
14
Image Quality

In this chapter we consider the many practical issues one must wrestle with in the
objective evaluation of imaging systems. Unlike Chap. 13, where knowledge of the
relevant population statistics of the image classes is assumed, the emphasis here is
on the practical issues that come to the fore when only a finite sample of images
is available for determining the image statistics or the observer’s performance, or
both.

We begin in Sec. 14.1 with a description of various approaches to the assess-
ment of image quality, including methods based on preference assessments, fidelity
measures, and information-theoretic approaches. Then, in Sec. 14.1.5, we introduce
the key elements that are required for the approach we advocate: the method must
be objective, task-based, and account for the statistical properties of the relevant
images and observers.

Properties of the human visual system and the determination of classification
performance by human observers is the subject of Sec. 14.2, including the conduct
of psychophysical experiments and the estimation of summary statistics for human
performance. In Sec. 14.3 we turn to the subject of model or algorithmic observers
for classification and estimation tasks. The approaches presented in Secs. 14.2 and
14.3 may make use of actual data sets derived from real imaging systems or, more
often in research investigations, simulated images. Methods for image simulation
are discussed in Sec. 14.4. As emphasized in that section, accurate models of the
properties of the object and the physics of the image acquisition system are required
if simulated images are to lead to accurate assessments of system performance.
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14.1 SURVEY OF APPROACHES

14.1.1 Subjective assessment

The simplest approach to the assessment of image quality is to rely on a viewer’s
subjective assessment regarding how good an image looks. This approach can be as
crass as the presentation of just a single pair of images, one processed by algorithm
A and the other processed by contender B, with the developer of algorithm A draw-
ing sweeping conclusions regarding the merits of A over B. A panel of experts might
be used to make a stronger case regarding the merits of one algorithm over another,
but here again the panel’s decision is based on subjective preference rather than
objective, task-based performance. There may be a place for beauty contests in
the evaluation of imagery, such as when an individual selects a home-entertainment
video system. We would argue that even then, most buyers base their subjective
preference of one system over others by viewing a range of images; buyers usually
take into account technical data across competing systems as well.

In an effort toward putting subjective preference methods on more solid foot-
ing, Zetzsche and Hauske (1989) developed a model based on the visual system with
the goal of predicting subjective ratings of image quality. If this goal were met, the
authors reasoned that they could determine image quality without the need for
building physical prototypes of display devices. The predictions of the model were
found to have correlations with mean subjective ratings ranging from 0.74 to 0.95
for images in which various artifacts were present.

Methods based on multidimensional scaling (MDS) have been applied to the
analysis of subjective image quality ratings (Ahumada and Null, 1993). MDS meth-
ods incorporate various approaches for collecting numerical rating from multiple
observers given the task of rating the quality of a set of images. Images can be
presented in pairs, with the observer given the task of selecting the one with higher
quality, or a set of images can be rank-ordered by quality. Normalizations can be
done to account for differences in how observers scale the rating values; Thurstone
scaling is a procedure that allows observers to use a rating scale nonlinearly (Tor-
gerson, 1958). Once the rating data are in hand, MDS enables the dimensions of
image quality to be extracted (Farrell et al., 1991). Standard software packages
are available for performing MDS. The difficulty with the MDS approach is that
the labeling of the extracted dimensions, in terms of physical characteristics of the
images or the image acquisition system, is left to the investigator (Shepard et al.,
1972). Moreover, the connection between an observer’s rating of the quality of an
image and the usefulness of the image for a specified task is never made.

Structured preference assessments formalize the subjective approach through
the use of trained observers who perform a prescribed set of analyses. The well-
known National Imagery Interpretability Rating Scale (NIIRS) system, which uses
an interpretability rating scale for analyzing military reconnaissance images, is an
example of a structured-preference approach. The NIIRS system was developed
under the leadership of the U.S. Imagery Resolution Assessments and Reporting
Standards (IRARS) Committee in the early 1970s. The first NIIRS system eval-
uated the visibility of military objects in images acquired in the visible spectrum.
Later, the NIIRS system was extended to incorporate objects like buildings, roads,
railroads and bridges, enabling the evaluation of images without military objects.



SURVEY OF APPROACHES 915

The NIIRS system is now able to handle data outside the visible spectrum, includ-
ing thermal, radar, and multispectral imagery.

Models have been developed for predicting NIIRS ratings just as models have
been developed for predicting subjective preference ratings. Given a set of input
variables that can include the scene contrast, scene illumination, and imaging sys-
tem characteristics, the models generate measures of image quality that can be
related to the NIIRS scale. Another approach to the estimation of an image quality
metric that correlates with the NIIRS scale is based on the power spectrum of the
image to be rated, indicating that the measure is heavily influenced by the noise
properties of the image.

The NIIRS approach is almost exclusively used for military applications; NI-
IRS refers to the value of an image for “intelligence purposes,” rather than image
quality per se. Furthermore, the NIIRS approach is not amenable to the analysis of
the variation in true- and false-positive fractions [TPF and FPF, defined in (13.11)]
of image interpretations as a function of the reader’s mindset (see Fig. 13.5). Some
argue that a preference-based approach is appropriate whenever the task is not well
defined. We have not encountered an example where there truly is no specific task.
There may be several tasks, in which case the system could be evaluated for each.

We regard preference assessments as useful in go/no-go decisions, giving in-
formation on the adequacy of images for further, more rigorous, testing. Indeed,
rank-order studies of image quality have been proposed as a formal approach to
determining whether the cost of a large-scale objective study is justified (Gur et

al., 1997; Rockette et al., 1997; Good et al., 1999; Towers et al., 2000). These
studies can make use of highly trained observers and specified tasks; their drawback
is that they identify trends without providing an absolute measure of image quality.
Statistical methods for planning and analyzing rank-order experiments have been
introduced (Rockette et al., 2001).

14.1.2 Fidelity measures

A common approach to image assessment is to assume that the goal in imaging is to
reproduce a likeness of the object, leading to the conclusion that the best imaging
system is the one that gives the smallest discrepancy between object and image.
The most common measure of fidelity is the mean-square error (MSE) between
object and image; some flavor of MSE is quoted in the majority of papers on image
processing or image reconstruction. As we saw in Sec. 13.3.2, however, there are
some arbitrary choices to be made in defining MSE, and different choices can lead
to quite different conclusions about the quality of an imaging system or processing
algorithm.

Problems with fidelity measures MSE and any other fidelity measure will be sensi-
tive to many different properties of an image. If we rotate an image slightly with
respect to the object or change the magnification, for example, we can produce a
large discrepancy between the object and the image, even if they would otherwise
be identical. Similarly, image distortion, such as barrel or pincushion effects, can
lead to a large MSE. Finally, gray-scale errors such as nonlinear mapping of the
image intensity or even an error in overall brightness can contribute heavily to any
fidelity measure.
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In many cases, these image modifications are trivial in the sense that they
do not degrade the information we want to extract from the images. For exam-
ple, a radiologist can interpret a chest radiograph just as well if it is rotated by a
few degrees on a light box or displayed at a different magnification on a computer
monitor.1 MSE or other measures of fidelity would show that the rotated or scaled
image was a poor representation of the object, but the user might not even notice
the discrepancy.

Sometimes, however, apparently trivial modifications of an image are impor-
tant. A cartographer wanting to derive accurate distances from an aerial pho-
tograph, for example, would worry a great deal about the magnification, and an
astronomer wanting to track the angle between the two members of a binary star
would worry about the rotation angle. In designing a lens system for photolithog-
raphy, distortion might be critical, though for portrait photography it would be
imperceptible. Even in these cases, however, a fidelity measure such as MSE is too
blunt an instrument to say anything meaningful about the usefulness of an image.

Why not MSE? As delineated in Sec. 13.3.2, there are many arbitrary choices to be
made in defining an MSE. For digital images, we must decide whether to discretize
the assumed object for comparison with the digital output, to interpolate the digital
image in order to get a continuous function to compare to the real object, or just to
do a simulation and hope that the results will mean something. For each of these
options, we must select a set of functions for discretization or interpolation, and we
must select either a single object or a class of objects for comparison in some sense
to the images. If the object contains null functions of either the system operator
or the discretization operator, as any real object will, then any MSE will be very
sensitive to the choice of object.

MSE measures can be very sensitive to relatively trivial image modifications
such as magnification, rotation and gray-scale mappings, but they may be com-
pletely insensitive to small details that we really want to capture in the image.
Furthermore, MSE measures make no distinction between blur and noise. It is easy
to construct two very different images, one with high noise but good sharpness and
a blurred one with low noise that have the same MSE. The main objection to any
MSE metric, however, is that it has nothing to do with the intended use of the
image..

14.1.3 JND models

There exists a school of thought in the field of image evaluation that the goal of an
image processing or compression algorithm is to create an image that is perceptu-
ally equivalent to the original. This school measures image degradation in units of
just-noticeable differences, or JNDs, between the original image and its processed
counterpart. One JND unit corresponds to a fixed probability, say 50 or 75 percent,
that an observer would detect the difference between two images or image regions
(Lubin, 1993).

1There is anecdotal evidence that sometimes such image modifications can even aid the observer
by changing the appearance of an image such that a previously-missed signal becomes visible.
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The JND approach to image quality is rooted in the threshold theory of vision.
Threshold theory states that signal detection occurs when a signal’s perceptibility
exceeds an observer’s threshold; signal detection is a yes or no event. Furthermore,
by the Weber-Fechner law, discussed in more detail in Sec. 14.2.1, the threshold for
detecting an extended signal increases proportionally with background intensity. In
the early days of vision science, much effort was expended on the measurement of
the detection thresholds of various signals on different backgrounds. In the JND
approach to image quality, the “signal” is a difference in a pair of images; if that
difference is below threshold, the images are of equal quality.

All JND models are based on a model of the human visual system with the
intent of predicting human performance in the ranking of image quality or the de-
tection of image differences. The simplest approach is to weight image differences
using a function that models the sensitivity of the human visual system to spatial
frequency, referred to as a contrast sensitivity function (Daly, 1993). The JND
model of Carlson and Cohen (1980) decomposes the input images into frequency
bands. After the contents of the bands are processed nonlinearly, the outputs are
compared to determine where image differences as seen through this simple model of
the visual system are greatest. This model has been used to predict the detectabil-
ity of edges and artifacts. Barten has also presented a model of the visual system
that has been used to predict image quality (Barten, 1992, 1993). The Barten JND
model utilizes a single integral over spatial frequencies rather than a decomposition
into frequency bands, making use of an average contrast sensitivity function of the
visual system. The Barten model has been shown to predict subjective image qual-
ity for several simple tasks and is the centerpiece of a recent National Electrical
Manufacturers Association standard on display quality (NEMA, 2001).

More complex mechanistic models of the visual system have been developed
for use in the prediction of visually perceptible differences in gray scale, color, and
video imagery (Hultgren, 1990; Lubin, 1993; Daly, 1993). The models can account
for such observation factors as viewing distance and light level (pupil diameter).
The most comprehensive models include a nonlinearity representing the visual sys-
tem’s nonlinear response to luminance, a contrast sensitivity function, a bank of
spatial-frequency and orientation-sensitive filters, and models of the chromatic and
temporal properties of the visual system. The output is a JND map of the image
differences, quantified per pixel, field, frame, or sequence.

One argument for the use of a JND metric is that the approach implies the
matching of the processing algorithm with the visual system, similar to the way
in which the information in a color television signal is matched to the human; be-
cause color resolution in the visual system is less than gray-scale resolution, the
National Television Standards Commission (NTSC) represents color information
more sparsely than luminance information.

Advocates of the JND approach argue that it is objective, it correlates with
subjective assessments of image quality, and it predicts a large body of human data
for both detection and discrimination tasks without the need to fit any free model
parameters. The tasks have included disk detection, sine grating detection, checker-
board detection and edge-sharpness discrimination. The task can utilize real objects
on real backgrounds; a recent comparison of image quality for the task of micro-
calcification detection in mammographic images showed a high correlation between
JND measures of image quality and human observer performance (Krupinski et al.,
2003). Commercial JND-based image evaluation packages are readily available.
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JND measures suffer from some of the same problems we have enumerated
for fidelity measures, including the lack of distinction between blur and noise and
the questionable definition of task. Both fidelity and JND measures quantify some
form of image discrepancy: fidelity measures give all image differences equal im-
portance, while JND measures weigh image differences according to their predicted
manifestation at the output of the visual system. In order to calculate perceptual
image differences, the JND approach requires twinned-noise image pairs, that is,
two images in which the noise realization in each is the same. This paradigm is
significantly different from the one underlying statistical decision theory, in which
each image represents an independent sample from the signal, background, and
noise distributions. It is not clear how the JND approach can be extended beyond
simulated targets to real images with real signals because it is not possible to acquire
real images that are identical except for the presence or absence of some target. An
active area of current research is the usefulness of the JND approach for predicting
the quality of an imaging system given random signals on random backgrounds in
images with unpaired noise realizations.

Nevertheless, the JND community has much to offer the field of objective as-
sessment of image quality. For example, we shall see that model observers play
a significant role in the objective assessment of image quality; the sophisticated
models of the visual system developed by the JND community may be of use in
the development of predictive models of human task performance for more realistic
tasks.

14.1.4 Information-theoretic assessment

In 1948, Claude Shannon published his now-famous theory of communication, in
which he defined the information content of a message as a measure of the degree
to which it is unexpected.2 Shannon defined the information content of a single
message state n as I(n) = log[1/Pr(n)], where Pr(n) is the prior probability of
occurrence of the nth message. Messages with high probability carry little informa-
tion; high information content is associated with messages that are least expected.
By this definition, the mean information content of a message is

I =
N∑

n=1

Pr(n) I(n) =
N∑

n=1

Pr(n) log

[
1

Pr(n)

]
= −

N∑

n=1

Pr(n) log[Pr(n)] , (14.1)

which becomes

I =

N∑

n=1

1

n
log[n] = −

N∑

n=1

1

n
log

[
1

n

]
(14.2)

when the messages are equally likely.
Shannon’s model for a communications system was a nonimaging system com-

prised of a single source (the message), an encoder, a communications channel that
transmitted the message, and a decoder. The purpose of the communications sys-
tem was to provide the user with a reproduction of the message. Designers of

2In his book on the relationship between information theory and thermodynamic entropy, Brillouin
(1956) points out that the theory developed by Shannon came to light earlier in Szilard’s discussion
of the Maxwell demon (1929). (We thank B. R. Frieden for this historical note.)
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encoders, decoders, and transmitters were seeking to ensure that the user received
the message that was sent. Not surprisingly, systems whose goal was to reproduce
a transmitted message were most often evaluated using fidelity measures.

There is a large literature on the application of information theory to the evalu-
ation of imaging systems. Fellgett and Linfoot (1955) and Linfoot (1955) considered
a simplified model of an optical system in which the source is divided into small
discrete elements, each capable of a finite number of discrete brightness levels. The
information content of the values of the elements can then be defined in terms of
their degree of unexpectedness. That is, the information carried by a particular
object f is given by

I(f ) =

N∑

n=1

pr(fn) log

[
1

pr(fn)

]
= −

N∑

n=1

pr(fn) log [pr(fn)] , (14.3)

where fn is the brightness of the nth object element. In this simple model the object
values are assumed to be independent, and we see that the entropy of the set of
values becomes the measure of information content [cf. (15.158)].

Fellgett and Linfoot generalized this simple model to allow for a continuous
distribution of object values and a division of object space into isoplanatic patches.
With these additions to the model, Fourier methods can be used to describe the
transfer characteristics of the imaging system. Felgett and Linfoot considered the
assessment of an optical system for two tasks: the formation of an image that is sim-
ilar to the object, and the production of an image that carries the most information
about the object without regard to a specific inference or interpretation process.
Assessment by similarity leads to fidelity measures; the same issues raised in the
previous section on fidelity measures then apply, and Felgett and Linfoot point out
many of these shortcomings as well. Thus Felgett and Linfoot turn to assessment
by information content. Using the object’s information measure as a starting point,
an imaging system’s ability to transfer information is computed and maximized.
However, their resulting figure of merit is independent of the statistics of the object
set and the measurement noise (film type, in those days). This is seen as a positive
result by these authors, because it allows for optimization of optical systems with-
out regard to the statistical properties of the object and the measurements, and no
specific task must be considered.

More modern works have followed the approach of Fellgett and Linfoot, em-
phasizing the information rate of an imaging system (Huck et al., 1997) and its
correlation with the visual quality of the resulting images, where visual quality is
measured in terms of image sharpness, clarity, and fidelity. Of course, all of these
measures encounter the commensurability problem discussed in Sec. 13.3.2. More-
over, these measures are not uniquely related to the performance of a specified
observer on a particular task.

Dainty and Shaw (1974) and Shaw (1978) related the information theory of
Shannon to their noise-equivalent quanta (NEQ) approach to image assessment.
According to these authors, an actual imaging system that degrades the informa-
tion content of the input is associated with an NEQ relative to the real exposure
quanta. As described in Sec. 13.2.13, this theory assumes a linear shift-invariant
imaging system and stationary noise, leading to a Fourier-domain framework for
describing the detection SNR as a function of spatial frequency. Spatial frequencies
correspond to Shannon’s channels in this approach (Wagner and Brown, 1985).
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A broader view of information-theoretic image formation and assessment ex-
ists (O’Sullivan et al., 1998). Object representation is achieved by combinations
(not necessarily linear) of basis functions that may or may not be orthogonal; this
approach does not automatically assume the object space is decomposed into pixels.
The objects may be known exactly or random. The imaging system may be deter-
ministic (low noise, nonrandom) or may be stochastic, and may be direct or indirect.
This view of information-theoretic image formation is consistent with the framework
shown in Fig. 7.14 for the imaging process. Moreover, in this treatment the task
is more generally cast to include measures of optimality for detection, recognition
(classification), parameter estimation, and scene estimation (image reconstruction).
When the task is detection or classification, the overall performance of a system
is measured by the performance of the recognition or detection function; perfor-
mance measures for detection and recognition tasks include such familiar measures
from Chap. 13 as the probability of detection and the probability of a false alarm.
Optimal estimation for random objects is achieved using the familiar maximum a

posteriori (MAP) procedure derived in Chap. 13 when a prior for the object exists;
without a prior, maximum-likelihood methods result and are characterized by the
Fisher information matrix and the Cramér-Rao bound.

Thus we see that the information-theoretic approach, when presented in this
broad manner, is akin to the statistical-decision-theoretic approach presented in
Chap. 13. In the information-theoretic approach, all performance metrics quantify
the information provided by the measurements and the likelihood function plays
a fundamental role in all cases. Similarly, we found in Chap. 13 that the likeli-
hood ratio is central to all measures of task performance that characterize opti-
mal decision/estimation strategies in statistical decision theory. The information-
theoretic approach postulates that the user knows “everything except the decision”
(O’Sullivan et al., 1998). In other words, an ideal observer is assumed. Information
measures are therefore useful for the assessment of raw data, but they are not neces-
sarily good predictors of human performance. This point is particularly relevant to
the use of information criteria in deriving optimal reconstruction algorithms. There
is no guarantee that the resulting images are optimal when assessed in terms of
human performance.

14.1.5 Objective assessment of image quality

For an image-assessment method to be acceptable, it must objectively quantify
the usefulness of the images for performing a given task. Task-based measures of
image quality have been advocated for many decades, starting with Harris (1964),
and including Hanson (1977), Wagner (1978), Judy et al. (1981) and Myers et al.
(1986). The resulting figure of merit must be computable and scalar, so that it can
be used unambiguously in the optimization of imaging systems and the assessment
of observer performance. Methods based on statistical decision theory satisfy these
requirements.

Four key elements are essential in the objective assessment of image quality
(Barrett, 1990):

1. Specification of a task;

2. Description of the object class(es) and imaging process, leading to a descrip-
tion of the data;
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3. Delineation of the observer;

4. Figure of merit.

Let’s consider each of these elements in more detail.

The task In Chap. 13 we considered two kinds of tasks in some detail. One kind
of task is the detection of an object in the presence of a background or clutter.
The object might have one or more random parameters and the background may
or may not be random. A related task is the classification of an image into one
of a finite number of alternative classes. A second type of task is the estimation
of parameters describing the object or background or both. Chap. 13 gives many
examples of detection, classification, and estimation tasks.

We have seen that many of the approaches described in earlier sections define
the task as the reproduction of a single object. While object reproduction might
be construed as an estimation task, there are several important differences between
estimation and object reproduction. First, defining the task as object reproduction
leads to the problem of commensurability delineated in Sec. 13.3.2: objects and im-
ages live in different spaces. No imaging system can exactly reproduce a continuous
object. How then, to choose among systems that all fall short of this impossible
goal? In addition, when the stated task is object reproduction, an assumption is
being made that all object locations/elements/parameters are equally important;
this is not the case in real situations. Finally, no imaging system will be utilized for
a single object, so the task definition should encompass the use of the system over
the expected range of objects.

Properties of objects and images From the preceding discussion we know that the
evaluation of an imaging system should take into account the physical and statis-
tical properties of the set of objects to be imaged. In a classification task, the
objects are categorized into a finite set of classes. For example, the evaluation of
mammographic imaging systems for the task of breast lesion detection requires the
characterization of normal breast tissues and breast lesions in terms of the full prob-
ability density function of the objects under each class. While this is an impossible
task, tremendous progress is being made toward the characterization of the mean
and low-order joint densities of real tissues using ultra-high-resolution projection
imaging and autoradiography, among other methods (Hoeschen et al., 2000).

Another method for creating and characterizing a set of objects is through the
use of simulations. The use of numerical algorithms to generate random objects
gives the investigator the ability to characterize the deterministic and stochastic
properties of the objects. Modern simulations are becoming increasingly realistic.
Investigators have added simulated targets to real images (creating so-called hybrid
images) with sufficient realism that in some cases human observers were unable
to discriminate the artificial targets from real ones (Revesz et al., 1974; Eckstein
and Whiting, 1996). The future will bring even greater flexibility and realism to
simulated images, with the entire anatomy and physiology of a human being mod-
eled on a fine scale as a starting point toward the creation of simulated, highly
realistic imagery of normal and abnormal states. Nonmedical imaging applications
are following the same trajectory; in astronomy, acoustical imaging, radar, and so
on, simulations of objects and imaging systems are vastly improving and leading to
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new abilities to generate realistic data sets for image evaluation. Image simulation
methods are described in some detail in Sec. 14.4.

The observer Given a task and a set of objects, the next requirement for the as-
sessment of image quality is an observer or strategy for performing the task. The
observer might be a human, such as a radiologist or an expert photointerpreter.
Models of human observers can be used to predict human performance. Model ob-
servers make it possible to optimize imaging systems without the need for lengthy
human-observer studies at every design stage. Human observers and their models
are relevant to the assessment of images to be displayed for human consumption.
For example, the assessment of display devices, reconstruction algorithms, and all
manner of image-processing routines are evaluated appropriately using human ob-
servers or their surrogates.

The ideal observer is defined in Chap. 13 as the observer that makes optimal
use of all available information to perform the specified task. Having no need for
image reconstruction, the ideal observer is appropriate for the evaluation of the
quality of the raw data for classification tasks.3 Thus the ideal observer is the ob-
server of choice for the assessment of imaging hardware. As detailed in Chap. 13,
the ideal observer requires the complete PDF of the data under each hypothesis. In
cases where this information is not available, the Hotelling observer can be a useful
alternative, requiring only the first- and second-order statistics of the data.

The figure of merit Having specified the task, the objects, and the observer, all
that is needed is some way of telling how well the observer performs. For classifi-
cation tasks, useful figures of merit include the area under the receiver operating
characteristic (ROC) curve (AUC), partial ROC areas, sensitivity/specificity pairs,
the percent of correct decisions (PC), and the classification signal-to-noise ratio, or
SNR. Those readers unfamiliar with the theory of ROC curves are referred to Chap.
13 for background material necessary for understanding the terminology here.

Possible figures of merit for estimation tasks include bias, variance, mean-
square error (MSE), and ensemble mean-square error (EMSE). The MSE sum-
marizes the performance of an estimation algorithm in determining the estimable
parameters of a single object averaged over multiple data sets. In contrast, EMSE
describes estimation performance averaged over both measurement noise and a dis-
tribution of objects, allowing for nonestimable parameters. Estimators can also be
evaluated using bounds on their performance, the most notable being the Cramér-
Rao bound for maximum-likelihood estimators. In Sec. 13.3 the reader can find a
lengthier treatment of performance measures for estimation tasks.

Returning to the set of requirements listed at the beginning of this section,
we can see that each of the methods described in the previous sections lacks one
or more of these key elements. For example, JND methods measure image quality
using a distance between two scenes without specification of a task or an object
class. Thus, in the remainder of this chapter we shall rely on the approach to the
objective assessment of image quality outlined in this section.

