases.

Suppose the mth detector element receives %,, photo-
electrons in some exposure time 7', responds to each with
responsivity R [Volts/photon], and feeds the result into a
readout channel with noise variance o2 [Volts?]. The out-
put of the electronics channel is denoted g,,, and its PDF
is given by

Pr(gn|0) = 2 Prignlkn)Pr(k,|6),
Fepp=1
where pr(g,,|k,,) is the Gaussian PDF of the electronic
signal for a fixed input and Pr(k,,|0) is the Poisson prob-
ability (not PDF) for the photoelectrons. If we assume
that all detectors have the same noise variance and re-
sponsivity, we obtain*!

(3.15)

M

pr(gl0) = [ ] pr(g,.|0)

Mooy (8 — Rk,p)?
s o]

[~ (0)]

Xexpl= o (0)——

(3.16)

Note that the only dependence on @ in this expression is
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Fig. 2. Plots of pr{g,, |%,,] for mixed Poisson and Gaussian noise:
(a) and (b) show prlg,, |%,,] versus g,, for fixed &,,; (c) and (d) show
prg,.|k,] versus k,, for fixed g,,. Plots (a) and (c) are for small

electronic noise (0=0.2 in electron units), and plots (b) and (d)
are for larger electronic noise (0=2.0).

through the means l;m(O), s0 pr(g,,| 0) can also be written

as prig,| k. (0)].

The dependence of pr{g,, |%,,(0)] on g,, is illustrated in
Figs. 2(a) and 2(b). The distinct peaks in Fig. 2(a) corre-
spond to different integer numbers of detected photons.
Figures 2(a) and 2(b) should not be confused with likeli-

hoods; when pr[g|,,(6)] is plotted against %,,(6) for fixed
g, as in Figs. 2(c) and 2(d), a smooth unimodal likelihood
results even when the variance of the electronic noise is
small.

An exact expression for the FIM for combined Poisson
and Gaussian noise is derived in Appendix A; a useful ap-
proximation is

g R? ok, (0) ok, (0)
F'k = — 5
T 2R (0) Y 96,

(3.17)

where £,,(60) is the mean number of photoelectrons. This
expression is exact for pure Gaussian noise or pure Pois-
son noise, and it is a good approximation for all values of

Em(()) so long as o/R (the standard deviation of the elec-
tronic noise in photon units) is at least 0.5.
With combined Gaussian and Poisson noise, all you

need to know to compute the FIM is l;m( 0) (plus the de-
tector characteristics R and o2, of course).

E. Detectors with Gain

Many detectors, including photomultipliers (PMTs), in-
tensified CCDs, electron-multiplication CCDs, and ava-
lanche photodiodes (APDs), have an internal gain mecha-
nism to increase the level of the signal before subjecting it
to electronic noise. Electron-multiplication CCDs are al-
ready being used in wavefront sensing, and arrays of
APDs and multianode PMTs (essentially many PMTs in a
common glass envelope) are also very promising for this
application.
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Two new features can arise in the stochastic data model
for detectors with gain. The obvious one is that the gain
process itself is noisy. A less-obvious effect is that in some
cases the gain process can introduce correlations in the
data values. In intensified CCDs or multianode PMTs, for
example, the secondary electrons produced by a single
primary photoelectron can spread over several neighbor-
ing output pixels.

Gain noise is no issue if the flux is low enough to allow
thresholding and photon counting. The distribution of
pulse heights is difficult to compute (see, for example,
Saleh and Teich42), but it does not matter if the individual
photons can be identified and counted.

Even spread of the secondaries to multiple pixels is not
necessarily a problem at low photon flux; the electronics
can be designed to recognize a cluster of pixels arising
from a single primary event and to assign the event to a
single pixel by some algorithm.*® If these measures are
taken (which they virtually never are), the output statis-
tics remain rigorously uncorrelated Poisson® in spite of
the gain noise and charge spread.

At the opposite extreme, if the primary photon flux is
high and the detector simply integrates all of the charge
at each pixel, then the effect of the gain noise in the ab-
sence of charge spread is mainly to increase the variance
by a factor studied by Burgess** and Swank.*® The case of
amplification with spread has been studied by Rabbani
and others.***" For a review of this work, see Barrett and
Myers,® Chap. 12. The outcome of these studies is easy to
summarize if the mean number of primary photons per
pixel is high; in that case we can invoke the central-limit
theorem to say that the resulting overall PDF is multi-
variate Gaussian. The covariance matrix can be deter-
mined theoretically from the work cited above, or it can be
measured for a particular detector. An important simpli-
fication in practice is that the correlations arising from
charge spread will have short range, if they occur at all,
so the covariance matrix will be diagonally dominant.

The intermediate case where the mean number of pri-
mary interactions per pixel is not low enough to permit
identification of the signals from individual photons, yet
not high enough that the central-limit theorem is valid, is
just beginning to receive scrutiny.48

F. PDF and Likelihood for Correlated Gaussian Noise
As we have seen, there are several possible situations in
which the data provided by a WFS can be described as
correlated Gaussian. In Subsection 3.E, we discussed cor-
relations arising from charge spread in certain detectors
with gain. Without charge spread, the data will be inher-
ently uncorrelated, at least if we define the correlation
with respect to the conditional PDF pr(g|#), where 6 in-
cludes all parameters that can affect the mean data.
When we use some subset of these parameters, however,
it often turns out that there are correlations induced by
the parameters we choose to leave out (see Subsection
5.A). Finally, as we shall see in Appendix D, computation
of centroids or other derived parameters usually results
in correlations. In all of these cases, it may turn out that
a more realistic data PDF is the correlated multivariate
normal Gaussian.
A general multivariate normal PDF has the form:
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pr(g) = [(2m)"det(K)] exp[ - (g - 8K (g-8) ],
(3.18)

where g is the mean vector and K is the covariance ma-
trix of g. The most general likelihood function is obtained
by letting the mean and covariance both be functions of 6:

pr(g|6) = [(2m)"det[K(6)]]""

xexp{- ;[g - 8(O)[K(O)] [g-&(0)]}.
(3.19)

4. PARAMETERIZATION

As in Subsection 2.C, here we shall denote the param-
eters we want to estimate by the N X 1 vector a, but we
must recognize that this parameter set is seldom suffi-
cient either to specify the wavefront fully or to completely
describe the PDF of the data. In this section we look at
some choices for @, what they imply for our representa-
tion of the wavefront, and how they have to be augmented
to get the full parameter set @ that describes the data.

A. Wavefront Representations

Suppose the wave incident on the WFS has the form
exp[ikW(r)], where r=(x,y) and k=2w/\. Let {v,, n
=1,...,%} denote an infinite set of parameters that can
be used to express an arbitrary wavefront exactly as

W(r) = > y,u,(r), (4.1)
n=1

where the set {u,(r)} is some orthonormal basis (e.g.,
Zernike polynomials). It is safe to say that we are never
interested in estimating the full wavefront or the infinite-
dimensional vector 7.

Sometimes we are interested in the N lowest-order
terms in Eq. (4.1) for their own sake. In ophthalmology,
for example, we might want to estimate the first N
Zernike coefficients in order to use them for the task of
planning laser surgery. In that case a reasonable choice
for the parameters of interest would be «a,=v,, n
=1,...,N.

In AO, however, the usual objective is to determine the
signals to be applied to the actuators of a deformable mir-
ror. The possible phase functions that can be produced by
a deformable mirror are assumed to be linear combina-
tions of its influence functions {¢,(r), n=1,...N}, where N
is the number of actuators. With this consideration in
mind, we can write Eq. (4.1) in the form

N
W(r) = D a,i,(r) + AW(r). (4.2)

n=1

The N X1 vector a is what is needed for mirror control
and hence a reasonable choice of parameters to estimate,
and AW(r) will be referred to as the residual. If the coef-
ficients {«a,} are chosen by least-squares (LS) fitting, the
residual is orthogonal to the sum and Eq. (4.2) is an or-
thogonal decomposition of the wavefront.

Another way of representing a wavefront is to divide it
into regions (subapertures), approximate the wavefront
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over each region by a small set of known functions that
are zero outside the region, and then append a residual as
in Eq. (4.2) to make the expansion exact. The coefficients
in the regional representation can then be estimated, not
for their own intrinsic interest, but so they can be used in
a subsequent estimation of the mirror-mode coefficients
.

As an example, consider a representation in terms of lo-
cal tilts. Suppose the jth region (j=1,...,<J) is centered at
r=r;, or equivalently x=x; and y=y;. Let the region itself
be defined by a support function S;(r), which is unity for r
inside the region and zero outside. We assume that all re-
gions are identical, so S;(r)=S(r-r;), and we assume that
different regions do not overlap. Local tilt functions in the
x and y directions can now be defined by

Sr-r)x-x) j=(Fk+1)/2
Xi(r) =

j=kI2

if £ odd
if 2 even’
(4.3)

Sr-r)ly-y)

These functions are orthogonal for square apertures, but
they are not normalized.