3Wagner, Brown, and Pastel suggested the division of imaging systems into detection and display
components for assessment purposes as early as 1979.
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14.2 HUMAN OBSERVERS AND CLASSIFICATION TASKS

A wide variety of imaging applications make use of a human as the observer or
expert reader. The task is almost always classification, because humans are not
as adept as machine algorithms at the absolute quantitation of parameters using
images as input. The purpose of this section is to chronicle what is known regard-
ing the perception of form by the human visual system, how we measure human
performance on classification tasks, and what we have learned regarding human
performance for various classification tasks. We shall focus on the perception of
pattern and form, with the goal of connecting this to an understanding of human
performance on single, static images. The extension to tasks involving temporal
information, color, or stereo are beyond our scope, although in many cases the
generalizations required to include this kind of information will be suggested.

14.2.1 Methods for investigating the visual system

Centuries ago, the human eye was assumed to work as a simple camera. This view
was espoused by the famous astronomer Johannes Kepler as early as 1604. Not
long after, Réné Descartes’ famous treatise, La Dioptrique (1637), described an
experiment in which an eye from an ox was used to “view” the image formed on the
retina, which had been scraped away to make the eye translucent. The discovery
that the image formed by the eye’s lens was inverted was a source of much confu-
sion, since none of us has the experience of seeing the world upside down. Since
that time we have come to realize that we do not directly “see” the retinal image;
what we perceive is a processed and interpreted version of the image formed at the
back of the eye. The retina and the visual components of the eye-brain system are
complex entities that have been the subject of amazing discovery since the time of
Kepler.

The images formed by the eye’s lens onto the retina stimulate the approxi-
mately 130 million photoreceptors we know as the rods and cones. These units
stimulate bipolar cells that lead to the ganglion cells, whose axons form the optic
nerve. The axons of the optic nerve terminate in the lateral geniculate nucleus
(LGN) of the thalamus. The cells of the LGN relay signals to a region of the striate
cortex called the primary visual cortex. The activity of a cortical cell is thus the
result of millions of retinal inputs. Within the visual cortex further signal pro-
cessing and feature extraction occurs, leading to our visual perception of the world
around us.

Early discoveries of the visual system were anatomical, as described so graph-
ically by Descartes. Anatomical studies tell us the spatial sampling of the rods and
cones, the number of fibers making up the optic nerve, and the location of their
termini. We need other means of determining how these entities function and in-
terrelate.

One means of elucidating the functional properties of the elements of the vi-
sual system is through electrophysiological studies in animals. These studies in-
volve the placement of electrodes into single cells in the visual pathway and the
subsequent measurement of the cell’s response to visual stimuli. In 1940, Hartline
became the first to insert electrodes into a single ganglion cell in a vertebrate (a
frog) and record axon potentials, following his earlier experiments in the horseshoe
crab (1934). Hartline’s work was the precursor to the acclaimed work of Hubel and
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Wiesel (1962), who shared the Nobel Prize for their pioneering study of the visual
system of the cat. Hubel and Wiesel studied the response of single cortical cells
to visual patterns of specific orientation and location (bars, edges, and spots) and
found that the cells demonstrate orientation selectivity and binocularity. They soon
reported similar findings in monkeys (1968).

Many electrophysiological investigations in animal models have followed in the
giant footsteps of Hartline, Hubel and Wiesel. For such studies to be relevant to
the human visual system, the animal’s characteristics must be able to be extrapo-
lated to the human. Since the visual systems of all vertebrates are similar, these
measurements provide especially valuable information regarding the behavior of the
human visual system.

The functioning of the visual system can also be studied using psychophysics,
the measurement of the reactions of observers to visual scenes and the development
of quantitative relationships between response data and physical characteristics of
the input images. The physical characteristics of the images include quantities such
as the display luminance, the noise and resolution properties of the images, as well
as parameters that specify the target and background. Observer performance is
measured in terms of indices such as the area under the ROC curve or the percent-
age of correct detection or localization responses. Thus psychophysical experiments
determine external measures of the visual-system function. Methods for the conduc-
tion of psychophysical studies using human observers are presented in Sec. 14.2.3.4

Modern imaging methods have brought new tools to the study of the func-
tion of the visual system. Using functional imaging methods such as functional
magnetic resonance imaging (fMRI) and positron emission tomography (PET), in-
vestigators are determining areas of the brain involved in the performance of visual
tasks. Imaging provides a noninvasive alternative to electrophysiological techniques
with the ability to map both spatial and temporal response to stimuli.

In what follows we shall describe the more salient features of the visual sys-
tem that are relevant to understanding human performance on classification tasks
using images as inputs. These characteristics play a key role in the development of
predictive models of the human observer.

Receptive fields A receptive field is an area on the retina that gives excitation or
inhibition of a neuron’s activity upon changes in illumination. Receptive fields can
be defined for ganglion, geniculate, and cortical cells. The receptive field is evidence
of a many-to-one relationship between photoreceptors in a region of the retina and
the neural cell. In fact, there are about 1000 cortical neurons per retinal cone for
visual information processing (Kronauer and Zeevi, 1985).

Receptive fields for the ganglia can be organized into two broad classes: those
that have plain receptive fields, and those that have complex receptive fields. Plain
receptive fields have a center-surround structure. When a spot of light illuminates
their center, an increase in firing rate occurs (excitation); light on the surround
region decreases the rate (inhibition). Diffuse light that illuminates both regions
gives a cancellation of the signal, resulting in no response. Simple cells are often

4While it might be expected that psychophysics is exclusively applied to the study of human
observers, psychophysical experiments using trained animals have been performed to elucidate
properties of the cat and monkey visual system.
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referred to as Kuffler cells, after the early investigator who mapped their behavior
in the cat (Kuffler, 1953).

Complex cells, not surprisingly, are tuned to more complex retinal patterns,
such as gratings. Enroth-Cugell and Robson (1966) were the first to measure the
response of single ganglion cells to cosine gratings in the cat. Both even and odd
receptive fields exist, giving the cat visual sensitivity to gratings and edges. At one
time it was thought that complex cells were in series with simple cells, but we now
know that simple and complex cells act in parallel. For some tasks the response
of complex cells occurs earlier than that of simple cells, and for other tasks the
opposite is the case (Hoffman and Stone, 1971).

The LGN and cortical neurons are also associated with receptive fields at the
retina. Cortical cells have been found that are tuned to edges, lines, movement
of lines and gratings at certain orientations, speeds and accelerations, and even
angles between lines. While the responses of ganglion, LGN, and cortical neurons
to stimuli have significant similarities, there are interesting differences across them
as well. Maffei and Fiorentini (1973) compared the responses of these neurons to
cosine gratings in the cat and found that the stages respond to different ranges of
spatial frequencies. Moreover, the spatial frequency selectivity becomes narrower
from the retina to the LGN to the cortex. DeValois et al. (1982) also found in the
macaque that the sharpest tuning occurs in the cortex.

Lateral inhibition The output of a receptor’s ganglion cell is not only impacted
by multiple retinal inputs, but also by the behavior of nearby neurons. In studies
of the horseshoe crab, Hartline and Ratliff (1957) were the first to show that the
output of a ganglion cell can be inhibited when a nearby neuron is excited. This
effect is referred to as lateral inhibition. The opposite can also occur, in which
case the effect is termed lateral summation. Lateral inhibition and summation
demonstrate one role of the synapse of the bipolar cells that communicate with the
ganglion cells, enabling ganglion cells to interact.

Contrast sensitivity function By measuring the electrophysiological response of an-
imals to patterns, the structure and function of multiple receptive fields have been
elucidated. In humans, the ability to detect patterns is measured via psychophysics,
giving a global response to the pattern rather than a response localized to a single
neuron. The contrast sensitivity function (CSF) describes the overall sensitivity
of the visual system to sinusoidal patterns as a function of pattern frequency. High
sensitivity signifies that the pattern can be seen with little contrast; low sensitivity
implies that a large contrast is required for the observer to detect the pattern. A
great many psychophysical studies have been conducted to determine the sensitivity
of human observers to grating patterns, starting with DePalma and Lowry in 1962.
Robson (1966) measured both spatial and temporal CSFs in humans in the 1960s.
Campbell and Robson (1968) measured the contrast sensitivity to single sinusoidal
gratings over a broad range of spatial frequencies at fixed background luminances.
By determining the just-visible contrast of sine-wave targets, these authors found
that the CSF follows a band-pass shape with a pronounced maximum at 2 to 4
cycles per degree, falling off at both low and high spatial frequency. An idealized
CSF is shown in Fig. 14.1.
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Fig. 14.1 Idealized example of a contrast sensitivity function.

We now know that the visual system is extraordinarily adaptive; the CSF is
dependent on mean luminance level, noise level, color, accommodation, eccentricity,
and image size (Kelly, 1977). While color CSFs have a shape similar to that shown
in Fig. 14.1, high-frequency color patterns are less detectable than luminance pat-
terns of the same frequency (Cornsweet, 1970). There is also significant variation
in contrast sensitivity functions, as well as other parameters of the visual system,
across human observers (Ginsburg et al., 1982; Owsley et al., 1983). Ginsburg and
Evans (1984) measured the CSFs of a large population of observers and found that
the peak value is dependent on the individual.

The CSF is often depicted as the envelope of multiple narrow spatial-frequency-
selective responses internal to the visual system. This view stems from evidence
that the bandwidth determined via psychophysical study in animals can be much
greater than that determined via electrophysiological experimentation. For exam-
ple, individual neurons in the cat have been found to respond to a narrower range
of frequencies (Movshon et al., 1978) than what is found externally via behavioral
studies (Blake et al., 1974).

Lateral inhibition reduces sensitivity to signals with large extent. That the
CSF is very low at low frequency is consistent with the inhibitory behavior of re-
ceptive fields at low frequencies. Several studies have established that the human
observer is unable to efficiently integrate information beyond a certain spatial extent
(Blackwell, 1946; Burgess et al., 1979; Boff et al., 1986).

Masking Research has shown that the presence of one pattern can make another
pattern less visible to an observer. This property is known as masking. The op-
posite of masking is facilitation, defined as the improved detection of a pattern in
the presence of another. The pattern to be detected is referred to as the signal; the
additional pattern is referred to as the mask. The mask is usually supra-threshold,
meaning its contrast is above that required for detection. When the mask contrast
becomes sufficiently low, the signal threshold is identical to the the signal threshold
in the presence of a uniform background; that is, the signal threshold is what is
expected based on the observer’s CSF and no masking occurs.

Periodic patterns such as gratings or sinusoids have been shown to mask pat-
terns with similar orientation or spatial frequency (Legge and Foley, 1980; Phillips
and Wilson, 1984). This effect is known as phase-coherent masking. Another ex-
perimental paradigm is to use noise fields of different bandwidths as masks; the
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effect is then called phase-incoherent masking (Pollehn and Roehrig, 1970; Pelli,
1981; Thomas, 1985). The presence of an aperiodic pattern such as an edge or a
gradient can also mask a nearby feature (Fiorentini et al., 1955). Masking demon-
strates orientational selectivity as well as frequency-dependent behavior (Campbell
and Kulikowski, 1966).

Diffuse light can mask signals. For this reason radiologists are trained to read
images in a darkened viewing area after they have adapted to the ambient light
level, to better detect low-contrast signals. Scattering in the lens and cornea of the
eye can also mask low-contrast signals. This problem is known to worsen with age.

Channels Channels are independent processors tuned to different narrow ranges of
spatial or temporal frequency. Channels were first hypothesized as visual scientists
pondered data from studies using compound-frequency patterns such as sawtooth
and rectangular gratings (Campbell and Robson, 1968). These data seemed to
indicate that detection of the pattern occurs only when the most detectable compo-
nent reaches its own threshold, independent of the presence of the other frequency
components. Sachs et al. (1971) then carried out experiments using compound
gratings consisting of just two frequency components. Whenever the second com-
ponent differed in frequency from the first by more than a certain ratio, the data
were consistent with the hypothesis that the two frequency components were being
detected independently. Moreover, when two components with frequencies related
by an even larger ratio were combined, the grating was no more detectable when
the two components were phased so that their peaks added than when their peaks
subtracted (Graham and Nachmias, 1971). The investigators concluded that differ-
ent spatial-frequency components were detected by independent processors tuned
to different narrow ranges of spatial frequencies. Detection of a stimulus occurs
whenever the activity in one of these processors rises above a threshold. These
processors were referred to as channels. Channels can be thought of as mosaics of
receptive fields (Sachs et al., 1971).

Many scientists have worked to corroborate the presence of frequency-selective
channels in the visual system (Mostafavi and Sakrison, 1976) and to determine
their properties in finer detail (Halter, 1976). The electrophysiological recordings of
Hubel and Wiesel (1962) are construed by many as the first evidence for channels.
Adaptation and masking experiments support the hypothesis that the channels
are medium-bandwidth mechanisms (Blakemore and Campbell, 1969; Stromeyer
and Julesz, 1972; Stromeyer and Klein, 1975; Legge and Foley, 1980). Narrow-
bandwidth channels are suggested by the results of frequency-discrimination tasks
(Campbell et al., 1970). The entirety of the data suggests the presence of approxi-
mately octave bandwidth spatial-frequency channels over the entire visible range.

There is ample evidence, starting with the work of Hubel and Wiesel (1962),
that the visual system also contains orientation-selective channels. DeValois et al.
(1982) investigated simple cells in the macaque and found them to have an angular
resolution of ±20◦. These data are quite similar to the estimates of orientation selec-
tivity in humans obtained using masking experiments (Campbell and Kulikowski,
1966; Phillips and Wilson, 1984). There are also channels tuned to object mo-
tion that have direction selectivity (Tolhurst, 1973), with a temporal two-octave
bandwidth (Tolhurst, 1975; Watson and Robson, 1981).
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Internal noise Human observers are noisy measurement devices. Thus, even if the
images presented to a human observer were noise-free, the output of the human
would have some variability. While it requires only one optical photon to excite a
rod, the number necessary for “seeing” is larger (Hecht et al., 1942). Barlow was
the first to suggest that this discrepancy is the result of an internal noise mechanism
(1956).

Burgess et al. (1981) compared human SKE (signal-known-exactly) detection
performance in white noise to an ideal detector with an added internal noise contri-
bution. While this modification to the ideal-observer model improved the model’s
agreement with the human data, it was suggested that some form of observer sam-
pling inefficiency was also needed for the model to match the slope of the human
data vs. noise spectral density. The authors further suggested that perhaps the ob-
server noise might be a function of image noise. Data from subsequent classification
experiments have borne out the suggestion that the visual system has two internal
noise components (Burgess and Colborne, 1988). The first component is an addi-
tive noise term that is independent of the image luminance. This noise component
may be the result of neural noise (Tolhurst et al., 1983), as well as fluctuations in
the observer’s decision criterion (Eckstein et al., 1997). The second component is
an induced, or image-dependent, component. The induced internal noise has been
shown to be proportional to the variance of the image noise (Burgess and Colborne,
1988).

Weber-Fechner law As stated earlier, diffuse light can mask low-contrast signals.
As a result, objects on bright backgrounds are harder to detect than objects on
dark ones (Cornsweet, 1970). The Weber-Fechner law states that the relative con-
trast of an object, given by (Lmax − Lmin)/Lmean = ∆L/L, is equal to a constant
for a given probability of detection. By this law, the detection of a difference in
luminance depends on the baseline, so that relative luminance is important, rather
than absolute differences.

Evidence of behavior following the Weber-Fechner Law has been interpreted
as a local gain mechanism or a saturating nonlinearity in the visual system, coupled
with internal noise (Shapley and Enroth-Cugell, 1985). This law also plays a sig-
nificant role in the approach used by many investigators in choosing the calibration
method for their soft-copy display (Blume and Hemminger, 1997). Many investiga-
tors choose to use a perceptually linearized display, in which the output luminance
at each digital driving level is set so that the step sizes between gray levels is higher
at higher absolute luminance levels (Pizer, 1981).

Psychometric functions A psychometric function is a plot of the probability of a
signal being detected as a function of signal contrast. For a signal of contrast c, the
probability of detection is usually fit by a sigmoidal function of the form (Nachmias,
1981)

Pr(D2|c) = 1− exp[−(c/α)β] , (14.4)

where D2 indicates that the observer chose in favor of the signal being present, β is
a slope parameter, and α shifts the function relative to the signal contrast. Many
experiments have been found to indicate approximately equal slope parameters
(Mayer and Tyler, 1986).
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14.2.2 Modified ideal-observer models

Given the vast array of anatomical, electrophysiological and psychophysical data
now available to us, many researchers have worked to develop models for all or por-
tions of the visual system. Some models are highly specialized, with the minimum
number of components required to demonstrate the model’s ability to predict data
obtained in a narrow range of psychophysical experiments. Other models are ex-
traordinarily complex, incorporating foveal sampling, a hierarchy of neural stages,
and higher-level signal processing and decision making in an effort to replicate the
entire visual system. We shall focus on models that have been developed for the
specific purpose of objective evaluation of imaging systems for classification tasks.

In Chap. 13, the ideal observer was introduced as the optimal decision maker
for classification tasks as determined by statistical decision theory. The ideal
observer sets the upper bar for classification performance. Statistical-decision-
theoretic models of the human observer thus use the ideal-observer model as a
starting point. We do not need a model with millions of photoreceptors and re-
ceptive fields, so long as the model predicts human data on a range of tasks that
are useful for image assessment. In fact, a simpler model facilitates imaging system
evaluation and optimization over high-dimensional optimization spaces.

The modified-ideal-observer approach to modeling human performance is this:
begin with the concept of the ideal observer; compare performance predictions with
human performance on actual classification tasks; modify the model to better pre-
dict human performance. Modifications to the model should be grounded in the
known features of the visual system described in the previous section.

We therefore require a rigorous basis for comparing observer performance. For
this, we return to the concept of observer efficiency.

Observer efficiency In Chap. 12 we introduced the concept of detective quantum
efficiency as a measure of the SNR transfer characteristics of a detector [cf. (12.23)].
In Chap. 13 we extended this concept to describe the efficiency of the Hotelling ob-
server relative to the ideal observer [cf. (13.273)]. Analogously, we can define the
statistical efficiency of the human observer relative to the ideal observer as

ηhuman =
SNR2

human

SNR2
ideal

. (14.5)

The relative efficiency of any two observers can be similarly defined.5

When human and ideal performance are comparable, the efficiency approaches
one and we conclude that the human observer is able to make almost complete use
of the information in the data to perform the visual task. For efficiencies much less
than one, we can conclude that the human observer is inefficient at extracting the
relevant information in the image for performing the task. When this occurs, we
look for features of the human visual system that might be the basis for the human
observer’s reduced performance.

5Some authors have defined observer efficiency as the ratio of SNRs required by the observers to
perform the task. In this school, human efficiency equals the SNR required by the ideal observer
divided by the SNR required by the human, where SNR is a physical quantity such as contrast;
smaller SNRs denote better performance. We prefer the definition given in (14.5), where SNR
quantifies task performance and high SNR is good!
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Classification in uncorrelated noise As described in Sec. 13.2.13, the definition of
observer efficiency given in (14.5) comes from the basic definition of DQE first
given by Albert Rose (1948) as a means of comparing the noise level of an actual
radiation detector with that of an ideal one. Rose compared the performance of the
eye to an ideal picture pickup device and determined that the minimum contrast
cmin required for detecting a uniform object on a flat background with quantum
noise satisfies

c2minNA = k , (14.6)

where N is the photon density of the uniform background, A is the area of the
object and k is a constant dependent on the observer; from experiments on human
subjects, Rose determined that k is in the range of 3 to 7. A lower value of k implies
a lower cmin and hence a more efficient observer.

Recall from Sec. 13.2.8 that the ideal observer takes on a special form when the
task is the discrimination of two nonrandom signals in additive Gaussian noise. In
this case the ideal observer is equivalent to a prewhitening matched filter (PWMF),
which reduces to a simple matched filter when the noise is white. Lawson (1971)
demonstrated that the Rose model of (14.6) is a special case of the PWMF for a
pillbox signal in Poisson noise of sufficient count rate that the Poisson statistics can
be approximated by Gaussian statistics.

The calculation of the ideal observer’s SNR is straightforward for SKE/BKE
(signal-known-exactly/background-known-exactly) tasks in Gaussian noise and can
be done analytically. For this reason the first comparisons of human performance
to ideal-observer performance were achieved in SKE/BKE tasks in white, or uncor-
related, Gaussian noise. Burgess et al. (1981) found human observers to be highly
efficient (η of 0.5 to 0.8) for SKE/BKE detection and discrimination tasks in white
noise. Human performance is well predicted by an ideal observer that positions a
template over the location of the expected signal and performs a linear summation
of the output. The fact that the efficiency is less than one can be explained by
internal noise (Burgess and Colborne, 1988).

When the signal extent becomes sufficiently large, human detection efficiency
in white noise declines (Burgess et al., 1979). In effect, there is a spatial limit to
the human’s ability to perform the template-matching operation. We might have
expected this from the shape of the CSF of the visual system. Other investiga-
tors have found that the human is unable to efficiently process “DC” information
(Ratliff, 1965; Van Nes and Bouman, 1967). For this reason some investigators
proposed that the PWMF model be modified by adding an “eye filter” (Loo et al.,
1984; Burgess, 1994).

Correlated noise Many experiments have been performed to investigate the impact
of correlated noise on human discrimination performance (Judy, 1981; Guignard,
1982; Burgess, 1985b; Myers et al., 1985; Blackwell, 1998). Of particular interest in
the early 1980s was the character of the noise in computed tomography (CT) images
and its impact on human perception. Raw CT data sets have Poisson noise, which
is uncorrelated. When CT images are reconstructed from the raw data using the
method of filtered backprojection (see Sec. 4.4.3), a filter with a ramp shape in the
frequency domain is used, and the resulting images have a ramp-shaped power spec-
trum at low spatial frequency. Early on, Wagner (1978) hypothesized that human
observers would be inefficient when faced with this noise-correlation structure, and
suggested that a non-prewhitening matched filter model might be a good predictor
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of human performance. Soon after, several studies found that human efficiency rel-
ative to the ideal observer is about 20% in CT noise, much less than the efficiencies
found in white noise (Judy et al., 1981; Burgess et al., 1985b). Myers et al. (1985)
investigated human performance for a family of noise power spectra of the form ρn,
for n = 1, 2, 3, 4, where ρ is spatial frequency. Thus n = 1 corresponds to the CT
case. These studies showed that human efficiency falls rapidly as n increases from
1 to 4.

A natural conclusion to draw from the reduced efficiency of the human ob-
server in tasks limited by correlated noise is that the human observer is indeed
unable to perform the prewhitening operation. For this reason the human observer
was modeled by some investigators as a matched filter without the prewhitening
operation. The efficiency of the human relative to this so-called non-prewhitening
matched filter (NPWMF) was shown to be around 50% (Judy and Swensson, 1985),
with the difference again explainable by internal noise.

Since the NPWMF equals the PWMF in white noise, the NPWMF model pre-
dicts human performance in both correlated and uncorrelated noise. Furthermore,
by combining an eye filter and an internal noise mechanism with the NPWMF, an
even larger body of human psychophysical data can be explained (Ishida et al.,
1984; Loo et al., 1985; Ohara et al., 1986; Giger and Doi, 1987, deBelder et al.,
1971; and Wolf, 1980). This observer is often called the NPWE in the literature,
to denote the addition of an eye filter to the non-prewhitening matched filter; we
shall use this same shorthand below.

The NPWE models the spatial-frequency response of the visual system with
a single spatial-frequency filter. Given the experimental evidence that the human
visual system has multiple narrow spatial-frequency channels, a preferred approach
to modifying the ideal observer is to incorporate this recognized characteristic of
the visual system.

Adding channels to the ideal observer The model of the human visual system as a
matched filter is effectively a model with an infinite number of channels. Yet there is
substantial evidence that the visual system processes images through a finite num-
ber of finite-width channels. Myers and Barrett (1987) introduced a handicapped
ideal observer, constrained to process scenes through frequency-selective channels,
and demonstrated that this modified Bayesian observer ably predicted human per-
formance in correlated noise. They found that this model was robust to the choice
of a channel width parameter. By requiring the lowest-frequency channel to have
a finite turn-on frequency, this model also predicts the inefficient performance of
human observers on tasks that have significant DC content.

Myers and Barrett found the performance predictions of the channelized ideal
observer and the NPWMF to be indistinguishable for the problems they studied
(stationary Gaussian noise, signal known exactly). They argued in favor of the
channelized ideal observer because this model is consistent with a known mecha-
nism of the visual system. Moreover, as we shall see in the following sections, this
model has been found to be predictive of human performance over a much broader
range of signal detection and discrimination tasks.

Random backgrounds The tasks described in the previous section were ones in
which the background was known exactly; the only variation in the data was due
to measurement noise. We now consider tasks in which the data are random due to
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both background variability as well as measurement noise. The noise in the data is
therefore said to have two components.

In Sec. 8.4 we described several approaches for generating random backgrounds,
and in Chap. 13 we discussed model observers for tasks in which the background
is random and known only in a statistical sense. Several investigators have made
use of these methods to study the performance of human observers in random
backgrounds and compare the results to model-observer predictions. Rolland and
Barrett (1992) generated lumpy backgrounds by randomly superimposing Gaus-
sian blobs on a uniform background according to the procedure described in Sec.
8.4.4. For the task of detecting Gaussian signals of known size and location on
the lumpy backgrounds, Rolland and Barrett compared human performance to the
performance of the Hotelling or optimal linear observer defined in Sec. 13.2.12 as
well as the NPWMF. Rolland and Barrett found that the Hotelling observer was a
good predictor of the human performance data. The performance of the NPWMF
was not able to predict human performance over the range of system parameters
investigated in the study.