With the tilt functions, a representation similar to Eq.
(4.2) can be given as

2J

W(r) = D, mxa(r) + SW(r). (4.4)
k=1

This representation is particularly useful if the region is
small enough (e.g., much smaller than the Fried param-
eter in the atmospheric case) since then it may be a good
approximation to say that the wavefront in the region is
described completely by its tilts and pistons. The tilts are
accounted for by the sum in Eq. (4.4), and the pistons are
contained in §W(r). For a square aperture, the local pis-
ton is orthogonal to the tilt function so Eq. (4.4), like Eq.
(4.2), is an orthogonal decomposition of the wavefront.

B. Nuisance Parameters

There are two distinct classes of nuisance parameters in
wavefront sensing: intrinsic nuisance parameters related
to the wavefront expansion itself and extrinsic nuisance
parameters that arise from other sources.

Examples of extrinsic nuisance parameters include the
brightness of the guide star, length of the sodium column
when a laser guide star is used, level and distribution of
background light, and scintillation effects. Which of these
we need to consider depends on the application and the
data-acquisition system; in Section 5 we shall consider
brightness of the guide star and background light level as
examples.

Intrinsic nuisance parameters are the ones needed to
represent the residual in Eq. (4.2) or (4.4). Since the re-
sidual is an infinite-dimensional function (technically a
vector in the Hilbert space LLy(R?)), it might appear that
an infinite set of parameters would be needed, but not all
components of the residual influence the data.

One way to parameterize the residual is to recognize
that the sum in Eq. (4.2) or (4.4) defines a vector in a sub-
space of Lo(R2). Following terminology introduced by
Paxman,™ we can refer to this subspace as interest space
and to its orthogonal complement as indifference space. If
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Table 1. Vectors Relevant to Wavefront Sensing

Vector Meaning Dimension
g Raw data (photodetector outputs) Mx1
@ Parameters of interest Nx1
(e.g., mirror modes)
B Intrinsic nuisance parameters Kx1
Bt Extrinsic nuisance parameters LX1
B All nuisance parameters (K+L)x1
(/] All parameters that influence data Px1,
(P=N+K+L)
y Parameters in exact wavefront o X 1
representation
T Coefficients of local tilt functions in 2J X 1

JJ subapertures

we are interested in estimating the signals needed to con-
trol a deformable mirror as in Eq. (4.2), for example, the
mirror influence functions form a (nonorthogonal) basis
for interest space, and all functions in indifference space
are orthogonal to all influence functions.

We can define an orthonormal basis {E,(r)} for indiffer-
ence space by use of projection operators (see Barrett and
Myers6 for details), and then we can represent the re-
sidual as

AW(r) = D, BiME,(r). (4.5)
k=1

Though this sum is infinite, only a finite subset of the
terms, say K of them, will influence the data significantly,
and we can use those coefficients to define a KX 1 vector
Bt that describes the intrinsic nuisance parameters.

C. Summary of Parameters
The vectors that will be needed in Section 5 are summa-
rized in Table 1.

5. PRACTICAL LIKELIHOOD FUNCTIONS
AND FISHER INFORMATION MATRICES

The goal of this section is to show how the general prin-
ciples discussed above can be used to construct practical
likelihood functions and FIMs. Emphasis in this section
will be on the problem of directly estimating the mirror
modes without the intermediary of the reconstruction
stage in Fig. 1, but in Section 6 we consider the more com-
mon problem of estimating local tilts from Shack—
Hartmann data.

Any of the likelihood functions developed in this section
can be used for MAP estimation as well, provided one has
a meaningful prior on the parameters to be estimated.

A. General Considerations on Nuisance

Parameters

The first decision we have to make in constructing a prac-
tical likelihood function is what to do about intrinsic and
extrinsic nuisance parameters. The possibilities were
enumerated in Subsection 2.C; which option we use de-
pends in large part on the dimensionality of the nuisance
parameter.
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To be explicit, consider two specific extrinsic nuisance
parameters in astronomical wavefront sensing: the
brightness of the guide star and the average sky back-
ground. These two numbers form the components of a 2
X1 extrinsic nuisance parameter vector. Both can affect
the mean data strongly, so they should not be ignored [op-
tion (1) in Subsection 2.C]. Both vary significantly with
site, guide star chosen, and position in the sky, so typical
values [option (2)] would not be reliable, and prior PDFs
[option (5)] would be broad and relatively uninformative.
As we shall see below, however, both parameters can be
estimated from the same data as used to estimate the
wavefront parameters [option (3)] or from some expanded
data set [option (4)], and these would have to be the rec-
ommended options.

Often, however, intrinsic and extrinsic nuisance pa-
rameters require high-dimensional parameter vectors.
The sky background, for example, might be a complicated
spatial distribution rather than just a single number, and
many different modes can contribute to the intrinsic nui-
sance parameter B, In these cases any attempt to esti-
mate all components will increase the dimension and con-
dition number of the FIM and thereby increase the CRB
on the parameters of interest. (For a proof of this state-
ment, see Barrett and Myers,6 Sec. 13.3.8.). If the number
of nuisance parameters is larger than the number of mea-
surements, the FIM is singular and the CRB is infinite.

With high-dimensional nuisance parameters, therefore,
the only remaining options are to ignore them [option (1)]
or to marginalize over them [option (5)]. To reiterate a
point from Subsection 2.C, marginalization is optimal in
terms of risk if a meaningful prior is known.

B. Marginalizing Intrinsic Nuisances

If we are interested in estimating « from a data set g by
ML (or MAP) methods, we need the likelihood pr(g|a).
What we know from Section 3, however, is pr(g|6) or
pr(g|a, B). If we want to marginalize over all nuisance pa-
rameters, we need

pr(gla) = J LG pr(gla BprBle),  (5.1)

and if we want to marginalize over just the intrinsic nui-
sance parameters and estimate the extrinsic ones, we
need

pr(gla, p) = J d g™ pr(gla, g, B)pr(B™|a).
(5.2)

Note that we do not write pr(87”|a, ) in Eq. (5.2) be-
cause there is no apparent way that extrinsic parameters
like guide-star brightness and sky background can influ-
ence the wavefront being sensed.

In both Egs. (5.1) and (5.2), a conditional prior on B is
needed, and in keeping with the spirit of this paper, it has
to be a prior with experimental justification.

In astronomy, there is a large body of experimental evi-
dence supporting the Kolmogorov theory of atmospheric
turbulence. Central to that theory is the assumption that
phase perturbations are zero-mean Gaussian random pro-
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cesses, so the coefficient of any term in any linear repre-
sentation of a wavefront must be a Gaussian random
variable. We may therefore safely take pr(f™) as a
K-dimensional zero-mean multivariate normal density.
What we need in Eq. (5.2), however, is pr(8|a) rather
than pr(8”), and the dependence on a is a complication
since that is the main parameter we want to estimate.

There are two ways we can justify replacing pr(8|a)
in Eq. (5.2) with a multivariate normal independent of a.
The obvious one is simply to assume that g is indepen-
dent of a. A more subtle approach is to recognize that in a
closed-loop system where a represents the coefficients of
the mirror modes, the effect of the AO system is to drive «
close to zero. We can formalize this notion by the closed-
loop approximation:

pr(B"|a@) = pr(B™|a=0). (5.3)

It is shown in Appendix B that pr(g"|a=0) is itself a
zero-mean multivariate normal of the form

pr(f"|a=0) = Nexp[- ;(B")'C(B™)], (5.4)

where N=[(2m)Edet(C)]"2 and C is a covariance matrix
known as a Schur complement; if 8 and « were uncor-
related, C would be just the covariance matrix of g™
With Egs. (5.3) and (5.4), the desired likelihood function
[Eq. (5.2)] becomes

pr(gla, ) =~ N f d*p™" pr(gle, g, B)

xexp[ - 3(B™)CHB™].  (5.5)

To proceed, we must choose a form for the likelihood
conditional on all relevant parameters, pr(g|a, 82, gi™).
The simplest choice is the i.i.d. normal model presented in
Subsection 3.C. Using Eqgs. (3.11) and (5.5), we can write

pr(gla, ) =\’ f a“p

0

M = xt pint)12
[gm_gm(a,ﬂe aﬂL )]
X —
exp|: m§=:1 502

xexp[ - 3(B™)'CHB™)], (5.6)

where the integral runs from —o to « over all K variables
and N’ =N(2m02) M2 This integral would be the convolu-
tion of two Gaussians, immediately yielding another
Gaussian, except that B enters into the first factor in
the integrand in a complicated way through the mean
Gm(a, B, B™); we can fix this problem by assuming that
the effect of 7 is small, performing a Taylor expansion
of the mean, and retaining only the first two terms. De-
tails are given in Appendix B, where it is shown that

pr(g|a, ) =~ N'exp{- ;[g - &(a, *,0)'
<K ilg - g(a, f,0)]'}, (5.7)

where N"=[(2mMdet(K,,,)] V2 and
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K,,, = oI+ ACA’, (5.8)

with A being a matrix defined in the appendix. Note that
the fact that g,,(a, 8, B™) is evaluated at B7'=0 does
not mean that the unwanted modes are being set to zero;
rather it comes from the assumption that g has zero
mean and that excursions about the mean are small
enough to allow a first-order Taylor expansion.