Yao and Barrett (1992) combined the background model of Rolland and Bar-
rett with power-law noise of the type investigated by Myers et al. (1987) and found
that a channelized Hotelling observer was a good predictor of all the human data
acquired in these experiments (Barrett et al., 1993). Burgess et al. (1994, 1997,
1999) studied human performance in random lumpy backgrounds generated by fil-
tering a Gaussian field. Their results were consistent with the findings of Rolland
and Yao: a Hotelling observer constrained to process the frequency-selective chan-
nels is able to predict the data over the range of experimental parameters describing
the signals and backgrounds. A NPWMF is not predictive, even when modified to
include an eye filter. More recent experiments in power-law backgrounds generated
by filtering a Gaussian random process were less conclusive; the most predictive
model depended on the signal profile in a study by Burgess (2001).

Several studies have been performed to compare human performance to model
observers using real images as backgrounds. In a study using backgrounds drawn
from real x-ray coronary angiograms, Eckstein et al. (1999) found the channelized
Hotelling model to be predictive of human performance in detecting simulated ab-
normalities. Bochud et al. (1995, 1999a, 1999b) studied human performance using
simulated nodules in mammographic and angiographic backgrounds and compared
their results to a non-prewhitening observer with and without an eye filter (a sin-
gle channel). They found that, owing to the nonstationarity of the images, the
models must be allowed to adapt to the statistics of the local background around
the signal in order to better predict human performance. Interestingly, the data
of Bochud et al. (1999b) suggest that the clinical backgrounds have higher-order
statistical properties used by the human observer, although not by the Hotelling
observer. Similarly, Caelli and Moraglia (1986) showed that a cross-correlator does
not predict human performance when the background is a natural scene.

Signals of large spatial extent The inability of human observers to efficiently detect
signals of large spatial extent described in Sec. 14.2.1 has direct ramifications on the
task-based assessment of the quality of images derived from systems with significant
artifact content. For example, the effective point response function (PRF) for im-
ages reconstructed from limited-angle tomographic data can be quite noncompact,
yielding long-range streak artifacts. The images of compact objects are thus quite
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extended and human efficiency for detecting such objects suffers a penalty (Wagner
et al., 1992; Myers et al., 1993). These studies found that human performance
is modeled quite well by an observer that performs only linear operations on the
images. These studies involved signals at random locations, leading to location-
dependent artifacts; the ideal observer is nonlinear in this case if the problem is
cast as a binary signal-detection problem.

A long-tailed PRF can also arise when veiling glare is present in a display
device or gamma rays penetrate the collimator in gamma-ray imaging. Rolland et

al. (1989) has shown that human classification performance is inefficient for images
formed by a system with a long-tailed PRF, consistent with the earlier literature
on the inefficient spatial integration properties of the human. Rolland found that
human performance is improved by linear filtering designed to narrow the overall
system PRF, even though the ideal observer performance is unchanged by image
processing (Sec. 13.2.6), as long as it is invertible.

Texture perception In some special circumstances the human can detect signals of
large spatial extent quite efficiently. An example is the detection of a known grid
of bright lattice points on a noisy background (Wagner et al., 1990a). Another ex-
ample is the detection of mirror symmetry patterns of dots (Barlow, 1978; Barlow
and Reeves, 1979) buried in a background of random dots (Glass patterns). These
results can be explained by an observer who uses the strategy of performing a series
of local template-matching operations, skirting the need for integration over a large
area (Wagner et al., 1989).

A particular form of extended signal is a pattern of a different texture than
the texture of the background in which the signal is embedded. In tasks where such
an extended signal is to be detected, human efficiency can be extremely low. For
example, the detection of a regular grid or lattice of objects, where some randomiza-
tion of the object locations is involved, results in low human efficiency (Wagner et
al., 1990a). Similarly, the detection of random dot patterns (Maloney et al., 1987;
Tapiovaara, 1990) and the detection of diffuse liver disease (Garra et al., 1989)
can also be low-efficiency tasks. While many investigators have considered human
performance in texture discrimination tasks (Julesz, 1981), these studies are rarely
placed in the context of ideal-observer performance. Much more work is needed to
understand human performance in textured tasks on an absolute scale.

Nonlinear tasks While the channelized Hotelling observer has been found to predict
human performance over a wide range of experimental paradigms, that observer is
constrained to perform linear operations on the data. In addition, as the previous
section describes, there are ample examples of psychophysical studies showing low
human efficiency relative to the ideal observer for nonlinear tasks. The question
then arises, can the human do nonlinear operations?

There are many examples of tasks for which human efficiency is fairly high even
though the optimal strategy is nonlinear. One example is the task of noise variance
discrimination, wherein observers are asked to determine which of two scenes has
higher pixel variance. The optimal discrimination strategy is quadratic in the data
as seen in (13.163). In unpublished studies, we found that humans were able to
perform this task quite efficiently. Does this mean the humans are able to do the
computations of (13.163)? Maybe not. It can be shown (Wagner et al., 1990b) that



934 IMAGE QUALITY

a combination of linear and logic operations can approximate this ideal nonlinear
strategy quite efficiently.

Similarly, the detection of 1 ofM orthogonal signals in white noise is optimally
performed with a nonlinear strategy [see (13.159)]. However, Nolte and Jaarsma
(1967) showed that a series of linear operations, followed by the nonlinear operation
of selecting the filter with the maximum output, approximates the ideal nonlinear
strategy well over much of the signal parameter space of interest (the range of con-
trasts of use for psychophysical study). Other investigators have also shown that
the “maximum-of” detector gives performance predictions very close to those of the
optimal observer in the SNR ranges of experimental interest (Pelli, 1985; Wagner,
1990b).

Burgess and colleagues (Burgess and Ghandeharian, 1984a, 1984b; Burgess,
1985a) measured human efficiency in studies with signal uncertainty in white noise.
To approximate ideal-observer performance, they computed the performance of an
observer that compared the maximum of a series of matched-filter outputs to a
threshold, following the theory of Nolte and Jaarsma (1967). Human observer per-
formance was well predicted by this model observer, with an efficiency around 50%.
Judy et al. (1997) found little degradation in human performance for the detec-
tion of sharp-edged disks and Gaussian signals when the disk diameter or Gaussian
width was variable, relative to the SKE task.

Since selecting the maximum of a set of outputs from linear filters is a nonlin-
ear or logical operation, we call this model a linear+logic observer. The closeness
of the optimal observer to the linear+logic model may preclude one model being
rejected in favor of the other using psychophysical data.

The field of neural networks sheds some light on the similarity of these mod-
els. A fully connected neural network can be shown to approximate ideal-observer
performance. The neural network applies a series of filters in the form of weights
to each input value, followed by a sigmoidal nonlinearity—a neural network is a
linear+logic observer. As described earlier, there is good evidence that neural re-
sponses in the human visual system can be represented by a set of linear filtering
operations followed by thresholding, and neural networks represent this scheme.
Thus, when the human observer performs nonlinear tasks efficiently, we must be
cautious before concluding the human can perform the optimal higher-order (in the
data) nonlinear operations. It may well be that the human is smartly perform-
ing a series of linear operations, followed by a threshold nonlinearity, to obtain
near-optimal performance.

Optimal processing of channelized data As demonstrated in Fig. 14.2, the addition
of a channel mechanism to a model observer can be visualized by adding a block
to the processing steps shown in Fig. 13.1. In the figure we suppose there are P
channels, each represented by the column vector up. The output of the channels is
given by

v = Utg , (14.7)

where U is the M × P matrix whose columns are the channel profiles up, and v is
the P×1 vector of channel outputs. The up represent the channel profiles, which we
assume to be real. Processing the images through channels reduces the dimension-
ality of the data set fromM to P. Possible choices for channel profiles are presented
below. In some applications, P can be as small as 3.
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Each channel output vp is a random variable, made random by measurement
noise and object variability—whatever sources of randomness are in the raw data.
The probability density of each channel output is obtained using the methods for
transforming random vectors presented in Sec. 8.1.5. Life is usually simpler, though,
because in most models each channel output is the sum of multiple data values; the
central-limit theorem tells us that the resulting random variable tends to be Gaus-
sian distributed in that case.

Fig. 14.2 Block diagram of a channelized observer.

Given the {vp}, a strategy must be defined by which the channel outputs
are combined to arrive at a decision that a stimulus either is or is not present.
Possible options include adding the responses of the channels or using only the
channel with the maximum response (Graham and Nachmias, 1971). Alternatively,
the channel outputs may be combined via probability summation (Pirenne, 1943).
Pirenne conjectured that binocular vision yields lower detection thresholds than
monocular vision because the probabilities of detection from the left and right eyes
are independent, and signals are detected if they are detected by the right eye, the
left eye, or both. Formally, he suggested that the probability of detecting a signal
using both eyes is

Pr(D|L+R) = 1− [1− Pr(D|L)][1− Pr(D|R)] , (14.8)

where Pr(D|L) and Pr(D|R) are the probabilities of detecting the stimulus with the
left and right eyes, respectively. While probability summation has been rejected as
an explanation for the relative performance of binocular to monocular vision, it is
encountered in some vision-system models as a means of combining the outputs
of parallel channels (Daly, 1993). Combinations of differences in channels at each
location/pixel have also been suggested (Lubin, 1993; Lloyd and Beaton, 1990;
Zetzsche and Hauske, 1989). In some channel models, the sigmoidal form of (14.4)
is imposed on the outputs of the frequency- and orientation-selective filters at each
location (Legge and Foley, 1980) before the decision-making step.

Optimal methods for combining channel outputs The human observer can also be
modeled as a quasi-ideal observer, that is, an observer who is constrained to process
visual scenery through channels, but who is otherwise optimal in how the channel
outputs are used to perform the task. If the human is modeled as a channelized
ideal obsever, the model will achieve maximal AUC among all observers constrained
to process data through the visual channels. A channelized ideal observer forms the
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likelihood ratio of the channel outputs under each hypothesis, giving

Λ(v) =
pr(v|H2)

pr(v|H1)
. (14.9)

The model observer’s decision strategy is to compare Λ(v) to a threshold, choosing
H2 when Λ(v) is greater than this value, and H1 otherwise. As detailed in Chap. 13,
the ROC curve and related performance measures for the channelized ideal observer
can be determined using (14.9) as a starting point.

Alternatively, a channelized Hotelling observer (CHO) model might be invoked,
thereby assuming that the human observer forms an optimal linear combination
of the channel outputs. As described in Sec. 13.2.12, there is a well-established
theory for determining the optimal linear combination of the channel outputs and
the resulting CHO figure of merit using the statistical properties of the channel
outputs. For a binary discrimination task, the Hotelling observer’s template in the
channel space is given by

wHot,v = S−1
2v∆v , (14.10)

where S2v is the P×P intraclass scatter matrix of the channel outputs [cf. (13.187)]
and ∆v is the expected difference in the channel outputs under each hypothesis.

The separability of the data in channel space is written in terms of the interclass
and intraclass scatter matrices for v:

Jv = tr[S−1
2v S1v] = tr[(U†S2gU)−1(U†S1gU)] , (14.11)

where S1v is the interclass scatter matrix of the channel outputs [cf. (13.186)].
While (14.7) has the form of the linear transformation given in (14.10), including a
dimensionality reduction, these expressions differ significantly because transforma-
tion using the matrix of visual channel functions U may result in the separability of
the channel outputs being less than the separability of the data, while the operation
of (14.10) generates a test statistic that preserves the separability in the channel
outputs.

When the channel outputs are Gaussian random variables with equal covari-
ance under the hypotheses, the channelized Hotelling observer and the channelized
ideal observer are equivalent. In Sec. 14.3 we shall discuss methods for computing
performance measures for channelized model observers.

Channel choices The nature of the signal and the background play a significant role
in determining an appropriate choice for the channel profiles {up} and the way they
are imposed on the data. For example, in an SKE task the channels are centered
at the known signal location and the sum represented by (14.7) is done. If, on
the other hand, the signal can be located at N multiple orthogonal locations, the
channels could be centered at each location to give an N × P vector of outputs for
decision-making purposes. When the signals and background are rotationally sym-
metric, the channels do not require any angular dependence; orientation-dependent
signals and backgrounds require channels with orientation-selective responses.

The channelized ideal-observer model of Myers and Barrett (1987) incorpo-
rated radially concentric channels to predict human performance in correlated noise.
The model’s predictive ability was found to be insensitive to channel width and low-
frequency turn-on parameters for the tasks considered in that work. The simplicity
of this channel structure was possible because the task was the detection of radially
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symmetric signals at known locations. Because the signals were low contrast and
the image noise was a filtered Gaussian random process, the model was equivalent
to a channelized Hotelling observer.

More complex tasks involving asymmetric signals at varying locations may
require more complex channel models. A variety of approaches for representation
of channel mechanisms have been pursued by the developers of models of the vi-
sual system; these approaches can be incorporated into a CHO framework. Models
based on Gabor functions (Daugman, 1988; Lloyd and Beaton, 1990; Watson, 1987)
and wavelets (Daugman, 1985; Mallat, 1989; Marcelja, 1980; Watson, 1983) can be
made to have both spatial and location specificity. Other options include ratio-of-
Gaussian channels (Zetzsche and Hauske, 1989) and difference-of-Gaussian (DOG)
models (Wilson and Bergen, 1979). Difference-of-mesa (DOM) filters can be used
to model radial-frequency filters as well (Daly, 1993). “Mesa” is Spanish for table;
a difference of two mesa functions gives a filter with a flat passband, a transition
region, and a flat no-pass band. To give radial-frequency filters orientation selectiv-
ity, they can be multiplied by a set of functions tuned to orientation. For example,
Daly uses what he calls fan filters to model the orientation-selective response. The
product of the DOM and fan filters are termed cortex filters.

Once a selection has been made of the functions to be used to create a family
of channels tuned to an array of orientations and frequencies, the next question is
the number of such channels to include in the model. Many studies have indicated
that only a fairly small number of channels is required for adequate modeling of
human data. Myers and Barrett (1987) found good agreement between human data
and CHO predictions with about 6 radial channels. The Daly visual-difference pre-
dictor model, designed to predict human performance for JND tasks (Sec. 14.1.3),
uses only 6 DOM filters, combined with as few as 6 fan filters (30 degrees each),
leading to 31 cortex filters in all [(# of fans) × (# of DOMs −1) + 1], since the
lowest frequency filter has no orientation specificity). Wilson and Gelb (1984) also
suggested the use of 6 spatial-frequency selective DOG filters, each with a range of
orientations. There seems to be reasonable consensus that only about 6 channels
are needed to cover frequency space; adding about 6 orientation-specific channels
to each frequency-selective filter gives a complete model.

Internal noise To achieve even better matching between CHO and human data, the
internal noise of the visual system must also be addressed. One way to account for
internal noise is to scale the detectability of the human observer to that of the model
observer (Burgess et al., 1997; Burgess, 1999), giving SNRhuman = κSNRmodel,
where κ represents the impact of internal noise on detectability. From (14.5) it can
be seen that the scaling factor is related to observer efficiency according to η = κ2.

Another approach is to add noise injectors to the channel model, as shown in
Fig. 14.3, giving a modified definition of the channel outputs of (14.7):

vp = u†
p g+ ǫp , (14.12)

where ǫp is an additive Gaussian noise contribution in channel p (Legge and Foley,
1980).

For a channelized linear observer, (14.12) is equivalent to adding noise to
the decision variable (Abbey and Bochud, 2000). In particular, the channelized
Hotelling observer forms the scalar test statistic t according to

t = wt
Hotv = wt

Hot[U
tg+ ǫ] = ṽ + ǫ̃ , (14.13)
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where the tildes represent the transformation to the decision-variable space. Both ṽ
and ǫ̃ are scalar random variables, and both can usually be assumed to be Gaussian.
The point of (14.13) is that a single Gaussian-noise injector at the decision variable
level can model additive internal noise.

Observer uncertainty acts as a source of internal noise. It might be expected
that observer uncertainty about parameters of the signal would result in a signal-
dependent noise contribution, or a channel-dependent noise contribution. For ex-
ample, one might hypothesize that the magnitude of a matched-filter’s template un-
certainty would depend on actual signal size, which would result in signal-dependent
internal noise. However, Eckstein et al. (2000a) note that signal uncertainty is most
often modeled as statistically independent of the signal.

Fig. 14.3 Block diagram of a channelized observer including an internal noise
mechanism.

Observer efficiency revisited The efficiency of the human observer relative to any
model observer can be defined via (14.5). Choices for the denominator include the
full ideal observer, the PWMF in SKE/BKE tasks in Gaussian noise, the NPWMF
in SKE tasks, and the channelized Hotelling observer. A growing volume of psy-
chophysical data, combined with model-observer calculations, is establishing the
channelized Hotelling observer as an excellent predictor of human classification per-
formance over a wide range of experimental paradigms, including ones in which the
PWMF and NPWMF models are far less able to predict human performance. For
this reason the remainder of this section will emphasize human efficiency relative to
the CHO and review some of the many additional studies that have demonstrated
the predictive capacity of the CHO model.

CHO success stories Many of the first comparisons of Hotelling and human per-
formance involved the assessment of image quality in nuclear medicine. Fiete et

al. (1987) investigated human performance in detecting simulated lesions in simu-
lated liver scans and found excellent correlation with the Hotelling observer. Cargill
(1989) used a more elaborate simulation for nuclear medicine, involving the detec-
tion of abnormalities in simulated images of a computer-generated 3D model of the
liver with several possible disease states. She found excellent correlation between
human performance and Hotelling predictions of image quality for 9 different colli-
mator designs.

The CHO has also been shown to correlate well with human performance in
the assessment of acquisition systems and reconstruction algorithms in tomographic
imaging. Abbey and Barrett (1995) found good agreement between the human and
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CHO across a range of linear iterative reconstruction algorithm parameters. Gif-
ford et al. (1999, 2000a) used human and model observers to evaluate the impact
of detector-response compensation on tumor detection in SPECT.

Acceptable levels of lossy image compression have been hotly debated for years.
When the compressed images will be used by human observers, the evaluation of
the compression algorithms must involve the assessment of the impact of the com-
pression on human performance. Observer models can play a significant role in the
evaluation of the large number of potential compression algorithms and the many
parameters defined by each, provided the model observer predicts human perfor-
mance. Eckstein et al. (1999) found the CHO and the NPWE to correlate well with
human observer performance in the evaluation of image-compression algorithm set-
tings. Based on this fact these investigators used a model observer to optimize
the quantization parameters of the JPEG algorithm (Eckstein et al., 2000b); the
optimized parameter settings were then validated by psychophysical determination
of improved human performance.

Human observers are known to be adaptive to noise level and image content,
among other things. The CHO is also adaptive, with a decision strategy that
changes when the signal or noise characteristics of the images are altered. Rolland
and Barrett (1992) demonstrated that the adaptation of the human observer can
be predicted by the CHO. In nuclear medicine, increasing exposure time shifts the
dominant source of variability in the data from quantum noise toward the contri-
bution from object variability. Rolland showed that human detection performance
improves as exposure time increases, providing evidence of the human’s ability to
incorporate improved quantum statistics into its decision strategy. Similarly, the
Hotelling observer’s performance increases with increasing exposure. The correla-
tion between the CHO predictions and the human data was extremely high, over
several decades of observer performance. Conversely, the NPWMF strategy is not
adaptive; the NPWMF applies a template determined by the difference of the sig-
nals under each hypothesis without regard for the character of the background. This
observer’s performance saturates as exposure time increases, failing to predict the
performance of the human observer. No nonadaptive model could possibly predict
human performance in this study.

A number of studies have extended the body of knowledge regarding CHO
performance in random backgrounds. In addition to the work involving lumpy
backgrounds of Rolland, Yao and Burgess discussed previously, it has been shown
that the CHO correlates well with human performance in the presence of anatomical
backgrounds (Eckstein and Whiting, 1995). Abbey and Barrett (2001) measured
human-observer performance in several SKE tasks to investigate the effects of reg-
ularization and object variability in tomographic image reconstructions. Across a
range of experiments that investigated parameters determining the signal profile,
exposure time, and data covariance, the channelized-Hotelling observer was most
able to predict the array of human data.

Abbey et al. (1999) give an elegant theoretical derivation of an unbiased pro-
cedure for determining the template of a linear observer for a detection task. The
only inputs to the procedure are the images presented to the observer on each
trial and the observer’s decision as to which image was deemed “signal-present.”
The procedure requires the means and covariances of the data under each hypoth-
esis. While the template-estimation procedure is applicable to any linear observer,
Abbey et al. made use of the procedure for estimating the templates of human
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observers and comparing them to the templates of model observers. Edwards et al.
(2000) extended the template-estimation procedure to the case where the noise is a
mixture distribution of Gaussians. Recently, Abbey and Eckstein (2001) suggested
the use of Bayesian template-estimation methods; the reduction in variance ob-
tained through these methods may outweigh the small bias that also results. These
template-estimation methods are pointing the way toward a better understanding
of the human-observer’s decision strategy. Perhaps in the future they may even find
use in the development of improved methods for computer-aided diagnosis (CAD).

14.2.3 Psychophysical methods for image evaluation

Psychophysical methods are used to measure human-observer performance and as-
sess diagnostic accuracy. In this section we shall review the history of the devel-
opment of ROC methodology as a tool for understanding the visual system and
assessing imaging technologies. We shall then describe methods for the conduct of
psychophysical studies.6

Early applications of ROC analysis ROC techniques were initially developed during
World War II for analyzing the performance of radar systems for detecting aircraft.
One of the earliest applications of psychophysical methods to a medical applica-
tion was the work of Garland (1949), who investigated the diagnostic accuracy of
roentgenographic and photofluorographic techniques and presented some of the ear-
liest evidence of reader error and variability. The cross-fertilization that brought
ROC methods to visual science was greatly facilitated when W. P. Tanner, a grad-
uate student in psychology at the University of Michigan, was assigned a desk in
the office of T. G. Birdsall, one of the early pioneers of ROC methods (Cohn, 1993).
In 1954, Tanner and J. A. Swets, also of the University of Michigan, published a
seminal paper in which statistical decision theory was first applied to the study
of visual performance, even including a section entitled, “A new theory of visual
detection.” This paper demonstrated that the core principles of statistical decision
theory were applicable to observer performance. Most notably, the mathematical
model of Fig. 13.4 is applicable to human decision variables, and human observers
can control their decision criterion and manipulate it in response to information re-
garding the prior probability of each hypothesis and the decision costs. The paper
presented data collected by yes-no and forced-choice experiments and showed them
to be consistent.

It took some time for the perception community to relinquish the theory of an
absolute detection threshold for “seeing.” In 1963, Nachmias and Steinman pub-
lished an ROC study meant to determine whether humans have a decision criterion
that could be altered by directives from the investigator. The paper concluded
that the data supported the variable-criterion hypothesis, but did not rule out the
absolute-threshold theory entirely. Finally, in 1969, Kratz published an analysis of
the Nachmias and Steinman data that concluded that the absolute-threshold theory
could be rejected.

6We gratefully acknowledge the presentation materials made available to us by Charles Metz for
use in writing this section.
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While the variable-threshold theory was being established, Swets and his col-
leagues were working with great gusto at extending the use of statistical decision
theory to the study of decision processes in perception (Swets et al., 1961; Swets,
1964; Green and Swets, 1966). Another mathematical psychologist at the University
of Michigan, D. D. Dorfman, and his colleague E. Alf, Jr. published a maximum-
likelihood method for estimating ROC curve parameters and determining confidence
intervals (1968, 1969). In the same timeframe, L. Lusted became the first investiga-
tor to apply ROC methods to medicine in general and medical imaging in particular
(1968, 1971). Also, in 1960, the First Freiburg Conference on the Neurophysiology
and Psychophysics of the Visual System was held, creating a forum for the move-
ment toward combining and correlating information about the visual system derived
from electrophysiological investigation with that derived using ROC methods (Jung
and Kornhumber, 1961). This was a time of tremendous growth in methodology
and accumulation of data in visual science.

The next decade saw a shift in the center of the ROC universe from the Univer-
sity of Michigan to the University of Chicago, where ROC analysis was applied to a
variety of problems in medical imaging. Metz et al. demonstrated the relationship
between ROC analysis and Shannon’s information theory (1973) and published a
tutorial on the basic principles of ROC analysis for a medical imaging audience
(1978). Goodenough (1975) made use of an L-alternative forced-choice paradigm.
Starr et al. (1975) investigated the detectability of low-contrast disks and spheres
on uniform backgrounds in radiography. The early work of Starr et al. was one of
the first of a set of studies that together demonstrated the limitations of using sin-
gle measures of imaging system performance like resolution as a measure of image
quality. It was also one of the first investigations of the effect of search-region size
on ROC curves.

In the 1980s, the advent of relatively inexpensive, fast computers enabled the
development and dissemination of free software for curve-fitting of ROC data, mak-
ing ROC analysis much more widely utilized for image evaluation.7 Software for
statistical testing also became available. There is now a wide variety of free pack-
ages available for the analysis of data acquired under a variety of experimental
paradigms and providing an assortment of possible model fits, as well as the statis-
tical comparison of results across imaging systems, observers, and tasks.

The last decade has seen continued development of numerical tools for the
analysis of ROC data, the generalization of ROC methods to more complex and
clinically relevant tasks, and a significant increase in the utilization of ROC-based
methods for studies of image evaluation and observer performance. In the next
sections we shall describe in more detail how ROC experiments are designed and
performed and the methods for data analysis that are available to investigators to-
day. Our purpose is not to provide a complete “how-to” manual, but rather to give
an idea of the many options available to the investigator and the relevant literature
where more specific experimental and analytical tools can be found.

The yes-no experiment A single point on an ROC curve can be determined for a
given observer on a given binary-classification task using a simple “yes-no” exper-
iment. In each experiment, an observer is presented with a set of images one at a

7Some twenty years later, the number of registered users of the free Metz software package is close
to 4000!



942 IMAGE QUALITY

time, and the observer responds either “yes – the signal is present” or “no – the sig-
nal is absent.” (More generally, “yes – class 2 is true” or “no – class 2 is not true.”)
By tabulating the fraction of true and false responses at the end of the experiment,
a single point on the ROC curve is determined. By instructing the observer to use
a different mindset on each of a set of yes-no experiments, a set of points on the
ROC curve is found, as depicted in Fig. 13.5. The finer the curve desired, the more
yes-no experiments that must be performed.

Rating-scale approach Swets et al. (1961) showed that a single rating-scale experi-
ment gives equivalent ROC estimates to that obtained via the inefficient process of
repeated yes-no experiments. The rating-scale approach involves the presentation
of single images to the observer at a time, with each image presentation referred
to as a “trial.” The data collected on each trial is the observer’s certainty that the
image belongs to class 2. Table 14.1 gives an example rating scale.

There are many variations on this theme. At one extreme, class 2 can be de-
fined by the presence of an exactly-specified object at an exact location, while at
the other extreme it can encompass the presence of any pathology of any kind, with
the range of object variability in the middle ground. The number of rating levels
can be as few as 5, although 6 or 7 is more commonly encountered, or the experi-
ment can use a continuous rating scale. The use of a continuous rating scale, first
advocated by Rockette et al. (1992) and validated by King et al. (1993), allows for
finer distinctions of certainty levels by the observer, and a smaller chance of degen-
erate data (where the cells of the rating scale are not fairly evenly distributed with
responses) in the analysis stage (Wagner et al., 2001). However, some investigators
shy away from this method because of a concern that diligent observers will find
it difficult to report their rating so finely, and the concern that the intra-observer
variability will be increased (the likelihood that the observer will rate the same case
at the same level on two independent trials will be infinitely small).

A current controversy is the use of action scales like the BI-RADS scale (ACR,
1998) for classification of mammographic images. Action scales incorporate patient
management as well as the reader’s level of suspicion. Some investigators have rec-
ommended that a pure probability-of-disease rating be acquired in addition to an
action rating to avoid the bias that can occur when using an action rating alone for
ROC purposes.

Table 14.1 Example rating scale

Rating Description of certainty level

1 Object is definitely a member of class 1

2 Object is likely to belong to class 1

3 Object is equally likely to belong to class 1 or class 2

4 Object is likely to belong to class 2

5 Object is definitely a member of class 2
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Relationship to contrast-detail (CD) diagrams An early paradigm for image assess-
ment was the contrast-detail approach. In this method the observer is shown an
image containing multiple signals with a range of contrasts and sizes. The observer
reports the smallest detectable signal at each contrast. A plot of the detection-
contrast versus size (detail) is then generated. When a set of CD diagrams are
plotted as a function of exposure or dose, it is termed a CDD diagram (Cohen et

al., 1981).
There are several difficulties with the CD-diagram approach. One is that the

approach is subjective because it does not control for the observer’s variable deci-
sion criterion; different observers can be lax or strict in their judgment and even the
same observer’s criterion for “seeing” the signal can vary. Also, there is no ability to
correct for “wishful thinking” on the part of the observer, and without signal-absent
locations there is no ability to determine the trade-off with false-positive responses.
Thus, while the CD-diagram approach is routinely used as a quality-assurance pro-
tocol in many imaging applications, it is not recommended as a quantitative tool
in the assessment of imaging systems unless the aforementioned concerns are ad-
dressed in the study.

The CD-diagram can be of use when machine observers are used in place of
humans. Then the observer’s threshold can be set to a fixed level, and the algo-
rithm can be forced to evaluate both signal-present and signal-absent locations.
Chakraborty and Eckert (1995) have developed a procedure for the machine evalu-
ation of phantom images for use in the evaluation of image quality.

Forced-choice experiments We first encountered the forced-choice (FC) experimen-
tal paradigm in Sec. 13.2.5. In a forced-choice experiment, an observer is forced
to make a decision in favor of one of the alternative hypotheses. In the binary-
classification task, a pair of images is presented to the observer, either at the
same time or sequentially, one from class 1 and the other from class 2. The or-
der/placement of the images is randomized, and usually there is no restriction on
viewing time. The observer must decide which alternative belongs to class 2. As
derived in Sec. 13.2.5, the percentage of correct responses in a two-alternative forced
choice (2AFC) experiment equals the area under the ROC curve. We shall have
more to say on this when we discuss the analysis of forced-choice data in Sec. 14.2.4.

The generalization of the FC paradigm to the L-alternative task requires the
observer to state which of L-alternative signals is present in a signal-present image,
or which of L regions contains a specified signal, for example.

Generalized ROC methods In a classic ROC experiment designed to evaluate an
SKE binary classification task, the observer records a single rating on each trial de-
scribing his or her certainty that the image belongs to class 1 or class 2 (see Table
14.1). The application of this experimental paradigm to more realistic problems
in which the signal is not known exactly is problematic. When there are multiple
possible signals, or multiple locations, a single probability score does not capture
all the data available from the observer. Most notably, the observer may indicate
a high certainty that a signal is present in a signal-present image, but in fact the
observer may have missed the true signal and be responding to a noise-only location
that is perceived to be signal. Without requiring the observer to provide location
data along with the probability rankings, there is no ability to correct for this effect.
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An alternative is to require the observer to point to the signal that is detected
on an image, and rate the probability that it is there. A localization ROC (LROC)
curve is a plot of the actually positive images detected with the lesion correctly lo-
calized vs. the fraction of actually negative images falsely called positive (Swensson,
1996). The x axis of an LROC curve is thus the same as in a conventional ROC
plot. On each image there is either a single signal at an unknown location or there
is no lesion. An example LROC curve is shown in Fig. 14.4.

Fig. 14.4 An example LROC curve.

Free-response ROC curves (FROC) were introduced by Bunch et al. (1978)
to enable the detection-and-localization analysis of images with an arbitrary num-
ber of signals. An FROC curve is a plot of the fraction of lesions detected vs. the
average number of false-positive detections per image. FROC curves are often used
in the assessment of CAD algorithms, where the number of false positives can be
high. An example FROC curve is shown in Fig. 14.5

Fig. 14.5 An example FROC curve.

The alternative free-response ROC or AFROC curve is a plot of the fraction
of lesions detected vs. the fraction of actually negative images falsely called positive
(Chakraborty and Winter, 1990). An actually negative image is included in the
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fraction of those called positive whenever one or more false-positive locations are
identified on it. The x axis of an AFROC curve is similar to the x axis of ROC and
LROC curves, only now the ability to mark more than one location on an image is
allowed. An example AFROC curve is shown in Fig. 14.6.

Fig. 14.6 An example AFROC curve.

14.2.4 Estimation of figures of merit

Once the experimental procedure has been run and the observer-response data
have been collected, the question arises as to how best to analyze the data. In this
section we shall describe methods for the analysis of ROC and related data, and
the estimation of figures of merit for summarizing image quality for classification
tasks.

Analysis of conventional ROC data The foundation for the analysis of ROC-like
data is the analysis of conventional rating data. The simplest approach to the gen-
eration of an ROC curve from rating data is to determine the number of true- and
false-positive responses associated with each rating level. For a rating scale with N
levels, this will give a graph with N − 1 TPF-FPF pairs, plus the (0, 0) and (1, 1)
anchors for the plot. An empirical ROC curve is obtained by “connecting the dots”
to generate a stairstep plot consisting of vertical and horizontal line segments ob-
tained by adding true and positive responses to the curve as a threshold is swept
across the response data. For continuous rating data, the AUC estimate obtained
by integrating the area under an empirical ROC curve is a Wilcoxon statistic (Bam-
ber, 1975).

When the number of rating levels is small, the empirical ROC curve will be
jagged, but a fitting approach can yield a smooth estimate of the curve. However,
the assumptions of conventional least-squares curve fitting are invalid, owing to the
joint dependence of the ratings on the observer’s mindset (Metz, 1986a). Hence a
maximum-likelihood estimation procedure must be used instead. Dorfman and Alf
(1968) published the first ML solution to the analysis of rating data.

The most widely used ML method assumes that the data underlying the rat-
ings take on a parametric form with adjustable parameters under each hypothesis.
Fig. 13.4 helps to make this concept more concrete: the fitting procedure assumes
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the distributions for the decision variable conditioned on each hypothesis take on a
particular form, most commonly a Gaussian, and the goal of the estimation proce-
dure is to estimate the parameters of the two distributions given the rating data.
The assumption that the two distributions are Gaussians is the so-called binormal

model (Swets et al., 1961). The binormal model does not limit the decision-variable
data to Gaussian distributions; all that is required is that the data obtained under
each hypothesis be transformable to Gaussian distributed random variables by the
same unknown transformation.

The binormal model yields an estimated ROC curve with a straight-line plot
on double-probability paper; the axes are given by the normal deviates zTPF and
zFPF [cf. (13.15)]. The conventional ML procedure estimates the slope and inter-
cept of this line, which can be related to the difference in means and the ratio of the
variances of the two underlying distributions (Dorfman and Alf, 1969). Methods for
obtaining ML binormal fits to ROC curves are also available for continuous rating
data (Metz et al., 1998b).

A large number of experiments have demonstrated the validity of the binor-
mal model (Swets, 1986; Metz, 2000). Hanley (1988) has shown that ROC curves
obtained from ML parameter fits to a variety of non-Gaussian distribution mod-
els, including binomial, Poisson, gamma, χ2, rectangular, and triangular forms, are
indistinguishable from the Gaussian-based curve, provided the number of data sam-
ples is large. Nevertheless, the standard binormal model can result in fitted ROC
curves that cross the chance line and have a slope that does not decrease mono-
tonically as the FPF increases (Berbaum et al., 1990). These so-called “improper”
ROC curves can be obtained from the standard binormal model when the num-
ber of cases is low, the data scale is discrete, or the operating points are not well
distributed (degenerate data). To avoid this outcome, the “proper” ROC analysis
was introduced by Dorfman et al. (1996). Proper ROC curves are constrained from
crossing the chance line. Proper models based on bigamma distributions (Dorfman
et al., 1996) and binormal distributions (Pan and Metz, 1997; Metz and Pan, 1999)
have been investigated. The proper binormal model transforms the data by form-
ing the likelihood ratio associated with the two underlying normal distributions;
the result is an ROC curve with a monotonically decreasing slope. An objection to
this procedure is that the calculation of the likelihood ratio is not something that
the actual observer under test is hypothesized to do. Rather, it is an additional
transformation applied to the observer data and thus may not be representative of
the observer to which the ROC curve applies.

An alternative fitting approach for ROC rating data is the “contaminated”
binormal model (Dorfman et al., 2000a). This model assumes the distribution of
decision variables is the bimodal sum of two Gaussians under the signal-present al-
ternative (Dorfman and Berbaum, 2000b). The model has been found to be useful
in the analysis of data with small false-positive fractions and to give results very
similar to those of the standard binormal fitting procedure for nondegenerate data
(Dorfman and Berbaum, 2000c).

Analysis of forced-choice data We described the 2AFC experiment mathematically
in Sec. 13.2.5 as one in which the observer is presented with two images g and g′,
where g is drawn from pr(g|H1) and g′ is drawn from pr(g|H2). The images are
presented simultaneously in different spatial locations or separately in time at the
same location. The assignment of the two underlying sources of images to the two
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presentation locations is randomized. The observer’s task is to choose the image
from class 2. To make the decision, the observer computes two test statistics T (g)
and T (g′), and the data vector that gives the higher value is assigned to H2. This
assignment is correct if T (g′) > T (g). By (13.39), the probability of a correct
decision on any trial is AUC. Viewed this way, AUC is a criterion-free parameter-
free distribution-independent figure of merit for a classification task (Massof and
Emmel, 1987).

To estimate AUC from a forced-choice experiment, the percentage of correct
decisions over a large number of trials is determined. To keep score of the number
of correct responses, let ni take on the value 1 for a correct response on trial i and
0 for an incorrect response. Mathematically, ni = step[T (g′

i) > T (gi)], where the
subscript i denotes the ith trial. Thus ni is a Bernoulli random variable (see Sec.
C.6.1). Over N trials, the AUC estimate is the proportion of correct responses
(PC):

ÂUC = PC =
1

N

N∑

i=1

ni . (14.14)

If we assume the response variables are independent from trial to trial, (14.14) is
the sum of N i.i.d. Bernoulli random variables. From (C.159) we know that the
summand must be a binomial random variable with parameters N and the true
AUC. It is well known that (14.14) is an unbiased ML estimate of AUC.

The early work of Tanner and Swets (1954) demonstrated the consistency of
data collected in yes-no and forced-choice experiments. While an FC experiment
yields an estimate of AUC, it has the disadvantage of not providing any informa-
tion regarding the shape of the underlying ROC curve. Burgess (1985b) compared
ROC and FC experimental methods and concluded that ROC methods make more
efficient use of the available images, giving AUC estimates with lower variance,
while FC methods make more efficient use of observer time. In an effort to make
more efficient use of the available images, some experimenters use a multiple-pass
paradigm in which different images from each hypothesis are paired for presentation
in each pass. It can be shown that the full ROC curve can be obtained in the limit
of every image being paired with every other. Note that the response variables are
no longer independent Bernoulli random variables in this case.

Analysis of generalized-ROC experiments The primary advantage of the generalized-
ROC approaches described above is their applicability to tasks in which signal un-
certainty, usually location uncertainty, plays a key role. Many advances have been
made in the last decade toward the development of robust procedures for the anal-
ysis of generalized ROC data from LROC, FROC, and AFROC experiments.

Maximum-likelihood methods have been introduced for the fitting of LROC
data (Swensson, 1996). An ROC curve can be obtained from LROC data. Swensson
(1996) gives the following relationship between the area under the ROC curve and
the area under the LROC curve: ALROC = 0.5(AUC+ 1).

ML analysis tools for FROC data have been introduced by Chakraborty (1989).
The procedure assumes that the underlying signal and noise distributions are Gaus-
sians and the number of false-positive responses per image follows a Poisson dis-
tribution. The assumptions underlying the analysis of FROC and AFROC are de-
tailed and their validity argued thoroughly in a recent book chapter by Chakraborty
(2000), who also suggests that the FROC analysis gives estimates of system perfor-
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mance with greater statistical power than those obtained using conventional ROC
analysis.

While the use of localization brings a significant degree of reality to the task,
compared to the classical ROC experimental design, there is also the added require-
ment for deciding what region around a signal will be considered a “true-positive”
response in the analysis. The choice for this tolerance is arbitrary; yet it has ramifi-
cations on the results of the data analysis. There is yet no consensus on the appro-
priate localization tolerance to use in the analysis of LROC, FROC, and AFROC
experiments.

There are few resources for the analysis of more complex experiments involv-
ing multiple hypotheses. Kijewski et al. (1989) developed an analysis procedure
for determining the parameters specifying ROC curves between all pairs of classes
in an L-class problem given ratings of the multiple alternatives. Still needed is a
practical method for the analysis of multi-alternative tasks using ROC analysis.

Summary measures Once a satisfactory fit to the ROC rating data has been ob-
tained, summary measures of performance can be derived. Global measures of
system performance include the AUC, the detectability measure dA obtained from
AUC via (13.21), or the parameters of the binormal model. If it is known that a
certain operating point on the ROC curve is more significant for the intended use of
the system than others, a local measure of performance might be reported at that
operating point; that is, the TPF at a given FPF or the FPF at a given TPF might
be reported. Partial area measures giving either the area to the right or below the
ROC curve from a specified operating point give a regional measure of performance
(McClish, 1989). Jiang et al. (1996) provided an extension to partial-area index
analyses for systems with high AUC. Finally, if sufficient information is available
regarding the cost and benefit of decisions is known, these can be reported at the
optimal operating point, or a full cost/benefit curve can be reported and summa-
rized. There are many open questions regarding the best approach to summarizing
performance. The AUC is the most widely used figure of merit today.

The ML theorem of (13.378) enables us to say something about the ML es-
timates of other performance measures based on the ML estimate of AUC. For

example, an ML estimate of the observer SNR can be derived from ÂUCML by
inverting (13.20). An ML estimate of the observer’s squared SNR can be obtained
by similar reasoning and used in an ML estimation of observer efficiency.

When more than one observer has participated in an ROC study, there are
two options for deriving an overall figure of merit. The first is to derive estimates of
the binormal model parameters for each observer and average the parameters. The
second is to pool the rating data and then perform the ML estimation procedure.
Metz (1986b) has discussed the advantages and disadvantages of these alternatives.
When multiple observers are used in the evaluation of multiple imaging systems,
correlations in the data result. Tools for the analysis of multiple-reader, multiple-
case experiments are discussed below.

Error analysis and the comparison of imaging performance When a measure of imag-
ing performance is obtained, it is natural to ask how large the error bars are about
that estimate. Moreover, when two imaging systems are being compared, we seek
methods for determining the significance of the difference between figures of merit
for the competing systems. In Sec. 13.1.1 we discussed a number of drawbacks to
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the use of statistical tests of the null hypothesis. These same drawbacks are equally
applicable to tests of the null hypothesis using estimated figures of merit for imaging
systems.

In his 1920s work on estimation, R. A. Fisher (see Sec. 13.3.6) set the stage
for randomized clinical trials by discussing randomized experiments in agricultural
research. The analysis of independent imaging modalities was firmly established
in the late 1970s, when the National Cancer Institute funded a contract to J. A.
Swets and R. A. Pickett of Bolt, Beranek and Newman to develop methods for
the assessment of diagnostic technologies. The outcome was a landmark text that
presented computer code for the analysis of ROC data, including an analysis of the
error in the the estimate of AUC for a single modality (1982).

Soon after, Metz and Kronman (1980) and Hanley and McNeil (1982) proposed
methods for the comparison of ROC curves for which the data were assumed to be
independent. In 1983, Hanley and McNeil extended their work to the situation
where the data were obtained from the same set of patients. In 1984, Metz et al.
provided a method for analyzing differences between ROC curves measured from
correlated data. Differences could be given in terms of the difference in AUC, the
TPF at a specified FPF, or the parameters of the standard binormal model. Non-
parametric methods for comparing the areas under correlated ROC curves based on
Wilcoxon statistics have been presented by DeLong et al. (1988) and Campbell et
al. (1988). These early methods for estimating the uncertainty in AUC and com-
paring ROC curves took into account the variability in the data resulting from the
measurement noise and the object variability sampled by the finite set of cases but
did not describe or compensate for the contribution from observer variability.

Observer variability is a complex, multivariate phenomenon that was under-
stood in principle as early as the text by Swets and Pickett (1982), which contains
two chapters on the subject. Observers respond differently to different cases, and
even the same observer’s responses are not 100% correlated across repeated readings
of the same data set. As we have seen, a reader’s response depends on the latent
decision criterion, but it also depends on the observer’s training, experience, age,
fatigue, and other factors. Readers have different skill levels, and some readers are
better at some case sets or modalities than others. An excellent example of reader
variability due to differences in decision criteria is contained in data published by
Elmore et al. (1994) and the subsequent commentary by D’Orsi and Swets (1995).
Beam et al. (1996) have published the largest study to date demonstrating radi-
ologist variability in skill level and decision criterion in the case of mammographic
interpretations.

The first practical multivariate method for the analysis of the variance in AUC
estimates for correlated tests with the assumption that both observers and images
(readers and cases in the medical literature) are random effects was the multi-
reader, multi-case (MRMC) method of Dorfman, Berbaum and Metz (Dorfman et

al., 1992), now commonly referred to as the DBM MRMC method. The method
makes use of a jackknife procedure to generate multiple estimates of AUC, each de-
rived by leaving out one of the observations and analyzing those that remain. The
results of each leave-one-out procedure are termed pseudovalues. An analysis of
the variance in the pseudovalues gives an estimate of the variance in the estimate of
AUC. By analyzing the statistics of pseudovalues, the contribution to the variance
in the estimate of AUC from the cases or the readers can be obtained.
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The DBM MRMC method was first developed for the analysis of discrete rat-
ing data. Roe and Metz (1997a, 1997b) further developed and validated the DBM
method and made software freely available for either continuous or discrete rating
data. An alternative, nonparametric method for analyzing the components of vari-
ance in ROC studies based on bootstrapping has been suggested by Beiden et al.
(2000a). Gifford et al. (2001) have recently simulated the application of the DBM
method to LROC studies and found it to be useful for studies with low numbers of
readers and cases.

In some countries, double reading of certain clinical images is the standard, as
a method for reducing the number of incorrect interpretations and reducing reader
variability. In the U.S., several commercial CAD systems are now available for use
as a second reader to the radiologist. The analysis of adjunctive systems requires
careful consideration of the appropriate assumptions regarding the variability of
the readers (for example, no threshold variability for a computer) and the means
for combining their interpretations. The overall performance of the system will be
dependent on these considerations. A method for analyzing the improvements in
the accuracy of imaging studies derived by repeated observations was suggested by
Metz and Shen (1992). Beiden et al. (2001a, 2001b) have presented a nonparamet-
ric estimate of the components of variance of AUC for comparing two modalities
with different variance structures, for example, where one modality involves a CAD
adjunctive device and the other does not.

The original MRMC method required every reader to interpret every image in
each modality. Recently, the statistical analysis of “partially paired” data sets has
been presented (Zhou and Gatsonis, 1996; Metz et al., 1998a).

Ordinal regression Standard ROC methodology reports the performance of a par-
ticular observer on a particular task given a specified imaging system. The depen-
dence of the performance measure on a parameter describing the object (size or
amplitude, say) or observer (age or number of years of training) would require a
series of studies across the range of the parameter of interest. Given the time and
cost required for a single psychophysical study, the notion of performing repeated
studies of this sort is daunting.

Tosteson and Begg (1988) proposed the use of ordinal-regression techniques for
combining studies of multiple object and observer characteristics in a single study.
Toledano and Gatsonis (1995, 1996, 1999) have further developed the method and
provided extensions for handling incomplete data. The use of ordinal-regression
methods in the optimization of imaging system parameters using realistic models
for the imaging process deserves greater attention.

Sources of bias We have described methods for analyzing the uncertainty in es-
timated measures of system performance without mention of possible sources of
error in the estimated mean system performance. There are many sources of bias
that can creep into the evaluation of an imaging system (Begg and Greenes, 1983).
Probably the most significant is the ground-truth problem, which we shall address
again in Sec. 14.4.5. It is difficult in real imaging applications to know the true
status of an object, be it an enemy aircraft in a reconnaissance image, a stellar ob-
ject in astronomy, or an unknown feature in a medical image. Knowledge of ground
truth can require expensive verification procedures like long-term follow-up, biopsy,
or imaging using an alternative system. Thus, in order to know the truth status



HUMAN OBSERVERS AND CLASSIFICATION TASKS 951

required for scoring observer responses in an ROC study, the investigator might
design the study with an absence of subtle objects or confounding cases (Rockette
et al., 1995, 1998). Without these cases in the study, the results of the study will
not describe the performance of the system on these kinds of cases. Similarly, bias
can also result from the skill of the observers involved in the study. In the design
of the study, the investigator should carefully consider whether to use experts vs.
nonexperts and the extent that they represent the intended use of the system.

In summary, the estimated AUC is a joint description of the performance of
the imaging system and the population of images and observers used in the study.

Field tests vs. stress tests A field test samples the objects and observers as they
are expected to be sampled in routine use. A stress test limits the objects or
the observers (or both) in order to “challenge” the performance of systems where
differences are expected. Studies over subpopulations of observers or objects can
potentially enable significant differences in system performance to be demonstrated
for those subpopulations. For example, it may be that expert and nonexpert radi-
ologists utilize the output of a CAD algorithm differently, but a study that averages
over the two sets of readers would possibly miss this important finding. In another
example, the fraction of women with dense/heterogeneous breasts is small; a study
comparing film-screen to digital mammography using a broad sample of patients
might not uncover a significant advantage of one system over the other for that
subpopulation of women.

As described in Sec. 13.1.1, the diligent investigator can always increase the
number of cases in a study until a statistically significant result is obtained. How-
ever, a judicious selection of the cases used in the study can sometimes reduce the
number of images required to show significant differences in system performance, by
taking into account known differences in the physical performance characteristics
of the imaging systems under comparison.