To the first order, Eq. (5.7) shows that the likelihood af-
ter marginalizing over the intrinsic nuisance parameters
is a multivariate normal with mean determined without
any consideration of the nuisance parameters. To this or-
der, the only effect of the unwanted modes is to add a new,
nondiagonal term to the covariance matrix. This result
generalizes easily to include readout noise that varies
from detector to detector, gain noise, and even photon
noise so long as the Poisson can be approximated by a
Gaussian.

In practice, neither C nor A is known, but it is straight-
forward to simulate realizations of Kolmogorov turbu-
lence, either fully digitally or with a spatial light modula-
tor, and to find a sample covariance matrix that is an
experimental approximation to ACA!. The matrix inver-
sion required in Eq. (5.7) can then be performed by meth-
ods described in Chap. 14 of Barrett and Myers,6 even if
the sample covariance matrix is not full rank.

To summarize this subsection, we have seen that there
are several possible approaches to choosing a prior with
which to marginalize over the nuisance parameters. In
the view of the authors, the final justification for making
this choice will have to come from a meaningful, task-
based performance assessment of the overall AO
system.35

C. Poisson Data with Negligible Intrinsic Nuisances
Sometimes we can get away with the assumption that
there are no intrinsic nuisance parameters. In Shack—
Hartmann sensors with relatively small subapertures, for
example, it is probably valid to neglect aberrations other
than piston and tilt; piston does not affect the data, and
tilt is what we want to estimate, so there are no intrinsic
nuisance parameters.

If there are no significant intrinsic nuisance param-
eters and we choose to estimate the extrinsic ones, then
all of the likelihood functions and FIMs derived in Section
3 are immediately applicable, just by identifying

()

In particular, for pure Poisson data, the log-likelihood is
given by Eq. (3.2), which we can rewrite as

M
In Pr(g|e, ) = D, {~ (@, B) + g, In[Z (e, )]}
m=1
(5.9)
The term In g,,! has been dropped since it is independent

of the parameters and hence does not affect the likelihood
[Pr(g| ) regarded as a function of @ for fixed g].
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Consider the case where the extrinsic nuisance param-
eter is only the brightness of the guide star (or other point
source), denoted I;,. In that case we can express the mean
data as

gnlalo) =Iof,(a), (5.10)
where f,,(a) is a characteristic of the individual detector
element, defined in such a way that If,,(a) is the mean
number of photons detected by the mth element when the
wavefront is fully described by the vector a. The log-
likelihood is now given by

M M
In Pr(gla,lo) == 1, >, fu(@) + 2, g, Inlf,,(@)]+ Ny, In(Z),
m=1 m=1

(5.11)

where NtotEE%ﬂgm is the total number of detected pho-
tons.

1. Fisher Information with One Nuisance Parameter

If @ is an N X1 vector and the only nuisance parameter
is the guide-star brightness, then the FIM is (N+1)
X(N+1). The derivatives needed in the FIM are

M [gm _gm(a’IO)] afm(a)

’

J
—— InPr(glaly) = X

n m=1 fm(a) aan
(5.12)
a 1M
— InPr(gla,Iy) = — X [, - Em(a))]. (5.13)
‘?IO IOm:l
The statistical average needed in the FIM is
<[gm _gm(ale)][gm’ _gm’ - (a’lo)]>g\a,lo =gm(a>IO)5mm’;
(5.14)
and the elements of the FIM are found to be
oy L (@ (@ T
)= 5 = y
" 0m=1 fm(a) day, day, o
(5.15)
X (@
Fn,N+1 =F'N+1,n = 2 (n = ]V), (516)
m=1 é’O‘n
N, 1M
Fnane= —20 =—> fula), (5.17)
0 IOm:l

We see, therefore, that the FIM for this problem is a par-
titioned matrix with the structure

Avxy By
F= (5.18)

t ’
By Cua

where the elements of A [given by Eq. (5.15)] scale as I,
the elements of B [given by Eq. (5.16)] are independent of
I, and C is proportional to 1/1.
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2. Inclusion of Sky Background

Now we consider an additional nuisance, the sky back-
ground treated as a uniform incoherent source. This ad-
ditional radiation does not spoil the Poisson assumptions,
but instead modifies the mean data with an additional
term. If each detector receives the same amount of sky ra-
diation on average, then Eq. (5.10) becomes

Emla,Ipb) =Iof,,(a) + b, (5.19)

where the scalar b, defined as the mean number of de-
tected background photons per pixel, is now one addi-
tional nuisance parameter. If dark current is significant,
its effect can also be included in b.

With two nuisance parameters, the log-likelihood Eq.
(5.11) becomes

M
In Pr(g|e,y,b) = =1y Y, frn(@) - Mb
m=1
M
+ >, g Inllf(@) +5]. (5.20)
m=1

The FIM is now (N+2)X(N+2), and the derivatives
needed for its computation are

3 Mg, -8n(alob) |of,
7 bl =1, S [g Gnlal, )} frn(@)

’

n m=1 gm(a’lo,b) ﬁan

(5.21)
M

] fn(@)

— InP 1,.b) = -8 Ip,b) | —/———

(910 n I‘(g|a, 0> ) m2=1[gm gm(a7 0> )]Iofm(a)'Fb,
(5.22)

o Priglado) g 8n = Enl@1o,b) (5.9

— Inrr a,ly,0)= - — - . | .

ab g 0 m=1 gm(ll,lo,b)

The elements of F' can now be computed with the help of a
slight generalization of Eq. (5.14).

D. Maximum-Likelihood Estimation from Gaussian
Measurements

Subsection 5.C dealt with purely Poisson noise, but we
saw earlier that there are several situations in which the
Poisson model is incorrect. Electronic readout noise and
gain noise are continuous random variables and hence
not Poisson, and we saw in Subsection 5.B that margin-
alizing over unwanted wavefront modes can yield a mul-
tivariate Gaussian likelihood.

It is well known that ML estimation with Gaussian
data is basically LS fitting. If the mean data are linear
functions of the parameters to be estimated, then ML es-
timation is the same as linear regression, with the regres-
sion function being the negative of the log-likelihood. The
ML solution in this case is obtained by matrix inversion
or pseudoinversion.6 In wavefront sensing and many
other applications, however, the mean data depend non-
linearly on the parameters, so no linear method will de-
liver ML estimates.
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1. Independent Gaussian Measurements

A general likelihood for statistically independent Gauss-
ian measurements is given in Eq. (3.13). If we allow the
variance to depend on @ for generality, the corresponding
log-likelihood boils down to

M [gm - gm(g)]2
———— +constant. (5.24)

In pr(g|6) = - =
pr(g|0) 22 2
Because of the leading minus sign, maximizing the log-
likelihood is the same thing as minimizing a weighted
norm of the difference between the measured data vector
g and the predicted mean data g(#). ML estimation from
independent Gaussian data is a nonlinear regression.

2. Correlated Gaussian Measurements

Detectors with gain may deliver inherently correlated
Gaussian data, and marginalizing over nuisance param-
eters may induce correlations even when the detectors
themselves do not. The log-likelihood in these cases is
given by

M M
Inpr(gld)=-35> >, [gn-En(OTK Llgn —5n (0]
m=1

m'=1
=-;[g-EOK'[g-80)], (5.25)

where K is a covariance matrix which, in the most gen-
eral case, can depend on 6.

6. APPLICATION TO A SHACK-HARTMANN
SENSOR

Though the likelihood models developed above are appli-
cable to any wavefront sensor, the familiar Shack—
Hartmann sensor provides an instructive example. In its
simplest form, a Shack—Hartmann sensor consists of an
array of lenslets in, say, the plane z=0, and an array of
photodetectors in a parallel plane, z=z, (where z, is not
necessarily the focal length of the lenslets). The data from
the entire detector array can, in principle, be used to es-
timate the full set of parameters of interest «, but in prac-
tice a subset of the data associated with a single lenslet is
used to estimate local tilts, which are then used to esti-
mate « in a separate reconstruction step. In this section
we first look at the conventional problem of estimation of
local tilts and then discuss the application of likelihood
principles to estimation of a.