Summary of process Although there are many open areas of research, methods
based on ROC analysis are still the best approach for evaluating classification tasks
performed by human and model observers. Before beginning a psychophysical in-
vestigation, a few questions should be considered. The first is the nature of the
classification task—will standard ROC methods suffice, or is a generalized method
that incorporates localization/search needed? Consideration should be given to the
need for realism and the adequacy of the information that will be gained, the avail-
able methods for data analysis as well as methods for statistical analysis.

Careful consideration should be given to sampling issues for images and read-
ers, recognizing the impact these will have on the conclusions that can be drawn
from the study.

The specific viewing conditions should be considered, including the degree of
observer adaptation, the display settings, the observation distance, and so on. The
human-machine interface is critical; small numbers of observer mistakes due to a
poor interface can impact the data appreciably.

It is recommended that a block design be used to avoid image-order effects.
Observers can read a subset of the images representing one imaging system, then
another, then back to the first, until the entire set under all conditions has been
read. Randomize the ordering across readers. Do not expect observation sessions
to last more than about an hour, or fatigue can degrade observer performance.
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Pilot studies can be used to determine the imaging conditions that will yield
the best study power and highest efficiency of observer effort. Staircase methods
have been described for determining the object contrast that will give high statis-
tical power (Watson and Pelli, 1983; Watson and Fitzhugh, 1990). These methods
adjust the object contrast iteratively over a sequence of 2AFC trials to find the
signal contrast that yields a SNRhuman of ∼ 0.75 by decreasing the signal ampli-
tude when the observer is correct, and increasing it after decision errors. Once the
contrast has been determined that corresponds to that level of performance, the
final study can make use of a fixed signal at that contrast— the method of constant
stimulus— to give a more precise measure of system performance for that stimulus.
Alternatively, the method of ordinal regression allows the evaluation of system per-
formance across a range of stimuli.

Once the data are collected, they can be analyzed by the chosen fitting method.
Free software packages are readily available on the worldwide web for this purpose.
Then the figure of merit can be estimated along with its confidence interval. Tests
for the differences between estimates of figures of merit are also included in several
of the freeware packages.

14.3 MODEL OBSERVERS

Model observers serve many purposes. They can be used as tools in the study of the
human visual system; by comparing the results of psychophysical studies to model-
observer performance measures, researchers gain insights into human perception
that can lead to improved models of the human visual system. Such studies give
information regarding what tasks the human performs well and what image char-
acteristics impact the human most significantly, potentially leading to improved
imaging system designs for generating images for human interpretation. Model ob-
servers can also act in place of humans, or in concert with them, in which case we
refer to the model as a computer-aided diagnosis (CAD) system.

Above and beyond the use of model observers as tools for understanding the
visual system, model observers are an extremely valuable tool in the objective as-
sessment of image quality. Model observers that operate on raw images or detected
data enable the objective evaluation and optimization of image acquisition systems.
Model observers designed to operate on reconstructed or processed images are useful
for the assessment of image-processing algorithms without lengthy human-observer
experiments. Because our emphasis in this text is on the design and evaluation of
imaging systems, and not on the development of a better understanding of human
perception, we shall focus on the use of model observers for the purpose of OAIQ—
the objective assessment of image quality— in what follows.

Many of the same statistical methods used to evaluate imaging systems with
human observers are applicable to the evaluation and comparison of model ob-
servers. The goal of this section is to present methods for determining the perfor-
mance of a model observer for a given study. As we shall see, the particular model
observer chosen and the method of determining its figure of merit will depend on
the task as well as the extent to which we know or can characterize the statistics of
the data.

We shall begin in Sec. 14.3.1 with a brief review of selected model observers
for classification tasks and the requirements for determining each model observer’s
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performance. We shall then discuss how one chooses a model observer for system
evaluation based on classification performance. Sec. 14.3.2 deals with the particular
issues involved in the determination of classification performance by linear model
observers. The determination of performance measures for ideal observers is the
subject of Sec. 14.3.3. Finally, in Sec. 14.3.4, we shall discuss the use of estimation
tasks in the objective assessment of image quality.

14.3.1 General considerations

Structure of observer models All model observers used in the objective assessment
of imaging systems have a similar structure, illustrated in Fig. 13.1. As described
in Sec. 13.2, for classification tasks every model observer computes a scalar test
statistic t of the form

t = T (g) , (14.15)

where gmight be either the raw data or a processed image and T (g) is the observer’s
discriminant function. A decision is made in favor of hypothesis H2 if t is greater
than some threshold; otherwiseH1 is selected. By determining the number of images
classified correctly for all threshold settings, an ROC curve can be generated.

The performance of the model observer can then be summarized using some
metric related to the ROC curve. The area under the ROC curve (13.18) and
the detectability dA derived from AUC via (13.21) are common figures of merit.
Alternatively, the SNR associated with the test statistic (13.19) can be determined
from the first- and second-order statistics of t as a measure of the separability of
the data from the two classes. The SNR and the detectability are the same when
the test statistic is Gaussian under the two classes.

Categories of observer models for classification Observers can be classified according
to whether T (g) is optimal or suboptimal and whether it is a linear or nonlinear
function of g. By definition, optimal observers are the best possible in some sense.
The Bayesian or ideal observer makes optimal use of all available information in the
data and any additional nonimage information to achieve the highest AUC attain-
able. The ideal observer’s test statistic is the likelihood ratio. In general, the ideal
observer’s discriminant function is a nonlinear function of the input data.

The Hotelling observer is the ideal linear observer; this observer’s discriminant
function is optimal in the sense that it achieves maximum SNR amongst all linear
observers. The AUC-optimal linear observer is another privileged linear observer;
as the name suggests, this observer employs the linear discriminant that achieves
the highest possible AUC of all linear discriminants for the task.

Because of the large dimensionality of modern images, it may be necessary to
make use of “efficient” features, or channels, that preserve the information in the
data while enabling the determination of observer performance. Sec. 13.2.12 de-
scribes a method for deriving information-preserving linear features from an analy-
sis of the known first- and second-order statistics of the data. Thus we can design
a channelized Hotelling observer (CHO) such that it is still the optimal linear ob-
server in spite of the reduced dimensionality.

The objective assessment of image quality may involve suboptimal model ob-
servers, particularly when the goal is to predict human performance. From Sec. 14.2
we know that the human observer has been modelled as an observer that processes
images through frequency-selective and orientation-selective channels. The chan-
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nelized Hotelling observer has been shown to be a useful predictor of the human
observer for a variety of tasks, where the channels in this case are not efficient, but
are instead chosen to predict human performance. Alternatively, more mechanistic
models of the human visual system might be employed as surrogates for the human.
These “anthropomorphic” models can incorporate highly nonlinear building blocks
such as adaptive gain and contrast nonlinearity. Such models reduce the dimen-
sionality of the data and incur an information loss as well.

Table 14.2 summarizes the types of model observers that can be employed in
the objective assessment of image quality.

Table 14.2 Classification of observer models used in OAIQ

Computation vs. estimation As noted in Sec. 14.2, the goal of a psychophysical ex-
periment is the estimation of human performance from a finite sample of images.
This is in contrast to the methods presented in Chap. 13, which addressed the com-

putation of ensemble performance measures for model observers. In this chapter
we are concerned with the issues that arise when limited data are available for the
estimation of observer performance. As we shall see, we might estimate the model
observer’s decision function from finite samples, and use that function to estimate
the model’s performance from the same or another set of finite data. Alternatively,
a finite data set might be utilized to estimate the statistics of the data under com-
peting hypotheses, with this information then used to estimate a figure of merit for
the model observer’s performance directly.

Why OAIQ is easier than pattern recognition While the objective assessment of im-
age quality has striking similarities to classical pattern recognition, the two prob-
lems are significantly different. Whenever we evaluate an imaging system we do so
in terms of a particular task and a specific observer performing the task; thus we
have considerable prior information regarding the objects to be classified and the
discriminant function to be utilized. In many circumstances we can make use of a
signal-known-exactly task, where the background might be simulated or might be
a real clinical background. In contrast to most pattern recognition problems, we
also have tremendous knowledge of the physics and statistics of the imaging system
under evaluation that we can exploit to simulate noise-free training images. Thus
the mean data under each hypothesis is fairly easily determined. Furthermore, the
noise PDF pr(g|f ) is usually known from the physics; hence the noise covariance
matrix is also known. With this information we are well positioned for determining
a linear observer’s discriminant function. Note also that we can avoid the gold-
standard problem to be discussed in Sec. 14.4.5 by using simulated images; then we
always know the underlying truth status of each image.

While we might estimate the model observer’s template and evaluate the model
observer’s performance from finite data, the feature-extraction step is not ad hoc. It
is dictated by the statistics of the data. If the purpose of the study is the prediction
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of human performance, the features are further dictated by physiology—a channel
model representing the visual system is then used as well.

In OAIQ the amount of prior information we bring to bear on the problem is
tremendous relative to various approaches found in pattern recognition and data
mining, where the statistics of the data may be completely unknown, the features
are unspecified, and even the number of classes is uncertain. Moreover, OAIQ often
makes use of simulated images, so there is no limitation to the number of images
available, and there is no issue about their true classification.

Basic equations describing the ideal observer As derived in Sec. 13.2.6, the ideal
observer achieves maximum AUC, maximum TPF at any FPF, and minimum Bayes
risk. The ideal observer’s test statistic is the likelihood ratio, given by

Λ(g) ≡ pr(g|H2)

pr(g|H1)
. (14.16)

To classify a data set, the ideal observer compares Λ(g) to a threshold.
Alternatively, the ideal observer forms the log-likelihood ratio, given by

λ(g) ≡ ln[Λ(g)] = ln

[
pr(g|H2)

pr(g|H1)

]
, (14.17)

which is then compared to a threshold to classify an image. Because the log-
likelihood ratio is a monotonic function of the likelihood ratio, the AUC of the ideal
observer is unchanged by this transformation.

Data needed for ideal-observer studies We see from (14.16) or (14.17) that the com-
putation of the ideal observer’s performance requires full knowledge of the probabil-
ity density function for the data under the competing hypotheses. In general, these
are high-dimensional functions, describing the full joint statistical behavior of M
data values. There are well-known examples for which the ideal-observer’s perfor-
mance is calculable, most notably the SKE case in Gaussian noise (Sec. 13.2.8) and
some non-Gaussian noise models as well (Sec. 13.2.9). However, for random signals
and backgrounds, (see Secs. 13.2.10 and 13.2.11), the ideal observer’s decision vari-
able takes the form of an integral of huge dimensionality over the posterior density
of the data conditioned on known signals and backgrounds. In Sec. 14.3.3 we shall
consider various techniques for estimation of the ideal observer’s performance.

Basic equations describing linear observers We may not be able to evaluate ideal-
observer performance because of the computational complexity or because we simply
do not have the statistical information required to use those tools. Or, we may not
want to estimate the performance of the ideal observer because the goal of the
assessment process is the prediction of human, rather than ideal, performance. For
these reasons the assessment effort may focus on the estimation of the performance
of linear model observers.

In a binary classification problem, an arbitrary linear discriminant computes
a scalar test statistic t from the M × 1 data vector g using a transformation of the
form

t = wtg , (14.18)

where w is an M × 1 template. The observer classifies each data set by comparing
the value of t to a threshold. The statistics of t determine the performance of the
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observer, as measured by AUC or SNRt. When t is Gaussian-distributed, AUC and
SNRt are related according to (13.20). Given that the linear observer’s test statistic
is a linear weighted sum of many random variables, the Gaussian assumption for
the PDF of t is usually valid as a result of the central-limit theorem.

Optimal linear (Hotelling) observer When the ensemble mean and covariance for
g are known, the observer that maximizes SNR can be derived according to the
procedure presented in Sec. 13.2.12. By (13.177) the Hotelling observer’s template
is known to be

wHot = K−1
g ∆g , (14.19)

where Kg is the ensemble data covariance, assumed to be the same under each hy-
pothesis, and ∆g is the difference in the mean data vector under the two hypotheses.
The assumption of equal data covariance under each hypothesis is a reasonable ap-
proximation for weak signals, even though the signals may be random under each
hypothesis. The subscript g on the covariance matrix, which refers to the raw data,
is required because we shall later encounter covariance matrices that describe chan-
nel outputs, which will be subscripted accordingly. It can be seen that the Hotelling
test statistic is the output of a prewhitening matched filter operation that attempts
to compensate for all contributions to the correlations in the data.

The performance of the Hotelling observer is given by [cf. (13.178)]

SNR2
Hot = ∆gtK−1

g ∆g = tr
[
K−1

g ∆g∆gt
]
. (14.20)

In the SKE detection problem this expression simplifies to

SNR2
Hot = stK−1

g s , (14.21)

where we denote the signal to be detected by s in the data domain. Note that the
data covariance matrix is assumed to be the same under each hypothesis in (14.20)
and (14.21) because the contributions from background variations and measurement
noise are assumed to dominate contributions from signal variability in the random-
signal case.

The Hotelling observer achieves maximum SNR of all linear observers. An
alternative approach is to determine the template w that gives maximum AUC of
all linear observers. In Sec. 13.2.12 we presented the problem of classification in
Poisson noise as an example for which the ideal observer is linear (without actu-
ally imposing a linearity requirement); this is the observer that achieves maximum
AUC as discussed in the previous section. However the ideal observer is not the
linear observer that achieves maximum SNR for this task. There is a much smaller
literature on the AUC-optimal linear observer relative to the large literature on the
Hotelling or max-SNR observer. In the case of a normally distributed test statistic,
these two observers coincide.

Data needed for Hotelling-observer studies We see from (14.20) and (14.21) that
computation of the performance of the Hotelling observer requires knowledge of the
ensemble first- and second-order statistics of the data under each hypothesis. When
information regarding the mean and covariance of g is unavailable, we must resort
to procedures for estimating the performance of the optimal linear observer from
samples.
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The difference in the class means under each hypothesis, ∆g, is an M × 1 vec-
tor, where each element ∆gm = g2m − g1m is the difference in the average value in
the mth pixel in the image or data set under the two hypotheses. Its estimate can
be obtained by determining the sample mean from sets of images known to be from
each class; the behavior of the sample mean as an estimator is well-understood.
Moreover, in many studies the signal is simulated and nonrandom, so that (14.21)
is relevant and no estimation of the mean is required. Thus the determination of
the mean data under each hypothesis is not a major stumbling block in most ap-
plications.

The most daunting issue in imaging applications is the determination of an
estimate of Kg, which we shall denote K̂g. A natural inclination is to assume that

K̂g is the sample covariance matrix, but the reader is cautioned against acting on
this impulse. If the number of image samples, Ns, is less than the number of pixels
in each image, M will be singular and noninvertible. This option therefore requires
Ns ≥M.

Consider the number of elements of a covariance matrix to be estimated in
typical imaging scenarios. A flat-panel digital x-ray imager can have 1024 × 1024
elements. A SPECT system with a 128 × 128 detector that collects data over 64
projection angles has the same number of elements. Thus these systems have a data
vector with ∼ 106 data elements, so Kg is a 106 × 106 matrix with about a trillion
elements. The symmetry of this matrix allows us to reduce the number of elements
to be estimated by about a factor of 2, but a half trillion is still a large number.

The linear discriminant based on sample means and covariances for the pixels
in the raw data set is the approach commonly referred to as the Fisher discriminant.
Because the number of values to be estimated to form the sample covariance matrix
is almost always far greater than the number of samples available for the estimation
procedure, the Fisher discriminant is rarely a useful estimate of the optimal linear
discriminant in imaging applications.

We shall discuss several alternative approaches to the estimation of the Hotelling
observer’s performance in Sec. 14.3.2.

Basic equations describing channelized linear observers Any linear channel model can
be represented by a matrix-vector multiplication like the one given in (14.7):

v = Utg , (14.22)

where U is an M × P matrix whose columns are the channel profiles up, and v is
the P × 1 vector of channel outputs. The up represent the channel profiles, which
we have assumed to be real. Each channel output vp is a number.

While both (14.7) and (14.22) represent a reduction of the dimensionality of
the data set, the critical difference is that we are free to choose the channel profiles
in (14.22) to suit our purpose. The channels could be designed to be efficient, giving
minimal loss of detectability and thereby providing an estimate of the separability
inherent in the data. Alternatively, the channels could be designed to estimate the
separability of the data after processing through visual-system channels to predict
human performance, which may or may not be efficient depending on the task. A
number of possible channel profiles used in the vision literature are described in
Sec. 14.2.
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The performance of a channelized observer is given by the SNR associated with
the channel outputs under each hypothesis:

SNR2
v = ∆vtK−1

v ∆v = ∆gtU[UtKgU]−1Ut∆g . (14.23)

Data needed for channelized-observer studies The information required to evaluate
the performance of a channelized observer is the first- and second-order statistics of
the data as seen through the channels. We see immediately from (14.23) that the
channel covariance matrix to be inverted is much smaller than the data covariance
matrix. If the number of channels is P, then Kv is a P × P matrix, where P can
be as small as 3 to 6. Even if P is 30 to 50, the matrix to be inverted is still a
reasonably manageable size.

The second advantage to the use of a channelized model is the flexibility we
have in choosing the channel profiles. As we shall see, prior knowledge of the
characteristics of the signal and background can suggest particular forms for efficient
channels. Alternatively, the channels can be chosen to model human performance.
Given the nontrivial time required to perform psychophysical evaluations, the ability
to evaluate a set of imaging system parameters using a model that predicts human
performance can offer significant advantages.

Which model observer? The question of which model observer to employ is an-
swered by the objective of the evaluation study. If the goal is to evaluate or op-
timize the hardware of the data acquisition system, then the ideal observer is the
model of choice. Optimization with this observer will result in a system with the
maximum information in the raw data in the sense of being able to perform the
specified task. If it is not possible to compute ideal-observer performance because
the calculation of the likelihood of the data under each hypothesis is not tractable,
then the ideal linear observer is a useful alternative for use in hardware evaluation
and optimization.

When the task is the evaluation of image-processing algorithms, ideal observers
are of no use, because they are invariant to invertible image processing (see Sec.
13.2.6). Image processing algorithms, reconstruction methods and display devices
exist for presenting images to human observers; thus the appropriate model should
be one that predicts human performance. The model might be a highly detailed,
mechanistic model of the visual system or a simpler linear channel model like the
CHO.

In the next subsections we discuss in more detail each of these model observers
and methods for estimating their classification performance.

14.3.2 Linear observers

In this subsection we shall present a number of approaches for determining the
performance of linear model observers from finite data sets. We shall first consider
the Hotelling observer that makes use of the raw data and describe several methods
for estimating the SNR of this observer. As suggested by (14.20) and the discussion
that followed, the estimation of this Hotelling observer’s SNR must involve some
method for dealing with (or circumventing) the need to estimate the inverse of Kg.
Once we have exhausted our list of possible approaches to this problem, we shall
explore methods that invoke dimensionality-reducing linear channels.
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In many instances, image quality can be ascertained through a classification
task involving nonrandom signals that are added to real or simulated backgrounds.
Thus we shall first assume that the problem is the detection of a known signal, the
so-called SKE problem, while allowing for a random background. In this case there
is no need to estimate ∆g in (14.20); it is known, and our goal is to find an estimate
of the SNR given in (14.21). This objective is only hampered by the fact that Kg

is unknown. Subsequently, we shall consider methods for estimating linear-observer
performance for random signals.

We shall then briefly discuss the characteristics of the estimated figures of
merit. Finally, the subsection concludes with a short discussion of methods for
determining the AUC-optimal linear observer. Throughout this subsection we make
the assumption that the truth status of each image sample is known; methods for
dealing with the no-gold-standard problem are presented in Sec. 14.4.5.

Nonrandom signals We consider the object to be the sum of a known signal and a
random background according to the decomposition introduced in (8.306):

f = fs + fb . (14.24)

In the detection task, fs is zero under H1. The backgrounds are assumed to be
random and drawn from the same ensemble under each hypothesis.

From (14.24), the mean data for a fixed object and a linear imaging operator
H can be written as a linear superposition of signal and background [cf. (8.352)]

g(f ) = Hfs +Hfb ≡ s+ b , (14.25)

where b is the image of the particular background realization.
Without signal variability, the covariance matrix Kg describes the randomness

in the data due to background variability and measurement noise. It can be written
formally in terms of an expectation of the covariance of the data about the mean
taken first over the noise for a single background, followed by an average over all
backgrounds:

Kg = 〈〈(g− g)(g− g)t〉n|b〉b . (14.26)

In the absence of object variability the data covariance matrix reduces to the noise
covariance matrix, an entity that is usually known or computable through our knowl-
edge of the image-formation process. Nonrandom backgrounds can be very useful
in the validation of software intended to simulate realistic noise properties of an
imaging system. However, the objective evaluation of imaging systems in the ab-
sence of object variability can yield misleading conclusions; thus image evaluation
should employ a random background model if at all possible. Sec. 14.4 describes a
number of approaches for simulation of random objects and images.

We have cautioned against the use of sampling methods to directly estimate
the sample covariance matrix, and the use of exactly-specified backgrounds in the
objective assessment of image quality. How, then, to simplify the calculation of
Hotelling SNR in the presence of a random background? One assumption that is
often made is that the background is stationary.

Stationarity? A stationarity assumption is attractive because the covariance matrix
is then diagonalized by an appropriate Fourier transformation. For example, we
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know from Sec. 7.4.4 that a circulant covariance matrix that satisfies Kmm′ =
K[m−m′]M (where the subscript indicates modulo-M arithmetic in both components
of the multi-index) is diagonalized by a discrete Fourier transform. And from Sec.
8.2.8 we know that an infinite covariance matrix that satisfies Kmm′ = Km−m′

for all m and m′ is diagonalized by a discrete-space Fourier transform. Following
diagonalization by Fourier methods, K−1

g can be found by taking the reciprocal of
each diagonal element.

While Fourier methods based on stationarity assumptions may seem attractive,
this approach is fraught with problems. Real covariance matrices are neither infinite
nor circulant. The assumption that Kg is circulant implies digital wrap-around,
meaning the statistical correlation of two pixel values representing adjacent detector
elements is assumed to be equal to the correlation of two elements on opposite sides
of the detector, or even in different projections. In an investigation of image quality
in digital radiography, Pineda and Barrett (2001) have shown that stationarity
assumptions can give misleading results.

Local stationarity Requiring stationarity of any sort over the whole image field is
not only unrealistic, it is also unnecessary if our goal is to compute the SNR of a

spatially localized lesion. Since (14.21) is the norm of the vector K
−1/2
g s, we can

compute it by summing over only those pixels for which the vector is substantially
different from zero. Typically, in direct imaging systems, those pixel elements cor-
respond to a restricted region in data space. If so, we can express the SNR in
terms of the Wigner distribution function computed over this region, as discussed
in Sec. 13.2.13.

For indirect imaging systems, a spatially localized lesion can contribute to a
very nonlocalized set of detector elements. In this situation it is unlikely that an
assumption of approximate stationarity would hold over the entire region for which

K
−1/2
g s is significantly greater than zero. Thus for tomographic systems it is neces-

sary to perform a reconstruction first to restore the local nature of the signal to be
detected and allow the use of methods that invoke an assumption of approximate
stationarity. The argument of the previous paragraph holds if we let g be the re-
construction and s be the reconstructed signal.

If Kg were diagonal (in the multi-indices8), the region where approximate sta-
tionarity is required would be the same as the subset of pixels for which s is nonzero,

but a nondiagonal covariance means that some elements of K
−1/2
g s are nonzero even

if the corresponding elements of s are zero. Moreover, the range of the correlations

is only a rough guide to selecting the correct subset of pixels; the matrix K
−1/2
g can

occupy a substantially larger band around the diagonal than Kg.

We do not know the width of this band if we cannot compute K
−1/2
g , but we

can proceed experimentally. If we start with a measured covariance matrix, or one
computed on a realistic nonstationary model, we can select an L × L subset of it
centered on the signal location. Calling this matrix KL, we can compute stK−1

L s,
which would be an estimate of the Hotelling SNR without any stationarity assump-
tion if we were given only this subset of the data. We can then vary L and observe
the behavior of this SNR; when it no longer changes, we can assume that we have

8See Sec. 8.2.8 for a discussion of discrete random processes and diagonality in multi-index nota-
tion.
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found the band containing the nonzero elements of K
−1/2
g , and we can compare the

resulting SNR to that computed with the Wigner distribution function. If agree-
ment is good, we can use the Wigner expression to compute SNR for a variety of
signals and all positions in the field and to define local NEQ and DQE as functions
of spatial frequency and signal location (see Sec. 13.2.13). This approach may result
in a number of nonzero elements in need of estimation that is small enough that
the finite number of image samples can support their estimation.

Decomposition of the covariance matrix Another approach is to make use of our
knowledge of the physics of the imaging process, which often gives us powerful infor-
mation regarding the distribution of data for a fixed object. Statistically speaking,
we often know pr(g|f ), from which we can determine the conditional mean g(f ) and
the conditional covariance Kn|f.