A. Estimation of Local Tilts from Poisson Data
If the geometry in a Shack—Hartmann sensor is chosen so
that radiation passing through one lenslet falls only on
one subset of the detector pixels, then the local wavefront
parameters for each lenslet can be estimated indepen-
dently of those for other lenslets. Moreover, if the wave
over one lenslet is well described as a pure tilt, then there
are no intrinsic nuisance parameters, and the likelihood
functions given in Subsections 5.C and 5.D are applicable
if we simply replace the general parameter @ with the 2D
tilt vector 7 for the lenslet of interest.

In particular, if the noise is Poisson and the unknowns
are the guide-star brightness and two components of the
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local tilt, then the log-likelihood, given by Eq. (5.11), is
specified by the set of functions {f,,(7)}, where the index m
now runs over only those detector elements that receive
radiation from the particular lenslet. For a normally inci-
dent plane wave in a Shack—Hartmann sensor, the lenslet
produces an irradiance distribution on the detector plane
(a “spot”) denoted by s(r). If z is the focal length of the
lenslet, then s(r) is the squared modulus of the (suitably
scaled) Fourier transform of the pupil function, but in
general it can also be a defocused image of the pupil. In
either case, the effect of a pure tilt is to shift the spot, and
the mean output of the mth detector element is obtained
by multiplying the irradiance by the responsivity function
of that element, d,,(r), and integrating

() = f d?rd,,(r)s(r —z¢7). (6.1)

The units are again chosen so that Iyf;,(7) is the mean
number of photons from the guide star detected in ele-
ment m. Thus f,,(7) is the mean response of the detector
element as a function of the shift of the spot.

1. Some Simplifying Assumptions

A common assumption made in analyzing Shack—
Hartmann sensors is that there is no light loss as the spot
shifts, so that

My
E fm(7) = fi,: = constant, (6.2)
m=1

where M, is the number of detector elements associated
with a particular lenslet and 7 is the 2D vector of x and y
tilts over that lenslet. The assumption in Eq. (6.2) is valid
if (a) there are no gaps between detector elements; (b) the
responsivity of all detector elements is the same; (c¢) oblig-
uity and other angular factors are neglected; (d) the spot
does not fall off the area of the detector associated with
the lenslet; and (e) that detector area does not receive
light from adjacent lenslets. With these restrictive physi-
cal assumptions and the assumptions of pure Poisson
noise, no intrinsic nuisance parameters and no sky back-
ground, the log-likelihood from Eq. (5.11) becomes

My
lIl Pr(g|7,10) = _ftotIO + E 8m ln[fm(f)] +Ntot 111(10),

m=1

(6.3)

where 71is now a 2D vector specifying the x and y compo-
nents of tilt over that lenslet.

Equation (6.3) is the form of the log-likelihood used
most commonly in the literature on wavefront sensing,
though it is also common to go further and consider a very
large number of small detector elements so that d,,(r) can
be treated as a delta function.

One advantage of assumption (6.2) is that the FIM be-
comes block diagonal since
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& ifuln 0 4
> =— > fu(n) =0. (6.4)
m=1 ‘97'11. &Tn m=1

Thus, as shown by Eq. (5.16), the off-diagonal blocks B in
Eq. (5.18) vanish, and the CRBs on 7 and I, are readily
computed.

A consequence of the block-diagonal FIM is that the
CRB on the estimates of the parameters of interest, 7, is
obtained just by inverting the A block in Eq. (5.18).
Therefore it is the same as if C were not present, and
there is no penalty in the performance bound for includ-
ing I, in the parameter list.

Another consequence of model (6.3) and the block-
diagonal FIM is that I and 7 can be estimated separately.
The ML estimate of I, is obtained by setting
JIn Pr(g|=,1,)]/dl, as given by Eq. (5.13) to zero and by
using Eq. (5.10); the result is

M
E : Em Ny

A m=1
I = = .
S e S o

If Eq. (6.2) holds, the denominator is independent of the =
and the guide-star brightness can be estimated indepen-
dently of the tilts. The ML tilt estimates 7 are then found
by setting J[ln Pr(g\r,lo)]/ﬂrn as given by Eq. (5.12) to
zero. The result is

(6.5)

M g (7

m=1 fm(f) at,

=0 when 7=7. (6.6)

This result does not require knowledge of the guide-star
brightness, so we may as well ignore it; we emphasize,
however, that this result requires that there be no light
loss, no overlapping with adjacent lenslets, no sky back-
ground, and pure Poisson noise.

2. Joint Estimation of Tilts and Nuisance Parameters

If Eq. (6.2) does not hold or if there is a sky background,
all parameters associated with a single subaperture must
be estimated jointly. The derivative formulas are not par-
ticularly useful, and the best we can say is that the log-
likelihood from Eq. (5.20) must be maximized:

M, My
1> fou(?) =Mb + >, g, In[If,,(7) + b] = maximum
m=1 m=1

at r=1ly=I,b=b. (6.7)

In this general case, the FIM is not block diagonal and the
CRB is increased by having to estimate I, and b.

3. Auxiliary Data

One way to simplify the ML estimation of the parameters
of interest and to avoid the increase in variance that re-
sults from having to estimate nuisance parameters is to
acquire more data. Additional telescopes could be used to
measure the guide-star brightness and sky background.
Their collection apertures could be much larger than that
of a single lenslet in a Shack—Hartmann sensor, and if
scintillation effects are not important their integration
time could be much longer. The resulting estimates of I,



Barrett et al.

and b could have very low variance, so these parameters
could be regarded as known.

If additional monitors are not practical, the data from
all lenslets could be used to estimate I, and b. With
lenslets and the wavefront described by pure tilt, the com-
plete data set is described by 2J +2 parameters (two tilts
per lenslets plus two global nuisance parameters), which
is an improvement over the 4J we would have if two tilts
and two nuisance parameters were to be estimated from
the data associated with each lenslet. Even if scintillation
does occur, it will not affect the diffuse sky background, so
at least b can be treated as a global parameter.

B. Estimation of Global Wavefront Parameters

Above we considered the traditional operation of a Shack—
Hartmann sensor in which the goal is assumed to be es-
timation of local tilts from data associated with individual
lenslets. Once that is accomplished, the true goal of esti-
mating global parameters in an expansion like Eq. (4.2) is
often considered to be a separate problem.

This dichotomy is tenable in a Shack—Hartmann sensor
only if radiation passing through one lenslet does not
reach the detector pixels associated with an adjacent lens-
let, but this condition is quite restrictive. Even if the de-
tectors lie in the focal plane of the lenslet, the tails of the
point-spread function from the lenslet of interest can
overlap the pixels associated with an adjacent lenslet. Ap-
proaches to dealing with this problem and arriving at fi-
nal ML estimates of global parameters are discussed be-
low.

1. Likelihood Models with Overlap

Suppose we want to estimate local tilts using only the
data from detector elements under a particular lenslet,
even though light from other lenslets contributes to the
data from those elements. We could simply ignore the
problem and find ML estimates of the local tilts from an
erroneous likelihood model. A rigorous mathematical
treatment of the errors resulting from misspecified likeli-
hood models is given by Halbert White,”® who showed
that there are many circumstances under which such
quasi-ML estimators (QMLEs) have very useful proper-
ties. As with true ML estimators, the PDFs of QMLEs
may asymptotically approach multivariate normals,
though not necessarily with the inverse of the FIM as the
covariance matrix, and they may be consistent estima-
tors. White also gives several useful tests of the degree of
misspecification of the likelihood model. No research has
appeared on applying White’s theories to wavefront sens-
ing, so it is not yet clear what can be said about QMLEs of
local tilts or when the likelihood specification is adequate.

Rather than ignoring the overlap problem, an alterna-
tive would be to treat the tilts in adjacent lenslets as nui-
sance parameters for the purpose of estimating the tilts
over a given lenslet. Then the general theory developed in
Subsection 5.B would be applicable and a multivariate
normal model, like Eq. (5.7) but with the 2D vector 7 in
place of @, would result after marginalization.

Finally, we could consider inserting physical dividers
between the lenslets to prevent the overlap, ensuring that
the local likelihood model was valid. An immediate conse-
quence would be that assumption (6.2) would not hold
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and hence it would be necessary to estimate the guide-
star brightness (or measure it independently) along with
the local tilt.

2. Maximum-Likelihood Estimation of Mirror-Mode
Coefficients

There are several possible ways of getting ML estimates
of the vector of mirror-mode coefficients «, depending on
what we use as the initial data.

If we have valid ML estimates of local tilts, we may be
able to get ML estimates of @ by use of the ML invariance
principle (2.15), at least when J (the number of lenslets)
and N (the number of mirror actuators) are both large.
Details of this approach and conditions for its validity are
given in Appendix C, but the conditions are difficult to
meet in practice.

Alternatively, if we have any estimates at all of local
tilts, even centroid estimates, we can use them as data
from which to estimate « so long as we can construct the
relevant likelihood model. If we denote the estimates as 7,
the likelihood we need is pr(#| ). As we show in Appendix
D, however, finding the relevant likelihood can be compli-
cated, and without an accurate likelihood, neither ML nor
MAP estimation of @ can be considered optimal in any
sense.