Key to making use of this prior information is a decomposition of the overall
data covariance given in Sec. 8.5.3; we know from (8.347) that Kg is the sum of two
terms, written

Kg =
〈〈
[g− g(f )] [g− g(f )]t

〉
n|f

〉
f
+
〈 [

g(f )− g
] [

g(f )− g
]t 〉

f

= 〈Kn|f〉f +Kg ≡ Kn +Kg , (14.27)

where Kn represents the noise covariance averaged over all objects. While both Kn

and Kg are influenced by object variability, we emphasize that they are covariances
for vectors in data space.

When the signal is random but statistically independent of the background,
we can write the covariance matrix for g as [see (8.359)]

Kg =
〈 [

g(f )− g
] [

g(f )− g
]t 〉

f
= HKfH

†

= HKfsH
† +HKfbH

† ≡ Ks +Kb , (14.28)

where Ks and Kb are the covariance of the data about the conditional mean result-
ing from signal and object variability, respectively. When the signal is nonrandom
(14.28) simplifies to Kg = Kb. Even in the random-signal case this simplification
can be relevant; if the signal is of sufficiently low contrast, then Kg ≈ Kb because
the contribution due to the random background dominates.

Much of what follows on estimation of linear-observer performance is based on
the decomposition of (14.27). Though we shall often use the approximation that
Kg ≈ Kb, we note that (14.27) itself is exact; it requires no Gaussian assumptions
regarding either the objects or the noise, and it does not assume that the noise is
object-independent. Alternative forms for the object-variability term that make use
of alternative ways of expressing the autocovariance of the object in object space
are given in Sec. 8.5.3.

Role of the measurement noise To be more explicit aboutKn, we need to distinguish
direct from indirect imaging and object-dependent from object-independent noise.

The simplest case is direct imaging with additive Gaussian measurement noise.
As discussed in detail in Chap. 12, electronic noise in different detector elements is
usually statistically independent and hence uncorrelated. If every detector element
has the same noise variance σ2, which is independent of the object f, then

Kn = Kn|f = σ2I . (14.29)
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Thus Kn is a multiple of the unit matrix and hence full rank.
The situation is only slightly more complicated with Poisson noise. Since Pois-

son measurements are conditionally statistically independent with variance equal
to the mean, we can write

[
Kn|f

]
mm′

= gm(f ) δmm′ = [Hf ]m δmm′ , (14.30)

where the last form is for a linear digital imaging system characterized by the CD
operator H. Averaging over object variability is now straightforward:

Kn = 〈gm(f )〉f δmm′ = gm δmm′ =
[
Hf
]
m
δmm′ . (14.31)

Thus the average noise covariance matrix is diagonal in spite of the object variability,
though of course the overall covariance matrix Kg is not diagonal.

It is not immediately obvious, however, that Kn is full rank. Indeed, the
conditional noise covariance Kn|f is not full rank if any of the gm is zero. Similarly,

Kn is not full rank if any of the gm is zero, but this turns out to be of much less
concern; the only way a particular gm could be zero is if the mth detector element
never receives radiation for any object in the ensemble, and in that case we might
as well delete that detector element from the data set. Thus we can always assume
that Kn is full rank for direct imaging, even with Poisson noise.

For indirect imaging the measurement noise is modified by the reconstruction
algorithm. This issue will be discussed at length in the next chapter, but for now we
note that analytic expressions for Kn|f can be developed, where n refers to the noise
in an image reconstructed by a linear algorithm from either Gaussian or Poisson
data (see Sec. 15.4.2). For nonlinear algorithms, analytic covariances are generally
not possible, but practical computational methods are available for determining
Kn|f numerically; for details, see Sec. 15.4.7. These numerical expressions can then

be averaged over f to obtain Kn.

Sample averages In Sec. 8.4 we discussed a variety of statistical models for objects
and found that there were many circumstances where we could generate samples
of f; more discussion of methods for simulating random objects is also given in
Sec. 14.4. However, it is usually not possible to determine pr(f ) from samples, and
we almost always have to resort to the use of sample averages to determine the
statistical properties of the data resulting from random objects.

Consider again the case of nonrandom signals (or where the signal is random
but of low contrast), so that Kg = Kb, and we want to estimate this covariance
matrix. From Sec. 13.2.12 we know that the data covariance resulting from a general
random background is given by

[Kb]mm′ =
〈
(bm − bm)(bm′ − bm′)

〉
b
, (14.32)

where bm is the mean contribution of the random background to detector element
m. This expression describes the fluctuations in the data that would be observed
over a large set of simulated or real noise-free images.

One approach to finding an estimate of Kb is to use a theoretical object model
such as a lumpy background (Sec. 8.4) for which the autocovariance function can
be specified. This function is then mapped through the blur associated with the
imaging system to produce the covariance matrix Kb. If we choose some functional
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form (e.g., fractal) for the autocorrelation, we can use sample images to estimate
any unknown parameters in the function.

Another approach is to acquire a set of low-noise images and estimate the
covariance matrix for the background (in data space) from them. If we do not want
to make any assumptions about the form of the autocovariance, we can simply
form the sample covariance matrix as a low-rank approximation to the desired
ensemble covariance. The samples might be simulated noise-free backgrounds, or
they might be experimental background images with low but nonzero noise, obtained
with image-averaging or high-dose techniques. Methods for simulating noise-free
backgrounds are discussed in Sec. 14.4.

Suppose we have a set of sample background images {gj , j = 1, ..., Ns}, which
are either noise-free (simulated) or for which the noise is negligible compared to the
effects of object variability (perhaps because the images were acquired with a long
exposure time). We can array each of these images asM×1 column vectors. We can
then subtract the sample mean from each image to form the set {δgj , j = 1, ..., Ns},
and the covariance matrix Kg can be estimated by

K̂g = WWt , (14.33)

where W is the M ×Ns matrix with columns given by sample images:

W =
1√
Ns

[
δg1, δg2, ..., δgNs

]
. (14.34)

The sample covariance matrix of (14.33) is equally applicable when the set of sample
images contains random signals of unknown statistical description as well as random
backgrounds.

Once the background covariance matrix is estimated, the noise contribution
can be determined (if it is not already known) to yield the full data covariance
matrix. For example, we can make use of (14.31) to write the covariance of the
data in the weak-signal approximation under Poisson measurement noise as

[K̂g]mm′ = 〈〈(gm − b̂m)(gm′ − b̂m′)〉n|b〉b

= b̂m δmm′ + [K̂b]mm′ . (14.35)

The first term in the last line is K̂n, which in this case is a diagonal matrix with
elements given by sample averages of the mean background. The second term K̂b

is an estimate of the covariance Kg due to the random backgrounds.
Other non-Poisson forms of object-dependent measurement noise can be simu-

lated to generate noisy images once the simulation of random objects and noise-free
data sets is achieved satisfactorily. These images can be used to determine the first-
and second-order statistics of the data necessary to determine the SNR of the linear
observer, using methods described below.

Matrix-inversion tools Once we are assured that we have a covariance matrix with
full rank, the next step is to compute the SNR. Given the size of K̂g, direct inver-
sion of the estimated covariance matrix to estimate the detectability via (14.20) or
(14.21) is not feasible. We shall consider the following alternative approaches, none
of which assumes stationarity in any sense:
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1. Iterative computation of the template;

2. Neumann series;

3. Matrix-inversion lemma.

Iterative computation When the observer’s template is known, it can be applied to
a set of sample images (for which the ground truth is known) to yield a set of test
statistics under each class that can be used to compute the observer’s AUC or SNR.
The optimal linear observer has a template given in (14.19); thus it would appear
that the determination of wHot also requires the inversion of Kg. Not so! Fiete et

al. (1987) suggested that the Hotelling template could be calculated iteratively.
Finding the template amounts to solving the equation Kgw = s, where the

signal s is assumed known and Kg is either known or estimated. This equation is
analogous to the imaging equation Hf = g, where the unknown template takes the
place of the unknown object and the covariance matrix plays the role of the imaging
system. However, the covariance matrix is square, making it invertible in principle,
unlike the system operator in most imaging problems.

The solution can be found by any of the iterative methods enumerated in Chap.
1 or by the regularized methods to be discussed in Chap. 15. One possible solution
is given by the Landweber algorithm (1.231), which gives the following template
estimates at each iteration:

ŵn+1 = ŵn + α[K̂n]
−1[s− K̂gŵn] , (14.36)

where n denotes the iteration number and we have made use of the knowledge that
the noise contribution to the covariance matrix is full rank. The beauty of this
iterative approach is that no inversion of the full K̂g is required.

Once the template has been estimated, the SNR can be found by applying
the template to a set of sample images, determining the mean and variance of the
resulting scalar test statistic under each hypothesis, and computing the observer’s
performance via (13.19). Alternatively, we can directly estimate SNR2 by (14.21)
as stŵ.

Neumann series The covariance matrix may not be diagonal in real situations,
but it may be nearly diagonal (at least with the multi-index convention). For
example, as we shall see in Chap. 16, for direct imaging applications using x rays
the nondiagonal contributions to the data covariance are due to correlations in the
object statistics and physical processes like escape of K x rays from the phosphor.
When these contributions are not very long-range, the Neumann series approach
can be advantageous.

To see why the near-diagonal character of Kg is useful, suppose initially that

Kg = σ2I+A = σ2

[
I+

1

σ2
A

]
, (14.37)

where A describes the off-diagonal elements. Then we can use the Neumann series
(A.59) to write the inverse covariance as

K−1
g =

1

σ2

∞∑

j=0

[
− 1

σ2
A

]j
=

1

σ2
I− 1

σ4
A+

1

σ6
A2 − ... . (14.38)
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The Hotelling SNR then becomes

SNR2
Hot = stK−1

g s =
||s||2
σ2

− stAs

σ4
+

stA2s

σ6
− ... . (14.39)

Formally, the Neumann series will converge if ||A||/σ2 < 1, but that require-
ment is too stringent for our purposes since it takes no account of the nature of the
signal. By the ratio test, the series in (14.39) will converge if

stAn+1s

σ2stAns
< 1 (14.40)

for all n, and it may still converge (because of the alternating signs) even if (14.40)
is violated. In practice, convergence will be rapid if the correlations are weak and
short-range and the signal is spatially compact.

More generally, we can always decompose Kg into a diagonal part D plus a
matrix A with only off-diagonal terms. Assuming convergence, we then have

Kg = D+A = D
[
I+D−1A

]
; (14.41)

K−1
g =




∞∑

j=0

[
−D−1A

]j


D−1 ; (14.42)

SNR2 = stK−1
g s = stD−1s− stD−1AD−1s+ stD−1AD−1AD−1s− ... . (14.43)

The first term in this expansion, stD−1s, is what we computed above when we
assumed there were no off-diagonal terms, and the remaining terms are the cor-
rections arising from correlations induced by the detector. If these correlations are
sufficiently weak, we may be able to truncate the series after a few terms, making
the calculation of SNR easy.

The banded character of the covariance is especially useful if we are trying
to detect a spatially compact signal. At the extreme, suppose s is confined to a
single detector element, say m = n. Then SNR2 is simply s2n [K−1

g ]nn, and the first
correction term in (14.43) becomes

st D−1AD−1s =
∑

j

∑

k

sn [D−1]nj [A]j k [D
−1]kn sn =

s2n
D2

nn

Ann = 0 (14.44)

since the diagonal elements of A are zero by definition.
The next term in the series is also simplified if we consider a signal confined

to a single pixel:

stD−1AD−1AD−1s =
s2n
D2

nn

[AD−1A]nn =
s2n
D2

nn

∑

k

[Ank]
2

Dkk

. (14.45)

If we say that Ank ≃ 0 when |n − k|ǫ > δ, then the number of terms we have
to sum is of order [δ/ǫ]2, which could be quite small. Moreover, if the elements of
A are small compared to Dnn, then the correction terms are small and the series
converges rapidly.

If the signal covers P pixels, the number of computations required is increased
by a factor of P 2, and a convergence condition analogous to (14.40) must be satisfied.
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Matrix-inversion lemma Suppose we want to invert an overall covariance matrix of
the form

Kg = Kn + K̂g = Kn +WWt , (14.46)

where we have assumed that K̂g is given by (14.33). For electronic or Poisson noise
Kn will be diagonal, but in some applications correlations will be introduced by the
detector and Kn will be a nearly diagonal, banded matrix (see, for example, the
discussion of x-ray detectors in Sec. 12.3.8).

By the matrix-inversion lemma (A.56a), we see that

[
Kn +WWt

]−1
= K

−1

n −K
−1

n W
[
I+WtK

−1

n W
]−1

WtK
−1

n . (14.47)

The advantage of this form is that [I + WtK
−1

n W] is an Ns × Ns matrix, where
Ns is a few hundred in practice, rather than an M ×M matrix, where M may be
106. Moreover, since WtK−1

n W is positive-semidefinite, the inverse of the Ns ×Ns

matrix will always exist. Thus, if Kn can be inverted, either trivially because it is
diagonal or by use of a rapidly convergent Neumann series, then it becomes feasible
to add the sample covariance representing object variability.9

The matrix-inversion lemma reduces the size of the required inverse from M ×
M to Ns ×Ns but it is not a dimensionality-reduction method in the sense that it
does not entail potential information loss.

Dimensionality reduction using efficient channels The previous approaches depend
upon writing the data covariance matrix as the sum of a full-rank, near-diagonal
component representing the measurement noise and a low-rank contribution ob-
tained from samples. When we do not have access to low-noise or noise-free sam-
ples from which to estimate the second term, an alternative approach is to make
use of efficient channels that allow us to estimate the Hotelling observer’s SNR in
a lower-dimensional space.

In Sec. 13.2.12 we showed that a limited set of features, when properly cho-
sen, preserves the information in the data in terms of yielding the same SNR for a
linear observer. We found that an eigenanalysis of the inter- and intra-class scatter
matrices results in full preservation of the separability using only (L − 1) features
for optimal linear discrimination between L classes. In the binary classification
problem, a single feature is all that is needed—quite a dimensionality reduction.

The requirement for finding that single privileged feature is that complete
knowledge of the scatter matrices is available in order to do the eigenanalysis.
Without such complete knowledge, we must judiciously apply whatever prior in-
formation we have regarding the signals to be discriminated and the background
statistics to find channels that reduce the dimensionality of the problem with lim-
ited loss of detectability.

For a particular set of channel profiles, the Hotelling formalism can be applied
in the channel space to determine the wv, which is the vector of optimal channel
weights. By analogy with (14.19), we write the template in the channel space as

wv = K−1
v ∆v , (14.48)

9This idea was suggested to us by Brandon D. Gallas (see Barrett et al., 2001).
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where ∆v is the difference in channel outputs under the two hypotheses,

∆v = Ut∆g , (14.49)

and Kv is the P × P covariance matrix of the channel outputs:

Kv = UtKgU . (14.50)

The SNR on the channel outputs is given by

SNR2
v = ∆vtK−1

v ∆v . (14.51)

From Sec. 13.2.12 we know that efficient features are ones that preserve the sepa-
rability of the data in a space of reduced dimensionality, achieving SNR2

v = SNR2
g.

Laguerre-Gauss channels Consider the example of a detection task in which the
detected signal is approximately radially symmetric, centrally peaked and smooth,
and situated at a known location on a stationary background with a correlation
that has no preferred orientation. With these assumptions it can be expected that
the ideal linear template will be centered at the known position of the signal, rota-
tionally symmetric and smooth before discretization to match the CD nature of the
imaging system.10 Laguerre-Gauss channel profiles have been proposed by Barrett
et al. (1998c) for this task because they form a basis on the space of rotationally-
symmetric square-integrable functions in R2.

The Laguerre polynomials are defined in (4.57) as

Lp(x) =

p∑

k=0

(−1)p
(
p

k

)
xk

k!
. (14.52)

The orthogonality relation for these polynomials is given by (4.58):
∫ ∞

0

dx e−xLp(x)Lp′(x) = δpp′ . (14.53)

We can transform this relationship to a two-dimensional form with the change of
variables x = 2πr2/a2u, where r is the radial distance and au plays the role of a
scaling factor, giving

1

2π

∫ 2π

0

dθ

∫ ∞

0

4πr dr

a2u
exp

(−2πr2

a2u

)
Lp

(
2πr2

a2u

)
Lp′

(
2πr2

a2u

)
= δpp′ . (14.54)

We see that the exponential factor of (14.53) has been transformed to a Gaus-
sian factor in (14.54). From this equation we can define the Laguerre-Gauss (LG)
functions as

up(r|au) =
√
2

au
exp

(−πr2
a2u

)
Lp

(
2πr2

a2u

)
, (14.55)

where the {up} are orthogonal (without weighting factors) over R2 by (14.54).
Figure 14.7 shows radial dependencies of the first, third, and ninth LG func-

tions, as well as their 2D forms. In order to apply these continuous functions to a

10Of course, a signal defined on a square pixel grid cannot be exactly rotationally symmetric, but
we can ignore this problem if the template covers many pixels.
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discrete data set, the functions must be sampled on the same grid used to discretize
the data.

Fig. 14.7 The first, third and ninth Laguerre-Gauss functions: Left: 2D
functions; Right: Radial forms. (Courtesy of Brandon Gallas.)

Because the LG functions form a basis for radially-symmetric functions in 2D,
they can be used to exactly represent any rotationally symmetric function f(r) by

f(r) =

√
2

au
exp

(−πr2
a2u

) ∞∑

p=0

αp Lp

(
2πr2

a2u

)
, (14.56)

where

αp =

∫
d2r up(r) f(r) . (14.57)

Knowledge of the signal and background can be used to choose au and estimate
the coefficients αp for a finite set of channels. Alternatively, a range of values for au
can be investigated, with the number of channels increased until the detectability
reaches a maximum over au and P. This approach has been investigated extensively
by Gallas and Barrett (2003) for an SKE task on a lumpy background with widely
varying statistical parameters. These authors found excellent agreement between
the channelized linear observer’s performance and the ideal linear observer’s per-
formance with a small number of channels (5 – 30). The number of channels needed
was found to depend on the complexity of the background statistics.
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Channel models for predicting human performance While the previous paragraphs
specifically address the considerations that come to the fore when using channels
to estimate the performance of the optimal linear observer, the advantages offered
by the dimensionality reduction of the channelized-Hotelling approach are common
to all linear channel models. As described in Sec. 14.2.2, a variety of linear channel
models have been proposed for use in the prediction of human performance. All
such models have the similar characteristic that they result in a calculable figure of
merit for model-observer performance based on dimensionality reduction.

All channels designed to model the human have another similarity: because the
human visual system is insensitive to broad, structureless regions, channel models
designed to predict human performance have zero response at zero spatial frequency.
As stated in Sec. 4.1.4, Laguerre-Gauss functions are eigenfunctions of the 2D ro-
tationally symmetric Fourier operator. Thus the LG channel profiles in the Fourier
domain have the same form as the space-domain channels shown in Fig. 14.7. The
LG channels are peaked at ρ = 0 in the Fourier domain, just as they are peaked at
r = 0 in the space domain. The LG channels are therefore not recommended for
use in modeling human performance.

The body of literature providing the range of applicability of the various can-
didate channel models for predicting human performance continues to grow. When-
ever a given model is utilized, it is important to validate the performance predictions
with psychophysical studies involving human observers if the task or the statistics of
the data sets are outside the range of experimental conditions for which the model
has previously been shown to be predictive of human performance.

Random signals We have described a variety of methods for estimating the Hotelling
observer’s performance for SKE tasks. Random signals present an additional level
of complexity (and realism). Even so, the generalization of the Hotelling approach
to random signals is often straightforward. In particular, when the signals are low
contrast, we have already stressed that the data covariance is approximately equal
to its composition in the SKE case. In that case the only new question that arises
is the estimation of the mean data vector that appears in (14.20).

Estimation of the mean data vector If the task is the detection of a random signal,
and there is no prior information regarding the signal distribution, it is straight-
forward to estimate the sample means for the two classes and subtract them to
determine ∆ĝ. The sample mean is the maximum-likelihood estimate of the true
mean. The number of values to be estimated is the number of nonzero elements
in the difference (ĝ2 − ĝ1), which is determined by the extent of the signal as seen
through the imaging system.

Prior information can be brought to bear on the estimation of the mean dif-
ference vector in a number of ways. If the signal is compact and there is prior
information regarding its location, this information can be used to limit the num-
ber of values to be estimated to those within a certain region of the image. In
the case of random signals of a specified shape, prior information regarding the
signal’s form can be used to reduce the number of parameters to be estimated to
a small set, for example, signal amplitude, width, or location. Furthermore, prior
information regarding the underlying distributions of the random parameters can
be used to form Bayesian estimation procedures according to the theory presented
in Chap. 13.
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It should be noted that Hotelling SNR may be a poor indicator of system per-
formance with large signal variability, as discussed in Sec. 13.2.12. If a signal can
be located anywhere within a wide field of view, the signal averaged over location
is a broad, structureless function and the detectability of the Hotelling observer, or
any linear observer, becomes very small. One way around this problem is to replace
the original two-alternative detection problem with an (L+ 1)-alternative problem
where the signal can be at one of L nonoverlapping locations. The simple detection
decision can then be made by choosing the location for which the response of the
Hotelling observer is maximum, but we also get information on lesion location this
way. Another possibility is to allow signal location to be a parameter in the SNR
and compute a detectability map as described next.

Signal known exactly, but variable Let us assume that the signal varies randomly
but is known to the observer on each trial (the only uncertainty being whether it
is present). This task is sometimes referred to as the signal-known-exactly-but-
variable, or SKEV, task (Eckstein and Abbey, 2001; Eckstein et al., 2002). Let the
randomness in the signal be captured by a random parameter vector θ. For each
value of θ, the optimum linear test statistic is given by [cf. (13.208)]

ŵ(θ) = [K̂g(θ)]
−1s(θ) , (14.58)

where the estimate of Kg and its inverse must be determined using the methods
described above. In particular, the method of template estimation given above may
be used to estimate (14.58) without the need for finding an inverse of Kg in some
cases.

The Hotelling SNR can be estimated for each value of the random parameter,
following (13.209):

ŜNR
2

Hot(θ) =
{[ŵ(θ)]ts(θ)}2

[ŵ(θ)]tK̂g(θ) ŵ(θ)
= [ŵ(θ)]ts(θ) , (14.59)

where the second form follows from (14.58).
A summary measure of observer performance can be obtained by averaging

(14.59) over θ if pr(θ) is known. Alternatively, a detectability map, which plots the
SNR2 as a function of θ, can be presented. Eckstein et al. (2002) have found that
the optimal parameters for image compression are the same when evaluated using
either an SKE or an SKEV paradigm.

AUC and the linear discriminant Thus far we have concentrated on the estimation of
the SNR for the Hotelling observer. As discussed in Chap. 13, the Hotelling observer
gives maximal SNR and maximal AUC when the data are Gaussian distributed. For
non-Gaussian data, the Hotelling observer may not give the best AUC that can be
achieved by a linear observer. It is therefore of interest to consider the behavior of
AUC for an arbitrary linear discriminant and investigate methods for maximizing
this alternative, and arguably superior, figure of merit.

It was shown in (13.44) that

AUClin =
1

2
+

1

2πi
P
∫ ∞

−∞

dξ

ξ
ψg1(wξ)ψ

∗
g2(wξ) , (14.60)

where w is the arbitraryM×1 template of (14.18) that generates the test statistic t
from each data vector g, and ψgj(·) is the characteristic function for the data under
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hypothesis j. Limiting forms of (14.60) for nonrandom signals and for weak signals
are given in Sec. 13.2.5. Note that (14.60) is just a 1D integral—only one line
through the multivariate characteristic function under each hypothesis is needed
once w is specified.

This formula for AUC is useful when we have analytic forms for the character-
istic functions of the data under the two hypotheses. In background-known-exactly
(BKE) problems, we might know the characteristic functions directly from the data
statistics, but if the background is random we have to first characterize the object
statistics and then propagate them into the data domain as discussed in Sec. 8.5.3.
If the object is regarded as a continuous function, we need first to obtain an analytic
expression for its characteristic functional, then apply (8.335) or (8.339) to obtain
the characteristic functions for the data. For example, lumpy and clustered lumpy
backgrounds were introduced in Sec. 8.4.4, and their characteristic functionals were
derived in Sec. 11.3.10. Additional examples of analytic characteristic functions will
be given in Chap. 18.

When the needed characteristic functions are available, an iterative search
can be used to maximize the AUC given by (14.60); useful search algorithms are
discussed in Sec. 15.4.3. Since the integral is one-dimensional, this search is not
particularly computationally expensive.

A major advantage of the approach suggested by (14.60) is that no matrix
inversion is required, unlike the determination of the full Hotelling SNR. While an
iterative approach can be used to determine the Hotelling SNR when the noise con-
tribution to the covariance matrix is known, it works by searching for the optimum
linear template and indirectly obtaining the SNR. An iterative solution for (14.60)
directly yields AUC.

The linear discriminant obtained by searching for the w that maximizes AUC
may differ from the Hotelling observer, as discussed in Sec. 13.2.12. When this
occurs, the linear discriminant that gives higher AUC is to be preferred whenever
our goal is the linear approximation to the ideal observer.