A better approach is to start with the raw data g (the
detector outputs {g,,} for all m, not just the ones associ-
ated with a single lenslet). The likelihood function in that
case is pr(g|a), which is just what we have been discuss-
ing throughout this paper. Any of the likelihood models
from Section 5 can be used.

C. Simulation Results

To illustrate the theory developed in this paper, we per-
formed several simulation studies of a Shack—Hartmann
sensor.

In the first study, designed to test the ability of the ML
method to reduce nonlinearity in a Shack—Hartmann sen-
sor, only a single lenslet was considered, and a 2 X 2 array
of photodetectors (often called a quad cell) was placed in
its focal plane. The irradiance for a given tilt, s(r-z(7) in
Eq. (6.1) was assumed to be a 2D Gaussian function, and
the mean response functions, f,,(7), m=1,...,4, were
found by performing the integral in Eq. (6.1) numerically;
the results are shown in Fig. 3.

These response functions were then used to generate
pure Poisson data for an 8 X 8 array of tilts. For each po-
sition in the array, 200 realizations of a 4D Poisson ran-
dom vector (one component for each detector in the quad
cell) were generated. These data were used in both a stan-
dard centroid estimator (see Appendix D) and a simple
ML estimator based on the Poisson statistics. There were
no nuisance parameters, and the log-likelihood was given
by Eq. (6.3) with I, assumed known. The maximization of
the likelihood was performed by a Nelder—-Mead algo-
rithm implemented in the Matlab function fminsearch.
Each of the resulting estimates was plotted as a point in a
2D image, one image for the centroid estimates and one
for ML. These images, shown in Fig. 4, are thus approxi-
mations to the PDF's of the tilt estimates when the true
values are delta functions on an 8 X 8 array of points.
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Fig. 3. (Color online) Display of the response functions f,,(7)
used in simulation of a Shack—Hartmann sensor with a single
lenslet and a 2 X2 array of photodetectors. Each plot represents
the mean response of one photodetector as a function of the x and
y components of the wavefront tilt.

ML estimate

Centrold estimate

Fig. 4. Left, centroid estimates of an 8 X8 array of tilts from
Poisson data in a quad-cell Shack—-Hartmann sensor; right, ML
estimates from the same data.

With the centroid estimator, only a 6 X 6 array of points
is seen on the left in Fig. 4; the outermost points overlap
with their neighbors, and information about these larger
tilts is irretrievably lost. This problem cannot be elimi-
nated by any form of nonlinearity correction; no transfor-
mation of the left image in Fig. 4 can remove the complete
overlap of the outermost points with their neighbors.
With the ML estimator, on the other hand, the nonlinear-
ity is almost completely eliminated (the estimator is
nearly unbiased), and the dynamic range of the quad-cell
sensor is approximately doubled. Both estimators are
nearly unbiased and efficient for a point in the center of
the array.

A more extensive comparison of ML and centroid esti-
mations of tilts, taking account of nuisance parameters
and null functions and exploring a much wider range of
noise characteristics and photodetector arrays, will be
published separately.

A second simulation study considered estimation of
wavefront parameters directly from photodetector out-
puts without an intermediate estimation of tilts. A wave-
front aberration was simulated using the 12 Zernike poly-
nomials between the 2nd and the 4th radial order with
positive coefficients that followed Noll's>® mean-square re-
sidual error distribution for D/rq=16 (the total wavefront
rms was 3.28 rad). A pixellated (CCD) image of the spot
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pattern of the wavefront aberration in a Shack—
Hartmann sensor was simulated on a computer using the
discrete Fourier transform (DFT) implementation of the
Fresnel diffraction formula. The simulated detector had
128 X 128 square pixels, and the Shack—Hartmann sensor
had 16 square lenslets across the diameter of the full pu-
pil (8 X 8 pixels on the detector for each lenslet). The focal
length of the lenslets was set to approximately 50 times
the lateral size of each lenslet.

Fifty realizations of pure Poisson deviates of the CCD
image were generated for each of six different light levels:
1021, 10"Y2, 10, 10%2, and 100 photons/lenslet. The co-
efficients of the 12 Zernike polynomials included in the

ML vs Traditional WFS: 50 noise realizations for each light level
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Fig. 5. Comparison of traditional LS estimation of wavefront co-
efficients from centroid data versus direct ML estimation from
photodetector outputs. Parameters used in the simulation in-
clude: =680 nm; pupil diameter=24 um X 128=3072 um; lenslet
size=192 um; CCD pixel size=24 um; and focal length=9.9 mm.
The wavefront was sampled at 1726 points across the pupil di-
ameter, and 322 rows and columns of zeros were used to pad the
wavefront function to a 2048 X 2048 array before computing the
FFT. The markers represent the mean, and the error bars repre-
sent the standard deviation of the residual wavefront rms of the

50 estimations for each light level.

ML vs Traditicnal WFS: 50 noise realizations for each light level

o ML Estimation f
A Trad. Centroid Estimation

10

RMS of original wavefront

z

E 8.

>

c

8

el

T 6

[} A

=

T o4t

©

2 L }

‘B

oo}

o 2 } { }

§ 2 7 x

o= N L L o Py
0.3 1 3.2 10 32 100

Average number of photoné per subaperture (200 subapertures)

Fig. 6.

Same as Fig. 5 except that global tip and tilt were not

removed from the simulated wavefront and were also included in
the coefficients to estimate.
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wavefront were estimated from the same data by using
both ML and traditional centroiding with LS reconstruc-
tion. The results of the simulations are shown in Fig. 5. In
another study, the aberrated wavefront also included glo-
bal tip and tilt, for a total of 14 unknown coefficients; the
results in that case are shown in Fig. 6.

As seen from the figures, direct ML estimation can offer
up to a fourfold advantage in residual wavefront error
(ninefold if the global tip and tilt terms are not corrected
separately), suggesting that there is indeed a significant
loss of information in the tilt-estimation step (the prepro-
cessing stage in Fig. 1). Such a loss is not surprising since
tilt estimation in this case reduces an 8 X 8 array of pho-
todetector outputs to just two centroids.

It is also noteworthy that a significant reduction in
wavefront error can be achieved with an average of 0.32
photons/subaperture, or 0.005 photons/detector element.
Of course this level of performance would not be obtained
if sky background or readout noise were considered, but it
is possible that ML methods would have even larger ad-
vantages over traditional methods in these cases because
of more accurate statistical modeling. A detailed study of
these issues is in progress.

7. COMPUTATIONAL METHODS

Astronomical WFSs must respond on a time scale of
10-100 ms, depending on wavelength and wind speed,
and any computations performed by the sensor must be at
least this fast. Since ML estimation usually uses an itera-
tive search for the maximum, it might seem difficult to
meet this requirement, but we can draw on methods de-
veloped for the closely analogous problem of ML position
estimation in scintillation cameras for gamma-ray imag-
ing. In that application, the computation must be carried
out in a few microseconds rather than milliseconds, but
hardware and software approaches that meet this goal
have been demonstrated. In this section we summarize
these approaches and then discuss how they can be ap-
plied to wavefront sensing.

A. Computational Approaches from Gamma-Ray
Imaging

In a scintillation camera, a gamma ray interacts in a scin-
tillation crystal such as sodium iodide and produces a
flash of light that illuminates an array of PMTs. The ob-
jective is to determine the coordinates of the interaction
event and the strength of the light flash, which is propor-
tional to the gamma-ray energy. Since the estimate must
be obtained for each gamma-ray photon, and the photons
arrive randomly at mean rates that can exceed 10°
events/s, it is desirable to carry out the estimation in 1 to
2 us.

If the scintillation crystal is relatively thin, it suffices
to estimate the lateral coordinates (x,y) of the scintilla-
tion event, but at high gamma-ray energies a thicker
crystal must be used, and the z coordinate (normal to the
entrance face of the crystal) also influences the data. De-
pending on the application, the z coordinate, referred to
as the depth of interaction, can be regarded as a nuisance
parameter or as another parameter to estimate. If the
variables to be estimated are x, y and the brightness of
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the flash I, then the estimation problem in a scintillation
camera is equivalent to estimating the two components of
tilt and the guide-star brightness in wavefront sensing.

In some problems two gamma rays can be absorbed si-
multaneously in the scintillation crystal, either because
the radioisotope emits two photons in a rapid cascade or
because of Compton scatter in the crystal. In these cases
the number of parameters to estimate can be as large as
eight (three spatial coordinates and energy for each of two
photons). Alternatively, the properties of the secondary
photon can be treated as additional nuisance parameters.

For the scintillation cameras developed at the Center
for Gamma-Ray Imaging of the University of Arizona, the
data dimension M is either 4 (a 2 X2 array of photomul-
tipliers), 9 (a 3 X 3 array), or 64 (an 8 X 8 array). Thus the
goal of the processing is to estimate a set of 2-8 param-
eters from a set of 4-64 measurements in about 2 us.

The statistical models used with scintillation cameras
are remarkably similar to those considered in this
paper.52 In most cases the log-likelihoods have the struc-
ture

M
In pr(g|®) = >, In prlg,,|g,.(®)], (7.1)
m=1

where 0 is the set of parameters to be estimated. In this
paper the only log-likelihood not in the form of Eq. (7.1) is
Eq. (5.25), where a correlated multivariate normal was
obtained by marginalizing over intrinsic nuisance param-
eters. Similarly, in a scintillation camera, a multivariate
normal can be used to describe the likelihood that results
from marginalizing over the depth of interaction.

When the log-likelihoods have the form of Eq. (7.1),
their dependence on @ is determined by the set of means
{€,(0®)}, which we refer to as mean detector response
functions or MDRFs.2"?® The MDRFs can either be mea-
sured directly with a collimated source of gamma rays or
be simulated by an optical transport code that models the
camera. Once they are known, they can be stored as
look-up tables, even when the dimension of ® is as large
as 8. For N=2, when the problem is just to estimate the
(x,y) coordinates of each scintillation event, then each
Z.,(0) can be stored as a K, X K, image, where K, is the
number of discretization steps in x or y (K,=128 or 256,
say). Even with 64 PMTs, therefore, the storage require-
ments are modest. If we add the depth of interaction z as
a parameter to estimate, the necessary storage increases
by a factor of K, the number of steps in z, but this is typi-
cally only 10 or so. Adding the photon energy to the list of
parameters requires no additional storage since the
MDRF factorizes in the same way as in Eq. (5.10). Esti-
mating the coordinates of two simultaneous events in-
creases N to 8 but does not increase the storage required
for the MDRF's, since the total light incident on any PMT
from the two events is just the sum of the contributions
from the individual event, to a good approximation.

With stored MDRF's, evaluation of the log-likelihood at
any O can be accomplished rapidly by looking up the
value of g,,,(®) for each m, using a second look-up table to
find each Inpr{g,,|2,,(®)], and adding the results. The
second look-up table has K,, X K; entries, where K,,, is de-
termined by the analog-to-digital (A/D) converter used to
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digitize the photomultiplier signals and Kj is related to
the resolution used for g,,(0®); the dimension of @ is irrel-
evant in this table.

Since it is not so easy to compute and store derivatives
of the MDRF's, search algorithms for finding the ML esti-
mates in scintillation cameras have concentrated on
methods that require the value of the log-likelihood but
not gradients or Hessians. For searching over just the x
and y coordinates, it is feasible to choose a reasonable
starting point, say the coordinates of the PMT that gets
the largest signal, and then do an exhaustive search over
a subset of x and y in this vicinity.

Exhaustive search fails when additional parameters
are to be estimated, and in those cases useful search al-
gorithms include iterative coordinate descent, variations
on the Nelder-Mead simplex, and multigrid algorithms.
Iterative coordinate descent performs a sequence of 1D
searches on each of the N individual components of ® in
turn, while simplex methods compute the log-likelihoods
on a set of N+1 points in the N-dimensional parameter
space at each iteration and use some rules for modifying
the coordinates of the points in order to go to the next it-
eration. Multigrid techniques are similar to simplex
methods in that the log-likelihood is computed on a set of
points at each iteration, but the points are regularly
spaced in parameter space; a coarse spacing is used ini-
tially and is then reduced as the iteration proceeds. Con-
jugate gradient searches, as suggested by Cannon?! for
global wavefront estimation, are very effective when gra-
dients can be calculated analytically. All of these methods
work well when the function being searched is smooth
and unimodal, as is usually the case with log-likelihoods
for scintillation cameras.

Furenlid®’ and Hesterman®® have recently imple-
mented a multigrid method for scintillation cameras. In
initial experiments, a 4 X4 grid of points was used in a
two-dimensional parameter space, and the grid spacing
was halved at each iteration. The algorithm converged in
six iterations to exactly the same estimates as those
found by an exhaustive search. The calculation requires
16 us in C on a single Macintosh G5 computer, but Furen-
lid has shown that it can be converted to a pipeline pro-
cess in a field-programmable gate array (FPGA). In that
case all likelihood calculations are done in parallel, and J
iterations of the algorithm require just J clock cycles,
where each clock cycle is a few nanoseconds with modern
FPGAs. There should be no difficulty in principle in using
a similar pipeline architecture with a simplex search.

Finally, we mention that for the special case of estima-
tion from four measurements, as with a 2X2 array of
photodetectors, the entire search process can be per-
formed offline and stored in a look-up table for all possible
combinations of the four signals. If K,, A/D levels are used
for each measurement, then there are 45 locations in the
table, and the final ML estimate of up to four parameters
can be stored at each location. A useful practical trick is to
take the square root of the measurements before coarse
discretization in order to make the variance approxi-
mately constant, and with this measure it is found that
6-bit quantization (K,,=64) suffices, so the look-up table
is easily stored in memory. No real-time search is needed,
and the estimate is available in the time required to do a
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single memory access. This method has been used rou-
tinely for two decades with four-PMT scintillation cam-
eras at the University of Arizona.?"?

B. Methods for Maximum-Likelihood Estimation in
Wavefront Sensing

The methods discussed above for scintillation cameras are
immediately applicable to estimation of tilts over one sub-
aperture of a Shack—Hartmann sensor, even with one or
two nuisance parameters. The multigrid method with an
FPGA devoted to each subaperture will give the estimate
in less than a microsecond for any realistic number of de-
tectors per subaperture, and data from multiple subaper-
tures can readily be multiplexed through a single FPGA.
Even when the multigrid method is implemented on a
single processor, it appears that it will allow estimation of
all subaperture tilts in less than a millisecond. Moreover,
if a Shack—Hartmann sensor with nanosecond response
should ever be required, it can be achieved by using 2
X 2 arrays of fast detectors at each subaperture and
look-up tables for the final ML estimates of subaperture
tilts.

The computational difficulties in ML estimation in-
crease with the number of parameters being estimated
and the number of independent measurements, and it is
not so obvious that the speed requirements for astronomi-
cal wavefront sensing can be met if we choose to estimate
a large number of modal coefficients {«,,, n=1,...N} from
the entire set of detector measurements directly. If these
coefficients specify the possible configurations of a de-
formable mirror, then N is the number of actuators, which
ranges from 20 to 40 in laboratory systems to hundreds or
even thousands in large telescopes.

The dimension of the data vector is also a concern. The
number of independent measurements does not exceed
the number of pixels in the detector array in the wave-
front sensor, but in many cases it can be much less. With
a Shack-Hartmann or any other sensor that divides the
wavefront into subapertures, the local parameters associ-
ated with one subaperture (e.g., local tilts and/or curva-
tures) can be estimated from the data associated with
that subaperture. Moreover, many of the data values will
be near zero in practice and can be omitted from the data
vector. For example, a diffraction-limited spot in a Shack—
Hartmann sensor will illuminate a fraction ~()\fl)2/D§1 of
the detector pixels, where D, is the diameter of the lenslet
and f} is its focal length; other pixels can be set to zero by
thresholding. Similarly, if the readout noise is low enough
that a single photon can be detected, the number of non-
zero measurements after thresholding does not exceed the
number of detected photons.

The dimension of the data vector used for an estimation
problem can be also reduced by computing functions of
the raw data called sufficient statistics. By definition, a
set of sufficient statistics contains the same information
about the estimation problem as the raw data does, but if
the dimension of the set is much less than the number of
original measurements, a considerable computational
saving can be achieved. There is some current activity in
finding sufficient statistics for position estimation in scin-
tillation cameras,”® and these methods are potentially
useful in wavefront sensing as well.



Barrett et al.

The complexity of the search algorithm depends on the
dimensions of both the data and the parameter space. To
illustrate the point, consider the Poisson model [Eq. (5.9)],
where the only nuisance parameter is a global guide-star
brightness Ij; this model is valid if N is large and there is
no atmospheric scintillation. Under these same assump-
tions, the total light reaching the detector plane is inde-
pendent of the wavefront parameters «, and if the detec-
tors are identical and there are no gaps between them, we
can write

M
E fm(@) = f;: = constant. (7.2)

m=1

This assumption for modal estimation is more defensible
than its counterpart for local tilt estimation, [Eq. (6.2)],
since we do not need to worry about light that misses a
subset of the detectors or overlap of light from different
subapertures; Eq. (7.2) is simply a statement of conserva-
tion of energy. With this model, the ML estimate of I is

just 20=Ntot/ft0t [cf. Eq. (6.5)], and the ML estimate of &
must satisfy [cf. Eq. (6.3)]

M
>’ & In[f,(@)] = maximum. (7.3)

m=1

The functions {f,,(a)} are the counterparts of the
MDRFs for scintillation cameras, but there are more of
them and each is a function in a higher-dimensional
space. Precomputing and storing them is difficult, and the
feasibility of ML estimation of the modal parameters de-
pends on being able to compute the f,, (@) rapidly.