Errors in estimates of SNR for linear observers It is natural to ask how close the esti-
mated SNR is to the true SNR that would have been obtained with full knowledge
of the ensemble statistics of the data. That is, we would like to know the bias and
variance of the estimate. In this context, bias and variance refer to the first-and
second-order statistics of the estimate when different finite sets of images are used.
There are several methods, briefly surveyed below, to estimate the magnitude of
the bias and variance from this source.

As with any real-world estimation problem, however, there can also be a sys-
tematic bias arising from invalid assumptions or modeling errors, and this kind of
bias is much more difficult to assess. With computer-generated images, a major
source of systematic bias is unrealistic or oversimplified simulation; with real im-
ages, a major problem is uncertainty in the true diagnosis. Both of these issues are
discussed in Sec. 14.4; here we focus on statistical errors.

It is straightforward to estimate the variance of estimates of SNR or AUC
when simulated images are used; all that is needed is to repeat the simulation sev-
eral times with independent sets of images and compute the sample variance of
the values obtained. More sophisticated resampling methods (see below) can also
be used, but their only advantage is a saving in computer time, seldom a primary
concern these days. In fact, with simulated images the variance and the statistical
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bias can be made arbitrarily small simply by running the computer long enough. If
real images are used, however, the number of images might be quite limited, and it
becomes more critical to estimate the error associated with an estimate of SNR2.

Errors in direct estimation of SNR in channel space One situation in which we can
give not only the bias and variance but indeed the full probability density function
of the estimated SNR2 is when dimensionality reduction is performed with effi-
cient or anthropomorphic channels and the resulting channel outputs are normally
distributed. In that case we can estimate SNR2 by

ŜNR2 ≡ [∆̂v]t K̂−1
v [∆̂v] , (14.61)

where the hats here denote estimates obtained by sample averages; it is assumed
that the number of sample images is larger than the number of channels so that the
sample covariance matrix is invertible.

The estimator defined in (14.61) is precisely the one studied by Hotelling in
his classic 1931 paper, and it is often referred to as Hotelling’s T 2statistic. The
PDF of T 2 is closely related to the F distribution; for details see Hotelling (1931)
or Anderson (1971). The general behavior of the estimate is illustrated in Fig. 14.8,
where it is seen that the estimate is highly biased unless the number of sample
images is much larger than the number of channels (and of course it is not even
defined if the number of sample images is less than the number of channels).

Fig. 14.8 Schematic behavior of the Hotelling T
2 estimate of SNR2 as defined

in (14.61). The dashed horizontal line indicates the true value of SNR2 on
the channel outputs, and the solid curve shows the mean of the estimate.
The error bars are indicative of the variance. We thank Andy Alexander for
suggesting this kind of plot.

The basic problem with the Hotelling T 2 estimate is that it makes no use of
prior information about the quantity being estimated, namely the SNR2 on the
channel outputs. One key piece of prior information in many cases is knowledge of
the mean difference signal in data space, g, from which we can determine the mean
difference signal in channel space, ∆v, by (14.49). If we regard ∆v as known and
nonrandom, we can define a better estimate of SNR2 by

̂SNR2 ≡ [∆v]t K̂−1
v [∆v] . (14.62)
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Another key piece of prior information is the covariance decomposition (14.27).
If we regard Kn as known and nonrandom and use (14.51), the estimate in (14.62)
is modified to

ŜNR2 ≡ [∆v]t
[
Ut
(
Kn + K̂g

)
U
]−1

[∆v] . (14.63)

Note that the hat, denoting sample estimates, now appears over only K̂g, so only
that term contributes to the bias and variance of the estimate of SNR2.

The statistical properties of (14.62) and (14.63) have not yet been derived,
but they should offer substantially smaller bias and variance than the T 2 estimate
of (14.61) simply because they use more prior information. All of these estimates,
however, assume that the channel outputs are normally distributed; it is advisable
to plot experimental histograms to check this assumption.

Training and testing An alternative to direct estimation of SNR2 is first to estimate
the template w and then to apply it to a set of sample images. When only a
single, finite set of images is available, the experimenter must use the set of images
for two purposes: training the observer (choosing the number of channels, their
weights, and any parameters that characterize the channel profiles); and testing
the observer (estimating its performance). This is the so-called “training-testing”
paradigm. The training-testing label applies even without dimensionality-reducing
feature extraction. When we estimate the template from samples by any method,
we are training the observer.

There are two common ways to train and test an observer with a single set of
sample images. The first option is to split the data into two independent sets, one
set to be used to train the observer and the other to be used for testing the observer.
The split does not need to be into subsets of equal size. This approach is sometimes
referred to as the holdout method. A related method is the use of Ns − 1 images to
train the observer, with the final sample used to test the observer. This method is
known as the round-robin approach; by repeating the training/testing sequence Ns

times, keeping score of the observer’s decision variable each time, an estimate of the
observer’s performance is obtained over the entire data set. However, the round-
robin method does not yield a single observer, but rather, each held-out image is
tested on a different observer.

Gallas (2003) investigated various resampling approaches for determining the
bias and variance of the performance estimate for the channelized linear observer
trained and tested using variations on the hold-out method. Using a very large set
of independent estimates of observer performance (the beauty of Monte Carlo image
simulation), Gallas was able to determine the true performance of the channelized
observer and thus calculate the bias as well as the variance of the finite-sample
methods.

The second training-testing option is the resubstitution method, where the
observer is trained and tested on the same set of images. The use of a single set
of images to estimate the observer’s template, followed by an estimation procedure
that applies that template to the data to determine the first- and second-order
statistics of t under each hypothesis to derive an SNR, will give an optimistic result
(Wagner et al., 1997). The resulting estimates of observer performance correspond
to the results obtained via (14.61) and illustrated in Fig. 14.8.
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14.3.3 Ideal observers

We learned in Chap. 13 that the ideal observer for binary classification tasks is one
that bases its decision on the likelihood ratio. Many properties of the likelihood
ratio and its logarithm, and of performance metrics derived from them, were given
in Sec. 13.2. In this section we review a variety of approaches to using these often
abstract mathematical concepts in the practical assessment of image quality.

Analogies with the Hotelling problem The basic challenge in computing the test
statistic for both the Hotelling and the ideal observer is dimensionality. For the
Hotelling observer, we need to construct and invert a huge covariance matrix; for
the ideal observer, we need to form huge-dimensional multivariate probability den-
sity functions and take ratios of them. In neither case are brute-force methods likely
to be fruitful; in both cases we must make use of prior information about the task
and imaging system in order to make progress.

An important piece of prior information for the Hotelling problem is the condi-
tional covarianceKn|f, which is known from the physics of the measurement process.
For example, Kn|f for raw, unprocessed data and Gaussian noise is given in (14.29),
and for Poisson noise it is given by (14.30). The analogous prior information for
the ideal observer is the conditional PDF pr(g|f ), which is again known from the
physics. Before processing, pr(g|f ) is often multivariate Gaussian or multivariate
Poisson, and in both cases the multivariate PDF can often be written as a product
of univariate PDFs. The effect of processing is discussed in Secs. 15.2.6, 15.4.2
and 15.4.7.

In both Hotelling and ideal-observer studies, it is necessary to choose the object
model carefully, allowing enough complexity and variability to capture the essence
of real objects, yet retaining adequate mathematical tractability. In both cases,
object models such as the lumpy and clustered lumpy backgrounds introduced in
Sec. 8.4 are very useful.

The signal model, too, can be chosen to facilitate the computation. In par-
ticular, nonrandom signals are very attractive, though it remains an open question
how well conclusions from SKE studies can be applied to more realistic tasks.

Decomposition of the PDFs The likelihood ratio is the ratio of two PDFs, each of
which can be written somewhat abstractly as

pr(g|Hj) =

∫
df pr(g|f ) pr(f |Hj) , (j = 1, 2) . (14.64)

The notation pr(f ) is explained in Sec. 8.2.2 [see especially (8.78) and (8.81)]. In
brief, it denotes the density on the full (potentially infinite) set of parameters needed
to specify the object as a random process f(r).

The density on the data can also be written as

pr(g|Hj) = 〈pr(g|f )〉f |Hj
. (14.65)

Numerous alternative forms of pr(g|Hj), with various assumptions about the object
and the noise, are given in Sec. 8.5.4.

Thus, in order to determine the densities needed in the likelihood ratio, we
need both the conditional density on the data for a given object, pr(g|f ), and the
densities pr(f |Hj) on the object under the two hypotheses. Note that pr(g|f ) does
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not depend directly on the hypothesis Hj ; specifying the object specifies the mean
of g, and that in turn specifies the full density in most cases.11 Note also that we
do not refer to pr(g|f ) as a likelihood since it is never our goal to estimate f ; it is
not the goal in this section since we are discussing a classification problem, and it
is not even the goal in image reconstruction (see Chap. 15).

Conditional PDFs To be more specific about pr(g|f ), we need to distinguish direct
from indirect imaging and object-dependent from object-independent noise, just as
we did in Sec. 14.3.2 when we discussed Kn|f [see (14.29) and (14.30)].

Consider first the case of direct imaging with a detector array limited by Gaus-
sian electronic noise. If we assume that all elements in the array are identical and
that each generates its own noise independently of the other elements, then the
probability density function of n is

prn(n) = (2πσ2)−M/2
M∏

m=1

exp

(
− n2

m

2σ2

)
. (14.66)

Since the electronic noise is independent of the mean detector output, the condi-
tional density on the data is just a shifted version of the noise density:

pr(g|f ) = prn[g− g(f )] = (2πσ2)−M/2
M∏

m=1

exp

{
− [gm − gm(f )]2

2σ2

}
. (14.67)

For linear systems we can go a step further and write gm(f ) = [Hf ]m.
Similarly, with raw Poisson measurements we have

pr(g|f ) =
M∏

m=1

exp [−gm(f )]
[gm(f )]

gm

gm!
. (14.68)

Thus in both of these cases the multivariate density is a product of univariate den-
sities.

The situation is more complicated if we regard g as the output of some data-
processing or image-reconstruction step. Linear processing leaves Gaussian data
Gaussian but introduces correlations. Nevertheless, it is straightforward to write
down a multivariate expression for pr(g|f ) since we know how to compute mean
vectors and covariance matrices after linear operations, and a multivariate normal
is fully specified by its mean and covariance. There is no simple way of expressing
pr(g|f ) after linear processing of Poisson data, but it may be valid to approximate
it with a suitably correlated multivariate normal (see Sec. 15.2.6).

Noise on the output of iterative reconstruction algorithms is discussed in Secs.
15.4.2 and 15.4.7. If the algorithm is nonlinear and enforces a positivity constraint,
then the noise cannot be Gaussian since negative values cannot occur. Specifically,
with multiplicative algorithms such as MLEM (maximum-likelihood expectation-
maximization), it often happens that the PDF on the reconstructed image is ap-
proximately a correlated log-normal (Wilson et al., 1994; Barrett et al., 1994).

11An exception to this statement will be given in Sec. 18.6.4 where we discuss speckle. As we shall
see there, in some speckle problems the variance of the data is different for the signal-present and
signal-absent hypotheses.
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To summarize, with raw, unprocessed data, pr(g|f ) usually has a simple an-
alytic form (independent Gaussian or Poisson). With processing, the elements of
g are no longer statistically independent, but it is usually possible to give at least
an approximate form for the conditional density. In what follows we shall assume
throughout that pr(g|f ) is known analytically.

As a notational point, we see from (14.66) and (14.67) that the conditional
density on unprocessed data g is completely determined by its mean with both the
Gaussian and Poisson noise models, so pr(g|f ) = pr[g|g(f )]. The same is true after
processing; if we know g, we can specify the density on g, and we know g if we
know f. We shall therefore write pr(g|f ) and pr(g|g ) interchangeably, depending
on which conditional variable we wish to emphasize.

Object statistics Statistical properties of objects were the subject of Sec. 8.4. The
viewpoint adopted there regards the object as a random process for which each
sample function is a vector in a Hilbert space. Since we are concerned only with
the measurement component of the object, the Hilbert space of interest has a finite
but huge dimensionality. We saw a few cases where the object statistics could be
specified analytically, for example as a Gaussian random process or a Gaussian mix-
ture, but in most cases analytic models are either unavailable or unrealistic. The
two main options in those cases are to reduce the dimensionality of the statistical
description of the object or to use a constructive model that allows us to simulate
sample objects even if we cannot specify their statistics.

Dimensionality reduction rests on the assumption that somehow the essential
features of a complicated random process can be captured with a relatively small
number of parameters. As discussed in Sec. 8.4.1, approaches to finding this low-
dimensional representation include principal components analysis (PCA) and inde-
pendent components analysis (ICA). When ICA is applied to images, it is found
that the independent components are the outputs of bandpass filters similar to
wavelets or the channels in the human visual system; indeed, some have speculated
that our visual system has evolved to extract approximately statistically indepen-
dent components of natural scenes, thereby permitting efficient transformation of
information to the brain.

We postulate that there exist similar low-dimensional representations of ob-
jects, as opposed to images, and that they again involve bandpass filters or channels.
We know from the discussion in Sec. 8.4.3 that the univariate PDFs on the channel
outputs have a long-tailed, kurtotic form. Sometimes they are described empirically
in terms of the Lévy family, defined not by the density but by the characteristic
function, which has the form ψ(ξ) = exp(−b|ξ|q). If the channels are chosen so
that the outputs are approximately statistically independent, the multivariate ob-
ject statistics are described by a finite product of characteristic functions of this
form.

The constructive models that have received the most attention in image-quality
studies are lumpy and clustered lumpy backgrounds. As defined in (8.303), a sample
function of a lumpy background is specified exactly by stating the lump positions
{rn} as well as the number of lumps N. The statistical properties are fully specified
by giving the probability laws for rn and N.

Alternatively, for many constructive models, the object statistics can be spec-
ified by giving an analytic form for the characteristic functional associated with the
random field. This concept was introduced in Sec. 8.2.3, and the specific forms
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for lumpy and clustered lumpy backgrounds were calculated in Sec. 11.3.9. Other
constructive models that can be used to synthesize texture fields, and for which
analytic characteristic functionals are available, will be introduced in Chap. 18.

To summarize, random objects may be specified by huge-dimensional PDFs,
by lower-dimensional PDFs on channel outputs, by rules that let us construct sam-
ple functions, and/or by characteristic functionals. In what follows we shall see how
each of these descriptions aids us in the computation of ideal-observer performance.

From object domain to data domain If we have either a statistical or a construc-
tive specification of a random object, the next step is to transform it into the data
domain. For constructive models, this step is straightforward in principle; one gen-
erates the random object and uses it to simulate the random image. Simulation
methods are discussed in Sec. 14.4.

To discuss transformation of the PDF, we need to distinguish linear from non-
linear imaging systems. A general rule for nonlinear transformation of bivariate
PDFs is given in (C.104), but it does not extend usefully to high-dimensional mul-
tivariate problems since the Jacobian cannot be evaluated. So far as the authors can
see, there is no hope of transforming an object PDF through a nonlinear imaging
system.

The transformation rules for linear systems are most easily expressed in terms
of characteristic functions and functionals. If g(f ) = Hf, with H a linear CD op-
erator, then we know from (8.96) that the characteristic function for the random
vector g under hypothesis Hj is given by

ψg|Hj
(ξ) = Ψf |Hj

(H†ξ) , (14.69)

where ξ is an M × 1 vector, ψg|Hj
(ξ) is the characteristic function for g, and

Ψf |Hj
(σ) is the characteristic functional of the object f, with σ being a vector in

the same Hilbert space as f, e.g., σ corresponds to a function σ(r).
If we write g = Hf + n and assume that n is object-independent, then we

know from (8.335) that

ψg|Hj
(ξ) = ψn(ξ)ψg|Hj

(ξ) = ψn(ξ)Ψf |Hj
(H†ξ) . (14.70)

For Poisson noise, (8.339) tells us that

ψg|Hj
(ξ) = Ψf |Hj

[H† Γ(ξ)] , (14.71)

where

[Γ(ξ)]m =
−1 + exp(−2πi ξm)

−2πi
. (14.72)

Expressions for the data PDFs can be obtained by performing an inverse MD
Fourier transform on each expression for ψg|Hj

(ξ).
For signal-known-exactly tasks, it follows from the Fourier shift theorem that

ψg|H2
(ξ) = exp(−2πiξts)ψg|H1

(ξ) , (14.73)

where s is the nonrandom signal in data space. Thus it suffices to know the no-signal
or background-only characteristic function in this case.
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Estimation of object statistics In many cases we can express the object statistics
in parametric form. For example, with stationary lumpy backgrounds the width
of a single lump and the number of lumps per unit area (or volume) fully describe
the random process. Similarly, if the object statistics are specified in terms of the
outputs of bandpass channels, we could assume that the univariate characteristic
function for the nth channel has the Lévy form ψn(ξ) = exp(−bn|ξ|qn); if we assume
further that the channel outputs are statistically independent, then the multivariate
object statistics are specified by the sets {bn} and {qn}.

We can use the freedom in choosing these parameters to create a wide variety of
random object fields. Moreover, if we can estimate the parameters from a training
set of real images, we can tailor the object description to a particular physical
situation. The problem is that the training set will consist of images, and we
want to find the parameters for describing objects, in spite of the blur and noise
associated with whatever imaging system was used to form the images.

A way of estimating the object parameters from blurred, noisy images was
devised by Kupinski et al. (2003a). They assumed that the object characteristic
functional under the no-signal hypothesis was known except for some parameter
vector α, so it could be written as Ψf |H1

(s;α). The corresponding characteristic
function in the data domain could then be obtained by one of the transformation
rules given above; for example, (14.71) applies with Poisson noise, and

ψg|H1
(ξ;α) = Ψf |H1

[
H

†Γ(ξ);α
]
. (14.74)

Given a set of signal-absent training images {gn, n = 1, ..., Ns}, Kupinski et
al. formed the empirical characteristic function for the data, which is basically
a Monte Carlo estimate of ψg|H1

(ξ;α), defined by

ψ̂(ξ) ≡ 1

Ns

Ns∑

n=1

exp(−2πiξtgn) . (14.75)

The estimation procedure was then basically minimization of the norm of the differ-
ence between the known ψ̂(ξ) and the known analytic form ψg|H1

(ξ;α) from (14.74),
minimization being carried out by varying α. In practice a weighted least-squares
norm was used, taking advantage of the fact that all characteristic functions are
unity at ξ = 0, so the variance of the estimate ψ̂(ξ) is zero at that point. Moreover,
a set of channels was applied to each gn to reduce the dimensionality and ease the
computational burden. For details, see Kupinski et al. (2003a).

The beauty of this procedure is that it gives a statistical description of the
underlying objects, independent of the imaging system. Thus, even though a par-
ticular imaging system, say one described by an operator H0, was used to obtain
the training images, the characteristic function for another system, described by a
general H, can be found from (14.74) once α has been estimated. If we can devise
a way of computing ideal-observer performance from this information, we can in
principle vary H and optimize the imaging system for the class of objects from
which the training set was drawn.

Estimation of the likelihood ratio In an ideal-observer study, the basic quantity to
be calculated is the likelihood ratio, defined by

Λ(g) =
pr(g|H2)

pr(g|H1)
=

∫
df pr(g|f ) pr(f |H2)∫
df pr(g|f ) pr(f |H1)

. (14.76)
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The integrals here are over a potentially infinite-dimensional Hilbert space, but
they can be reduced to M dimensions (where M is the number of measurements)
by observing that pr(g|f ) = pr[g|g(f )]. If we use (8.351) to decompose the object
into background and signal parts,

f = fb + fs , (14.77)

and (for a linear system) transform the background and signal into data space as

g ≡ b+ s , b ≡ Hfb , s ≡ Hfs , (14.78)

then we can write the likelihood ratio as [cf. (13.166)]

Λ(g) =

∫
∞
dMb pr(g|H2,b) pr(b)∫

∞
dMb pr(g|H1,b) pr(b)

. (14.79)

A useful alternative form of the likelihood ratio is given by (13.169) and
(13.170) as

Λ(g) = 〈ΛBKE(g,b)〉b|g,H1
, (14.80)

where the subscript BKE indicates background-known-exactly, and

ΛBKE(g,b) ≡
pr(g|H2,b)

pr(g|H1,b)
. (14.81)

The advantage of this form is that ΛBKE(g,b) is easy to calculate. In fact, for
nonrandom signals it is just the ratio of two conditional densities like (14.67) or
(14.68). Note, however, that the required average in (14.80) is with respect to the
posterior density on the background, pr(b|g, H1); we shall learn shortly how to do
this average by Monte Carlo methods.

One way of evaluating the performance of the ideal observer on a signal-
detection task is to generate sets of signal-present and signal-absent sample im-
ages, estimate the likelihood ratio of each image and form an ROC curve. Methods
discussed in Sec. 14.2.4 can then be used to estimate the area under the curve or
ideal-observer AUC.

A useful surrogate for ideal-observer AUC is the likelihood-generating function
evaluated at the origin. We know from (13.97) that this quantity is given by

G(0) = −4 ln

{∫
dMg [pr(g|H1) pr(g|H2)]

1

2

}
. (14.82)

We can use G(0) to estimate AUC by [cf. (13.20) and (13.96)]

AUC ≈ 1
2 + 1

2 erf

(√
G(0)

2

)
. (14.83)

If the log-likelihood ratio is normally distributed or G(0) is large (which means that
AUC approaches 1), then this result is exact. Clarkson and Barrett (2000) have
found it to be an excellent approximation in a variety of cases with practical values
of AUC.
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Monte Carlo methods Perusal of expressions such as (14.79) or (14.82) shows that
computation of ideal-observer performance in nontrivial cases requires evaluation of
huge-dimensional integrals. In Sec. 10.4.5 we introduced the concept of Monte Carlo
simulation and commented that it was useful in numerical evaluation of multidimen-
sional integrals. As we shall show, Monte Carlo integration is a very valuable tool
in ideal-observer evaluations, but in fact we need to move beyond the simple Monte
Carlo methods of Sec. 10.4.5 to the more sophisticated and powerful approach of
Markov-chain Monte Carlo (MCMC). Book-length treatments of MCMC are given
by Robert and Casella (1999) and Gilks et al. (1996). We begin here, however, with
simple Monte Carlo integration to illustrate the principles and problems.

To evaluate the numerator or denominator in the likelihood ratio as given in
(14.76), we must in principle integrate over an infinite-dimensional space, though we
could also use (14.79) to reduce it to M dimensions (which is of little consolation if
M is of order 106). If, however, we can simulate a set of objects {fn , n = 1, ..., Ns},
then we can approximate those integrals by [cf. (10.300)]

pr(g|Hj) =

∫
df pr(g|f ) pr(f |Hj) ≈

1

Ns

Ns∑

n=1

pr(g|fn) , (14.84)

where the sample must be drawn from pr(f |Hj). That is, if H2 denotes signal-
present and H1 denotes signal-absent, the simulations must include the signal and
background for j = 2 but only the background for j = 1.

Recall that pr(g|fn) in (14.84) is a known function, for example given by (14.67)
or (14.68). In essence, the Monte Carlo integration associates this known function
with every sample point Hfn in the data space. The method is thus reminiscent
of kernel estimation, a technique often used to estimate probability densities from
a discrete set of samples. The key difference is that choosing the kernel in kernel
estimation is a black art. The kernel must be broad enough to fill in the gaps
between samples, yet not so broad as to smooth out essential details in the density
being estimated. No such issue arises with (14.84); the form of the kernel is dictated
by the physics of the problem, and its width is dictated by the noise level.

This is not to say that (14.84) is a panacea. The kernel pr(g|fn) falls off rapidly
as Hfn gets farther from the particular g for which Λ(g) is being calculated. If the
noise level is small, most randomly chosen Hfn will be so far from g that pr(g|fn)
will be zero to computer precision, and few of the samples will make any contribution
to the sum in (14.84). Even though the sum will asymptotically approach pr(g|Hj)
as Ns goes to infinity, and the estimator is unbiased for all Ns, the variance can be
huge for practical finite values of Ns. The problem gets worse as M gets larger or
as the noise level gets smaller.

One way to ameliorate this problem in some cases is by importance sampling.
Suppose we know an analytic form for pr(f |Hj), say as a Gaussian mixture or in
terms of independent components. Then we are free to rewrite the data density as

pr(g|Hj) =

∫
df

pr(g|f ) pr(f |Hj)

q(f )
q(f ) , (14.85)

where q(f ) is a probability density function (i.e., a nonnegative function normalized
to unity) with a support large enough that dividing by zero does not become an



MODEL OBSERVERS 981

issue. We can then approximate the data density as

pr(g|Hj) ≈
1

Ns

Ns∑

n=1

pr(g|fn) pr(fn|Hj)

q(fn)
, (14.86)

where now the samples are drawn from q(f ). For this modification to be useful,
we must choose q(f ) so that the samples in data space, Hfn, are clustered near
the actual g. In simulation studies, we can do this by taking advantage of the
knowledge of how we produced g in the first place. If we did so by simulating some
particular object f0, then we know what this object was and can use this knowledge
in computing the likelihood ratio. For example, if we describe objects by their
independent components, with expansion coefficients {αk}, then the initial object f0
is described by {αk0}, and the importance sampler can generate random objects by
random perturbations about {αk0}. So long as the perturbations are large enough
to adequately sample the integrand, the sum in (14.86) is still an unbiased estimator
of pr(g|Hj), and the variance is greatly reduced by using the prior knowledge of the
point about which to take samples. A related approach, suggested by Zhang et al.
(2001a), is to draw the samples from pr(g|f ), renormalized as a density on f.