There are several factors that simplify the problem.
First, numerical studies (to be published separately) show
that the log-likelihood for the modal parameters is
smooth and slowly varying, especially at low light level.
Thus it suffices to compute f,,(@) on a sparse grid in pa-
rameter space and use, say, spline interpolation to find it
at intermediate points.

Second, in almost all applications the parameters will
change slowly from frame to frame of the wavefront-
sensor data, so an estimate found on one frame will be an
excellent starting point for the next frame. Moreover, in a
closed-loop system with good correction, we need to
search only in the vicinity of the origin of parameter
space, where all «,=0.

Third, the problem is amenable to parallel computation
in several possible ways. In a simplex or multigrid algo-
rithm, for example, different processors can be assigned
to different points in parameter space. In an
N-dimensional estimation problem, a simplex requires
computing the log-likelihoods at N+1 values of @, which
can be performed with N+1 processors. If a full
diffraction-theory model is used for the computation, the
use of dedicated fast Fourier transform (FFT) chips in
each processor might be advantageous.

A less obvious way to parallelize the problem is to di-
vide the data space into subsets, perhaps corresponding
to subapertures even if the goal is not to estimate local
tilts. The advantage of this division is that the wavefront
in the local region is described by a small set of param-
eters such as the local tilts and curvatures, and these lo-
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cal parameters are easily computed as linear combina-
tions of the components of interest {a,}. With this
simplification we are back to efficient calculations or even
look-up tables to find the values In[f,,(a)] for each m in
the data subset, and the overall log-likelihood is found by
collecting the results from individual processors and sum-
ming as in Eq. (7.3). Again, simplex or multigrid methods
can be used for efficient search without computing deriva-
tives.

8. SUMMARY AND CONCLUSIONS

Maximum-likelihood estimation offers several theoretical
advantages in general. An ML estimate is efficient if an
efficient estimator exists, and it is asymptotically unbi-
ased, efficient, and consistent as more data are acquired
in any case. Compared with other computational methods
in wavefront sensing, ML can reduce the bias and vari-
ance of the estimates of tilts, modal coefficients, or any
other wavefront parameters, basically by taking advan-
tage of the knowledge of the data statistics and using a
more accurate model of the deterministic properties of the
sensor. Unlike MAP or other Bayesian estimates, ML es-
timates do not incorporate any prior knowledge of the pa-
rameters to be estimated, but accurate likelihood models
are essential to good MAP estimation also.

It is relatively straightforward to write down condi-
tional PDF's for the data produced by the detectors in a
wavefront sensor, but these PDF's are not the likelihoods
needed for ML (or MAP) estimation of wavefront param-
eters for two reasons. First, not all parameters associated
with the wavefront influence the data significantly; the
ones that do not are called null functions. Second, there
may be parameters that do influence the data but that we
are not interested in estimating; they are called nuisance
parameters. This paper has been concerned largely with
the effect of null functions and nuisance parameters in
wavefront sensing.

The basic stochastic models considered here included
Poisson noise from the photoelectron statistics, Gaussian
noise from the electronics, and a mixture of the two. Ex-
cess noise from detectors with internal gain was not con-
sidered explicitly, but most of the theory is easily adapted
to that case. As in all ML problems, the parameters to be
estimated were not considered to be random, but nui-
sance parameters were, and the final likelihoods of inter-
est were obtained by marginalizing with respect to some
prior distribution on the nuisance parameters. General
expressions for both log-likelihoods and FIMs were de-
rived on this basis. The theory was illustrated by discuss-
ing the estimation of local tilts and modal parameters
from Shack-Hartmann data.

Computational issues associated with both the Shack—
Hartmann subaperture problem and the more general
problem of estimating coefficients in a modal expansion of
the wavefront were discussed. For the subaperture case it
was seen that ML estimation in microseconds or even
nanoseconds is feasible, and several approaches that
should lead to millisecond computation of modal coeffi-
cients were outlined. Work on the latter problem is ac-
tively underway and will be reported at a later date.
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APPENDIX A: FISHER INFORMATION
MATRIX FOR COMBINED POISSON AND
GAUSSIAN NOISE

In this appendix we derive the FIM with both Poisson and
Gaussian noise. The basic statistical model is the
Poisson—Gaussian mixture developed by Snyder et al.!
The starting point for this appendix is Eq. (3.16), which
for a single detector element can be written without the
subscripts as

%

p)
_1 0 [
70, npr(g|6) = ‘0)(99 —pr(gld) = prel0) Bart
1
" prig|6) \2mo? V2

A change of variables k' =k -1 and some algebra yields
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exp[-k(0)].

1 (g -Rk)* |[k(0)]"
prig|o) = \,—zmﬁz‘ exp| - — 5 |~

(A1)

The FIM is the covariance matrix of the score vector,
defined as the gradient of the log-likelihood with respect
to the parameters being estimated. For the PDF of Eq.
(A1), the nth component of the score is given by

202 k136

(g - Rk)? d
—E p{ }——{[k(a)]kexp[ RO}

202 | R a0,

(g - RR)* |[R(0)F] 1 PAC))
E p{ } exp[— k(f))]( ” 1) . (A2)

>, expl- (120%)(g - R = RElexp[- R(OTROT /'Y | 77 (p)

J
E7R In pr(g|6) =

-1 . (A3)

h > expl- (1/20)(g - Rk)?lexpl- E(O)]k(6)1/k! 96,

The difference between numerator and denominator is in
the shift of the Gaussian factor.

A more explicit notation may clarify the result; if we let
pr(g| ) be denoted by prys(g) to indicate a specific func-
tion of g, then Eq. (A3) becomes

-R k(0
ro0(8 )_1} () "

PTy og) a6,

n

9 p
— In pry ) =
0,
or

a ok(0)
a—gnprg\a(g) =[prgelg - R) - Prg\o(g)]a—gn- (A5)

Since pry|¢(g) is, for example, the PDF depicted in Fig.
2(a), and prge(g-R) is the same function shifted to the
right by an amount R (i.e., shifted over one peak in Fig.
2(a), Eq. (A5) looks like the chain rule of differentiation
with one derivative replaced by a finite difference, but in
fact the result is exact.

Elements of the FIM (for a single detector) are given by

J J
an’ = lIlp \G(g) lnp |0(g)
glo
{prgm(g -R) ]2 ok(6) 7k (0)
= — -1 . (A6)
prg‘g(g) 2lo &Hn (90,1/

The expectation can be written in detail as

[
|:prg|0(g -R) B 1:|2
prg\ﬂ@) glo

f dg pr |:P1"0(g R)_1:|2
Pl Ty 0(8)

_J“ N
- - g\ﬂ(g) ’

where the normalization of PDF's has been used to get the
second line.
Thus the FIM for one detector element is given by

“  [prgeg -R)P Ik (6) 9k(0)
jk= j dg -1

(A7)

F; . (A8)
g|0@) 30j [9012

This expression is exact and numerically tractable since
the integral is one dimensional.

The reader versed in statistical decision theory will rec-
ognize pr, ¢(g—R)/prge(g) as a likelihood ratio A. The
likelihood ratio is the ideal test statistic for deciding be-
tween two hypotheses, in this case the null hypothesis H,,
that g is drawn from the unshifted density pr,4(g) and
the alternative hypothesis H; that g is drawn from
prgo(g—R). With that interpretation, the integral in Eq.
(A8) is the expectation of A under H;, a quantity that is
closely related to performance on discrimination tasks,’
and Eq. (A8) establishes a relationship between that dis-
crimination task and the estimation task that is the sub-
ject of this paper.

The factor in square brackets in Eq. (A8) can be evalu-
ated in several limits. For pure Poisson noise (62— 0), it is
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1/k(6). Pure Gaussian noise corresponds to the limit

%(8)— = and R— 0 in such a way that R%(6) remains con-
stant, and in that limit the factor tends to R2/¢2. Numeri-
cal studies show that a useful approximate form in all
cases (even when the PDF is highly non-Gaussian) is

R? Ik (0) Ik(0)
Fy, = - - (A9)
o® +R%(0) 96 IO

If there are M detectors but the measurements are statis-
tically independent, as we assumed in Subsection 3.D,
then the final expression for the FIM [Eq. (3.17)], is ob-

tained by reinstating the subscripts on g,, and %,,(6) and
then summing over m.

APPENDIX B: MARGINALIZING OVER
NUISANCE PARAMETERS

In this appendix we fill in some details needed in Subsec-
tion 5.B regarding marginalizing intrinsic nuisance pa-
rameters. Extrinsic nuisance parameters are not consid-
ered here, so the PX1 vector of all parameters that
influence the data can be written as 0=(a, B)!, where a is
Nx1,Bis KX1,and N+K=P.

It is assumed that the prior PDF describing B is a mul-
tivariate normal of the form

pr(6) = pr(a, B) = Nyexp| - 5(0- 0K, (0-0)],
(B1)

where the covariance matrix can be written in the parti-

tioned form
|: Kaa Kaﬁ :| ( )
Ko = 5 B2
Kog  Kgp

and Ny=[(2m)Vdet(K,) ]2 is the normalizing constant.

Some  well-known results from  multivariate
statistics®®® show that the marginal density needed in
Eq. (5.2) has the form

pr(Bla) = Nyqexp[ - (8- BK,(B-B)],  (B3)

where
B=B+Kp K L(a-a), (B4)

Kﬁ|a = Kﬂﬁ - KBozK(_x]z-rKaﬂ' (B5)

The matrix Kg,, which arises from taking the inverse of a
partitioned matrix, is known as the Schur complement of
K,. The results in Eqs. (B3)—(B5) are specialized to a
wavefront sensor used in a closed-loop AO system dis-
cussed in Subsection 5.B.

We also need to evaluate the integral in Eq. (5.6) when
the intrinsic nuisance parameters make a small perturba-
tion to the mean data, in which case we can expand the
mean data as
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K
Gmla, B, B ~ &, B,0) + D, A, B
k=1

9B m(a, B, B™)

where A, ,=——"—7—— .

aB;e Bintzo
(B6)

For notational simplicity we let g(a, 8%, B")=g and
g(a, p,0)=8,, so Eq. (B11) reads

=8 +AB™. (B7)

Then the integral in Eq. (5.6) can be written as

prigle. ) = A7 [

1
X - |lg—5,— A int||2
exr{ 52880 AB II]

xexp[ - 3(B™)'C7H(B™)], (B8)

We can perform the integral by representing each prob-
ability density in terms of its characteristic function. The
PDF of an M-dimensional multivariate normal vector x of
mean X and covariance matrix K can be written as

pr(x) = [(2m"det(K)] ™ ?exp| - ;(x - X)K ' (x - ) |

= f dY ¢ exp[2mié (x - X)Jexp(- 228 KE).  (B9)

©

Expanding both densities in Eq. (B8) this way yields
priglec )= | @ | @[ anenpic ool

xexp[- 2mi £ (g + AP™)]exp(2mi£'g)
Xexp(- 2w y/Cy)exp2miny' ™).  (B10)
The integral over B yields the K-dimensional delta

function &(n-A’é), which can then be used to perform the
integral over #. The final result is

pr(gla, 5 = f Mg exp(- 272 0%g?)

0

Xexp(- 2 EACA')exp[2mi & (g - &o)]
=[(2 W)Mdet(Ktot)]_l/Z

xexp{-3lg - B K lg- &I},  (BLD
where K,,, = c?1+ACA".

APPENDIX C: USE OF
MAXIMUM-LIKELIHOOD INVARIANCE
IN A SHACK-HARTMANN SENSOR

Suppose we have used data from a Shack—Hartmann sen-
sor to obtain ML estimates of tilts. Can we apply the ML
invariance principle [Eq. (2.15)] to get ML estimates of
the mirror-mode coefficients {«,}? The answer is yes if we
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can find a matrix B such that @=B7, in which case Eq.
(2.15) shows that ay;,=B7y;.

To seek such a matrix, we first take the scalar product
of Egs. (4.2) and (4.4) with one of the tilt functions defined
in Eq. (4.3); the result is

N
1
X W) = 2, (X ) + (2, AW) = E™* (Xp» W),
n=1

(C1)

where we have used the orthogonality of the tilt func-
tions, and the division by ||x|? is needed since the func-
tions were not normalized. (We assume that all lenslets
are identical, so that ||x||>=(xx,xz) is the same for all %.)
As we noted in Subsection 4.A, Eq. (4.4) is an orthogo-
nal decomposition if the region defined by the lenslet is
small enough; in that case, (y;, 5W)=0, and we find

N
o= Dy My, + (X AW), (C2)

n=1
where Mknz(Xka %V“X”z
To proceed, we need to argue that (x,,AW)=0, but we
cannot do so on the basis of orthogonality. The best we can
do is assume that N is large so that the sum in Eq. (4.2)
represents the wave exactly and the residual AW(r) is not
needed. In that case we have

7=Ma. (C3)

where M is a 2J X N matrix.

The N XN matrix M‘M will be nonsingular if 2J=N,
and the functions {#,(r)} are linearly independent, which
they always will be in practice. Then we can write

a=[MM]"'M!7=Br. (C4)

To summarize, we can write =B~ only for a high-order
AO system (large N) in which all wavefronts of interest
are well represented by a linear superposition of mirror
influence functions, and then only if the regions defined
by the Shack—Hartmann sensor are small and 2J=N.

APPENDIX D: STATISTICS OF CENTROID
ESTIMATES IN A SHACK-HARTMANN
SENSOR

Traditional data processing in a Shack—Hartmann sensor
attempts to estimate the centroids of the irradiance dis-
tribution I(r) produced by each lenslet on the detector
plane. For simplicity we consider a single lenslet centered
on the origin of coordinates, and we delete the index j
used to distinguish lenslets.

The centroid location is defined in vector form as

J d2rrl(r)

r=———, (D1)

f d%rI(r)

where r,=(x.,y.) is a 2X1 column vector giving the x—y
coordinates of the centroid on the detector plane. The tra-
ditional centroid estimator is
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1 M
F(8)=— 2 g, (D2)

tot m=1

where r,, is a 2 X 1 vector specifying the center location of
the mth detector, g, is the signal from that detector, and
S:or 18 the total signal, given by

M
Giot= D Em- (D3)

m=1

A useful way of rewriting Eq. (D2) is

1
r.(g) = —Rg, (D4)
8ot
where g is the usual M X1 data vector and R is a 2XM
matrix with elements R,,=x,, for k=1 and R,,=y,, for
k=2. This form shows that ¥.(g) is almost but not quite a
linear function of the data g; the linearity is spoiled by
the factor 1/g;,;.
From the estimated centroid, an estimate of the 2D tilt
vector associated with a given lenslet is traditionally ob-
tained by

a’(g) = f‘C/ZO’ (D5)

where z, is the distance from the lenslet pupil to the de-
tector plane (usually but not necessarily the focal length).
It is hoped (and usually assumed) that 7(g) is an unbiased
estimator of the true local tilts 7, that the x and y compo-
nents of the estimate are uncorrelated Gaussian random
variables, and that the estimate is optimal in some sense.
The likelihood theory developed in this paper gives us the
tools to examine these properties in detail.

A complete treatment of the statistical properties of ¥,
requires its conditional PDF pr(t,|6), where of course 6
must include all parameters that influence the data. It is
convenient to approach this problem by use of the bivari-
ate characteristic function, defined by

Vs 1o(§) = (exp[27mi T ])s o, (D6)

where & is a 2X 1 vector and the angle brackets indicate
expectation with respect to the PDF pr(¥,| 6). Since T, is a
known function of g, we can equally well perform this ex-
pectation with respect to pr(g|#). Using Eq. (D4), we can
rewrite Eq. (D6) as

1
Vs 1o(8) = <exp{2m’—§‘Rg}> . (D7)
gtot gla’gwt

gtotl 0

The inner expectation in Eq. (D7) is related to the con-
ditional characteristic function of the data (conditioned on
Sior @s well as 0), defined by

V04, () = (exp[2mip' gDy, (D8)

where p is an M X 1 vector. Thus,

1
W3, 0(8) = <‘Péogtoz(;Rt§>> : (D9)
© 201l 0;

This result shows that the characteristic function (and
hence all statistical properties) of the centroid estimates
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can be found from the M-dimensional conditional charac-
teristic function of the data by making the substitution
indicated in Eq. (D9) and then performing a final one-
dimensional average over g,,. If the PDF pr(#,|0) is de-
sired, it can be obtained by performing an inverse 2D Fou-
rier transform.

In two important special cases, the conditional charac-
teristic function of the data can be expressed analytically.
If g follows Poisson statistics without the condition on
S0, then the conditional probability law, for g,,; detected
photons, is multinomial.’

5’£he corresponding conditional characteristic function
is

M 8tot
Vying, (p) = {2 pmw)exp(zm'pm)} ., (D10)

m=1

where p,,(0) is the probablility that a detected photon will
be detected in the mth detector element: p,,(60)
=8m(0)/8 1.

If g follows a multivariate normal law without the con-
dition on g,,, then the conditional PDF is also normal,
and the requisite conditional mean and covariance matrix
can be found from Eqgs. (B4) and (B5), respectively. The fi-
nal average over g;,; spoils the normal character of the
centroid statistics, however, even with normally distrib-
uted data.

No analytic form for the final characteristic function of
the centroid estimates has been found for either the Pois-
son or the normal case, but the average is easily per-
formed numerically since it is one-dimensional.
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