Markov-chain Monte Carlo Direct Monte Carlo integration as sketched above has
limited applicability because of the need for an analytic form for pr(f |Hj) in the
importance sampler. A more general technique is MCMC, which will be discussed
in the context of image reconstruction in Sec. 15.4.8. As we shall see there, the
essence of MCMC is to propose random perturbations in the vector that is the
variable of integration, and to accept or reject the proposed perturbations with
a carefully chosen rule such that the sequence of accepted perturbations forms a
Markov chain, and the equilibrium PDF for the chain is precisely the one from
which we wish to sample.

For ideal-observer studies, MCMC is particularly applicable to the expression
for the likelihood ratio given in (14.80). A Monte Carlo implementation of this
formula is

Λ(g) ≈ 1

Ns

Ns∑

n=1

pr(g|H2,bn)

pr(g|H1,bn)
, (14.87)

where the samples bn are drawn from the posterior pr(b|g, H1).
To sample from the posterior, we can use a Metropolis-Hastings algorithm,

which we shall discuss in more detail in Sec. 15.4.8. As applied to the present
problem, the basic idea is to generate a sequence of samples of the background b

in such a way that the samples are drawn from some target density π(b) such as
the posterior pr(b|g). If the current background in the sequence is b(k), a new trial
background b′ is generated from a proposal density q(b′|b(k)), which can depend on
the current state. The probability of accepting this proposed change is [cf. (15.328)]

Pr(acc) = min

{
1,

π(b′) q(b(k)|b′)

π(b(k)) q(b′|b(k))

}
. (14.88)

If the change is accepted, we set b(k+1) = b′; otherwise b(k+1) = b(k). By a
detailed-balance argument (see Sec. 15.4.8), it can be shown that the equilibrium
distribution is indeed π(b). Note that only ratios of target densities are required; if
π(b) is the posterior, then we can write it as pr(b|g) ∝ pr(g|b) pr(b). The constant
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of proportionality cancels out in (14.88), and we do not need to know the normal-
ization of the posterior. We do, however, need to know the ratios pr(b′)/pr(b(k)).

Kupinski et al. (2003b) showed how this approach could be applied to likelihood-
ratio calculations with a lumpy background model. Two types of perturbations to
the background were allowed: changes in the location of a particular lump and
changes in the number of lumps. This procedure was used to compare three rather
stylized pinhole imaging systems in terms of ideal-observer AUC for an SKE task.
By running the Markov chain multiple times, the variance in the estimate of the
AUC was estimated. In subsequent work, Park et al. (2003) extended this method
to random signals.

Channelized ideal observer We have mentioned low-dimensional representations of
object statistics, but we can also consider dimensionality reduction in data space as
a way of facilitating ideal-observer studies. Though dimensionality reduction would
also be called feature extraction in pattern recognition, we have several advantages
in assessment of image quality that we do not have in pattern recognition. As we
discussed in the context of the channelized Hotelling observer in Sec. 14.3.2, we can
consider SKE tasks where all details of the signal are known, we can construct back-
grounds with known statistical properties, and we can simulate noise-free samples
with these statistics.

Armed with this information, we can construct so-called efficient channels in
such a way that the performance of the Hotelling observer operating on the channel
outputs is a good approximation to that of the true Hotelling observer operating
on the original data g. For example, if we consider a rotationally symmetric signal
in a known location in a statistically isotropic background, we can use rotation-
ally symmetric channels defined by Laguerre-Gauss functions. Gallas and Barrett
(2003) demonstrated that only 5–10 such channels were needed for good estimates
of Hotelling-observer performance; we anticipate that a similar result will hold for
ideal observers when we have a similar amount of prior information, but this hy-
pothesis has not yet been confirmed.

Suppose we have a set of linear channels that we believe, based on our knowl-
edge of the classification task, might be efficient with respect to the ideal observer.
To check this possibility, we need to compute the likelihood ratio on the channel
outputs for a training set of signal-present and signal-absent images and then cre-
ate an ROC curve. Recent work by Subok Park and Matthew Kupinski offers some
possible ways of computing the likelihood ratio. Though this work is unpublished at
this writing, we sketch the main ideas here with the permission of the originators.

The approaches suggested by Park and Kupinski apply to situations where
we have analytic expressions for the characteristic functions of the data g but no
PDFs, yet still want to compute a likelihood ratio (LR). The basic idea is to reduce
the dimensionality of the data by use of a set of P channels and then attempt to
compute the LR on the channel outputs rather than on g itself.

As Park formulated the problem, the PD channel output vector is given by

v = Tg = T {Hf + n} , (14.89)

and the characteristic function for v under hypothesis j (in the case of Poisson
noise) is given by an extension of (14.71) as

ψv|Hj
(ω) = Ψf |Hj

[
H

†Γ
(
T†ω

)]
, (14.90)
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where ω is a P×1 vector. It is assumed that P is relatively small and that ψv|Hj
(ω)

can be computed analytically. The likelihood ratio for a given v is12

Λ(v) =

∫
dPω ψv|H2

(ω) exp(2πiω†v)∫
dPω ψv|H1

(ω) exp(2πiω†v)
. (14.91)

Since P is small, Park proposed doing these integrals as FFTs. Kupinski
refined the idea by suggesting Monte Carlo integration with importance sampling:

∫
dPω ψv|Hj

(ω) exp(2πiω†v) =

∫
dPω

pr(ω)

pr(ω)
ψv|Hj

(ω) exp(2πiω†v)

≈ 1

N

N∑

n=1

ψv|Hj
(ωn) exp(2πiω

†
nv)

pr(ωn)
, (14.92)

where the samples ωn are drawn from pr(ω). Kupinski also suggested using a few
sample images to determine the mean and covariance of v and then constructing a
PD Gaussian with these estimated parameters to use as pr(ω).

Much further work is needed to validate this approach and explore possible
choices for the channels, but if efficient linear channels in the ideal-observer sense
exist, it opens up many new avenues for evaluating imaging systems with the ideal
observer and classification tasks.

Nonlinear features Several nonlinear approaches to dimensionality reduction have
been suggested by Hongbin Zhang. Zhang et al. (2001a) discusses features derived
from the ideal observer and based on ΛBKE(g,b) as defined in (14.81). Rather
than attempt to average this expression over the posterior on the backgrounds,
as required by (14.80), Zhang reasoned that a useful set of features for an SKE
classification task could be defined as

θp = ΛBKE(g, b̂p) , (p = 1, ..., P ) , (14.93)

where b̂p is some estimate of the background at the known signal location. Specif-
ically, he argued that the background was likely to be slowly varying compared to
a small signal, so he suggested that b̂p be taken as a smoothed version of g, with
different p corresponding to different widths of the smoothing filter. The resulting
values of θp would not immediately be the ideal-observer discriminant function, but
Zhang suggested that an artificial neural network might find a good approximation
to the likelihood ratio in the PD space.

In related work, Zhang also suggested using a set of wavelets centered on the
known signal location, followed by a nonlinear point transformation on each wavelet
coefficient (Zhang et al., 2001b). He suggested an iterative algorithm to train the
nonlinear transformation so that the outputs would follow a PD multivariate nor-
mal law. Then, when a new image is passed through the same transformation, the
likelihood ratio can readily be calculated (see Sec. 13.2.8).

12Even though the channels are linear, this likelihood ratio will usually be a nonlinear functional of
the channelized data v; it should not be confused with the AUC-optimal linear observer introduced
in Sec. 13.2.12.



984 IMAGE QUALITY

Checking the results We have sketched a number of approximate methods for es-
timating AUC for the ideal observer. How do we know if the results are correct?
That is, how can we estimate the bias and variance of an estimate of ideal-observer
AUC?

Variance in the estimate comes from two sources. First, as with any observer
study, there is a variance arising from the random selection of images, or cases

in medical parlance. Second, whenever the likelihood ratio is evaluated by using
Monte Carlo or Markov-chain Monte Carlo methods to average over backgrounds,
there is a variance associated with the random selection of backgrounds. This kind
of variance is analogous to internal noise in the human observer; if the Monte Carlo
calculation is repeated with the same image but a different random-number seed,
it will not return the same value for the likelihood ratio.

Both kinds of variance can be estimated in simulation studies just by repeating
the study many times, with different sets of images or with the same images but dif-
ferent random-number seeds. Alternatively, variance can be analyzed with MRMC
methods as discussed in Sec. 14.2.4 or by using resampling methods as discussed in
Sec. 14.3.2.

Bias is much more difficult to assess since we do not know what systematic
errors we might be making in the likelihood-ratio calculation. To study the bias,
Clarkson et al. (2003) proposed a set of consistency checks that must be satisfied
in an ROC study if the test statistic is indeed a likelihood ratio. For example, we
know from (13.85) that

pr(Λ|H2)

pr(Λ|H1)
= Λ , (14.94)

and in fact this relation holds if and only if Λ is a likelihood ratio (Clarkson and
Barrett, 2000). It follows from (14.94) that

2 (1−AUCΛ) =

∫ ∞

0

dΛt [FPF(Λt)]
2 , (14.95)

where FPF(Λt) is the false-positive fraction for threshold Λt. Again, this relation
holds if and only if Λ is a likelihood ratio (Clarkson et al., 2003).

Other useful relations are derived from moment-generating functions and from
the likelihood-generating function. The moment-generating function for the log-
likelihood ratio λ under hypothesis Hj is defined by (C.56) as

Mj(β) ≡ 〈exp(βλ)〉g|Hj
=
〈
Λβ
〉
g|Hj

. (14.96)

From (13.79) we know that Mj(β), must satisfy

M1(β + 1) =M2(β) , (14.97)

from which it follows that M1(1) = 1. Moreover, a plot of M1(β) vs. β must be
concave upward and pass through the points (0,1) and (1,1) as in Fig. 13.9. Once
again, these properties are unique to the ideal observer.

Finally, a number of investigators have derived inequalities relating AUC to
the likelihood-generating function (Clarkson, 2002; Clarkson and Barrett, 2000;
Shapiro, 1999; Burnashev, 1998). One example is

1
2
G(0) ≤ − ln[2(1−AUCΛ)] ≤ 1

2
G(0) +

√
G(0)− 1

8
G′′(0) , (14.98)
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where G(β) is the likelihood-generating function and primes denote derivatives.
If we have a set of simulated or real sample images and a way of estimating

the likelihood ratio for each, we can check the validity of these relationships. For
example, we can use no-signal images to estimate M1(β) directly from its definition
(14.96) and see if it indeed passes through (1, 1). Similar numerical methods can
be devised for each of the relations that must be satisfied for the ideal observer.

If the relations are not verified, we must look for some error in our calculation
of the likelihood ratio. If they are satisfied, we can have confidence that the test
statistic we are calculating is some likelihood ratio, though not necessarily the
likelihood ratio we think we are calculating, namely the one applicable to the image
data. Clarkson et al. (2003) admit the possibility that the algorithm is finding a
good estimate of some other likelihood ratio, but say they have a “natural tendency
to regard (that) possibility as unlikely.”

One case where it is quite likely, however, is when linear or nonlinear features
have been extracted from the original image data for dimensionality reduction. Then
the Markov chain or other algorithm applied to the features may indeed give a good
estimate of the likelihood ratio on the features, and all of the consistency checks
mentioned above will be passed, but there is no guarantee that this likelihood ratio
will give the same performance as one calculated on the original image data; the
consistency checks do not ensure that the features preserve the information content
of the images.

14.3.4 Estimation tasks

Compared to the large literature on model observers for detection and classification
tasks in image-quality assessment, much less attention has been given to computa-
tional methods for estimation tasks, and there is much less agreement about what
one should be computing in the first place. Of course, there is a huge body of
work on estimation of pixel values in image processing and reconstruction, but we
have argued in Sec. 13.3.2 that there is no meaningful way of relating accuracy of
the pixel values to image quality. We shall discuss image reconstruction further in
the next chapter, but for now we concentrate on estimation problems other than
reconstruction.

Thus, by “estimation task” we mean estimation of one or a few parameters
characteristic of the object being imaged and (unlike pixel values) of direct rele-
vance to the purpose for which the image was obtained. Our goal here is to survey
some of the computational methods that can be used for assessment of performance
on such tasks.

Since the parameter being estimated is determined by the object being imaged,
we write it as Θ(f ). Boldface is used since the parameter will often be a vector,
though almost always a low-dimensional one; when we intend a scalar parameter,
we shall denote it as Θ(f ). Upper case is used for Θ(f ) since we use θ for several
other things, including expansion coefficients (e.g., pixel coefficients) in approxi-
mate object representations like (7.27), and that is definitely not what we mean
here.

We emphasize here that we are viewing the parameters to be estimated as
characteristics of the object. This is in contrast to the view of Sec. 13.3 where we
were concerned with parameters characterizing the probability density function of
the data. The relationship between the two viewpoints is subtle, yet critical for
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assessing image quality on the basis of estimation tasks; we shall return to it at
several points below.

Dichotomies Two useful dichotomies for the parameters are linear vs. nonlinear
and estimable vs. nonestimable. The imaging systems that deliver the data from
which the estimates are derived can also be categorized as linear or nonlinear. The
estimators themselves can be linear or nonlinear functionals of the data, and they
can be either biased or unbiased.

We encountered linear parameters in Sec. 7.1.4 when we discussed moment
errors. In brief, a linear parameter is a linear functional of the object. If the
components of Θ(f ) are derived linearly from the object, we know from (7.33) that
they can be written as

Θn(f ) =

∫

∞

dqr χ∗
n(r) f(r) = χ†

nf . (14.99)

Equations of this form will be used in Chap. 15 for discussing image reconstruction,
but here we should think of the components Θn merely as weighted integrals of
the object. If the weighting function χn(r) is constant over some spatial region, we
refer to Θn(f ) as a region-of-interest integral, and its estimate Θ̂n(g) as a region-
of-interest estimator. Of course, the estimate depends on the data g while the
parameter itself depends on f but not on g.

An important class of nonlinear parameters occurs in mensuration tasks,
where the goal is to measure some physical dimension of a portion of the object.
Examples include the area of an agricultural field in aerial photography, volume of
the left ventricle in cardiology, and distance to a target in radar.

As we saw in Sec. 13.3.1, a parameter is said to be estimable or identifiable
with respect to some data set if there is an estimator of it that is unbiased for all
true values of the parameter. In terms of the likelihood pr(g|Θ), a parameter is
estimable if different values of the parameter lead to different likelihoods.

The imaging system that acquires the data g may be linear or nonlinear as
defined in Chaps. 1 and 7. The distinction rests on the form of the mean data; the
system is linear if g is a linear functional of f. We denote a general linear system
by the operator H, so g = Hf.

For a linear system, we can be more precise about estimability, because in that
case we can divide object space U into subspaces called measurement space and null
space, and any object can be uniquely decomposed as

f = fmeas + fnull . (14.100)

We know from the discussion in Sec. 14.3.3 that the probability density function on
the data in most cases is fully determined by the mean data, so for a linear system
we have

pr(g|f ) = pr[g|g(f )] = pr(g|Hf ) = pr(g|fmeas) . (14.101)

A general definition of estimability in this case is that Θ(f ) is estimable if and
only if Θ(f ) = Θ(fmeas) for all f. If this condition is met, then a change in fmeas

leads to a different Θ(f ) and a different likelihood pr(g|Θ). Another definition of
estimability is that Θ(f ) is estimable if and only if pr(g|Θ1) = pr(g|Θ2) implies
that Θ1 = Θ2.
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We can go a step further for a linear parameter. We can decompose the
templates χn(r) into measurement and null components, and the nth component of
the parameter vector can be written as

Θn(f ) = χ†
n,measfmeas + χ

†
n,nullfnull . (14.102)

Then Θ(f ) = Θ(fmeas) for all f if and only if χn,null = 0 for all n. Otherwise a
change in fnull would give a different value of the parameter but the same mean
data and hence the same likelihood. Note that it is not necessary that the system
have no null space, just that the templates have no components in that space. Since
null components tend to involve high spatial frequencies, linear parameters derived
from large, blobby templates are more likely to be estimable than ones derived from
small or highly structured templates. In particular, as we shall discuss in more de-
tail in the next chapter, integrals of the object over small pixels are almost never
estimable.

The final dichotomies involve the estimator itself, which can be linear or non-
linear and biased or unbiased. Linear estimators were discussed briefly in Sec. 13.3,
but considerable emphasis was placed there on maximum-likelihood (ML) estima-
tors. Like the likelihood ratio used in ideal-observer classification problems, ML
estimators are usually nonlinear functionals of the data. An exception in both cases
occurs with Gaussian data. For Gaussian data with equal covariances under the
two hypotheses, the ideal observer computes a test statistic (the log-likelihood ra-
tio) that is linear in the data, and for Gaussian data and any linear parameter, the
ML estimator is also linear in the data. In most interesting cases, however, neither
the log-likelihood ratio nor the ML estimator is linear.

If the parameter is estimable, there exists an unbiased estimator, but we may
not know it, or we may choose not to use it; Bayesian estimation, for example,
deliberately introduces a bias toward the prior. Thus we must distinguish biased
from unbiased estimators even for estimable parameters.

Performance metrics: MSE and EMSE From the discussion in Sec. 13.3.1, a natural
choice for a figure of merit is the mean-square error or MSE, defined for a scalar
parameter in (13.280) and for a vector in (13.286) or (13.287).

For estimable parameters, MSE has much to recommend it. It can be com-
puted for any chosen object and estimator, it takes into account both bias and
variance, and it is a scalar that can be used for system optimization. One drawback
is that MSE is defined by averaging the error with respect to the density pr(g|Θ),
so it will depend on the true value of Θ in general. One solution to this problem
is simply to plot MSE(Θ) vs. Θ, much in the same manner that one can plot SKE
detectability as a function of signal location or other parameters [see (13.209)].

With nonestimable parameters, MSE is more problematical. Since null compo-
nents of the object influence Θ(f ) but not g(f ) in that case, many different objects
can give the same mean data but different true values of Θ, and it is quite arbi-
trary which true value one associates with a given data set. Indeed, if there are no
other constraints, it is usually possible to find an object so that any estimator of a
nonestimable parameter is unbiased; whether that object is one that would ever be
encountered is another matter. As we shall see in Sec. 15.1.4, positivity constraints
limit the magnitude of null functions and alleviate issues of estimability, but they
don’t eliminate them.
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Perhaps the best solution to defining a scalar figure of merit for estimates of
nonestimable parameters13 is to use the ensemble mean-square error or EMSE

defined in (13.281) for scalars or (13.288) for vectors. The vector definition can be
rewritten for our purposes as

EMSE =
〈〈

||Θ̂−Θ||2
〉

g|Θ

〉

Θ
=
〈〈

||Θ̂−Θ(f )||2
〉

g|f

〉

f
. (14.103)

In the last form, the average is over some ensemble of objects. For any partic-
ular object in the ensemble, a bias and hence an MSE can be defined, and the
ensemble-average MSE is the quadratic error norm specific to the imaging system,
the estimator and the chosen ensemble. Note that the use of an average over objects
in the figure of merit does not imply that this same information was used in the
estimator. The quantity Θ̂(g) might have been obtained by Bayesian methods, but
it might also be an ML estimate or some other one that eschews prior information.

The question that remains is what ensemble to use in the averaging. The
Bayesian answer would be to average over the prior, and indeed to use that same
prior in the estimation process in order the minimize the EMSE. To a pragma-
tist, there are several difficulties with this approach. First, in practice we might
not have enough verifiable prior information (as opposed to subjective or noninfor-
mative priors) that we would be willing to build it into the inference process. In
practice, the only computationally tractable priors for Bayesian estimation might
be some noninformative prior like entropy or simple analytic expressions such as
conjugate priors14 or the regularizing functions to be discussed in Sec. 15.3.3. Even
if we were willing to use one of these analytic priors to do the estimation, there is
no reason to think that samples drawn from it would bear any relation to the true
distribution of Θ(f ) or f, so it would be hard to have any confidence (belief) in the
MSE computed from that prior.

What pragmatists can do well, however, is to perform realistic simulations
(i.e., ones consistent with a belief system honed in the field, laboratory or clinic),
and these simulations can be used to compute sample approximations to the EMSE
defined in (14.103). Specifically, if a set of sample objects {fn, n = 1, ..., Ns} is
generated, then we can approximate the EMSE by

ÊMSE =
1

Ns

Ns∑

n=1

〈
||Θ̂−Θ(fn)||2

〉

g|fn
. (14.104)

The remaining average can be performed either analytically or by additional Monte
Carlo simulations of g for a fixed fn.

Why ML? And how? As we saw in Secs. 13.3.4 – 13.3.6, ML estimators have many
desirable properties. We know that ML estimators are efficient (i.e., they achieve

13In spite of the terminology, nonestimable parameters can indeed be estimated. An estimate is
merely a number associated with a data set. To be perverse, one could associate the number 3
with any data set. Then an estimate would be given for all g no matter whether the parameter
was estimable, and in fact the variance of the estimate would be zero. The bias would, however,
be completely meaningless.
14A conjugate prior is one chosen purely for mathematical convenience, to make the posterior have
the same mathematical form as the prior. Unless one believes that nature is constructed for the
convenience of statisticians, there is no reason to ascribe any degree of belief to conjugate priors.
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the minimum possible variance as given by the Cramér-Rao bound) if any effi-
cient estimator exists. Also, ML estimators are asymptotically efficient, asymptoti-
cally unbiased and asymptotically normally distributed. In the statistics literature,
“asymptotic” refers to accumulating N i.i.d. data sets and letting N → ∞, but it
can have a broader meaning. All of the nice asymptotic properties of ML estimators
apply if the variance of additive Gaussian noise goes to zero or if the number of
counts in a photon-limited measurement gets large. Thus there is considerable moti-
vation for using ML estimators, especially if we can get into one of these asymptotic
regimes.

It is not obvious how we can perform ML estimation in general, since we sel-
dom know the likelihood pr(g|Θ) directly. Instead, as discussed in Sec. 14.3.3, we
usually know the conditional density pr(g|f ) or pr[g|g(f )]; for direct imaging and
Gaussian and Poisson noise, they are given by (14.67) and (14.68), respectively.

The general relation between the conditional densities on the data and the
likelihood can be expressed either as an integral over the object space or an integral
over data space:

pr(g|Θ) =

∫
df pr(g|f ) pr(f |Θ) =

∫
dMg pr(g|g) pr(g|Θ ) . (14.105)

These forms are equivalent whenever the conditional probability on the data is
determined solely by its mean, which is the case with our usual Gaussian or Poisson
noise models, with or without post-acquisition data processing (see Sec. 14.3.3).

One situation where we can easily go from these conditional densities to
the likelihood is in the estimation counterpart of the SKE/BKE problem. Suppose
we decompose the object into background and signal as in (14.77), and we assume
that the signal is known to be present but that it is characterized by some unknown
parameter vectorΘ. For a linear system, we can write the mean data for background
and signal, respectively, as

b ≡ Hfb , s(Θ) ≡ Hfs(Θ) . (14.106)

For example, in medical imaging fs(Θ) might describe a spherical tumor with un-
known center coordinates, gray level and diameter. In military reconnaissance, it
might refer to a tank with unknown coordinates and heading.

If the background is known exactly and the signal is known except for these
parameters, then

pr(g|Θ) = δ[g− b− s(Θ)] , (14.107)

and the likelihood becomes

pr(g|Θ) = pr(g|g)
∣∣∣
g=b+ s(Θ)

. (14.108)

Explicit expressions for the likelihood ratio in the case of direct imaging can be
found by substituting g = b + s(Θ) into (14.67) or (14.68). Since the number of
parameters is small, there is no difficulty in maximizing the likelihood numerically.

Random backgrounds Just as in the signal-detection problem, the BKE assumption
in estimation is oversimplified and can be misleading. It is much more realistic to
consider random, cluttered backgrounds when we want to estimate signal parame-
ters. We can regard the background components as a set of nuisance parameters,
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in the sense that they do not enter into the overall cost or Bayes risk associated
with the estimation problem. As we learned in Sec. 13.3.8, the optimal strategy for
this problem is to marginalize over the nuisance parameters, at least if we have a
believable way of generating or approximating the prior density or drawing realistic
samples. The likelihood is then given by

pr(g|Θ) =

∫
dMb pr(g|Θ,b) pr(b) , (14.109)

where pr(g|Θ,b) is to be computed from (14.108). This form is quite similar to the
likelihood expressions encountered in Sec. 14.3.3 [cf. (14.84) – (14.86)], and similar
Monte Carlo and Markov-chain Monte Carlo methods can be devised to evaluate it
(Kupinski et al., 2003c). As in the detection case, direct sampling of backgrounds
from pr(b) is unlikely to work well since a randomly chosen b will probably lead to
a vanishingly small pr(g|Θ,b), but importance sampling can be used as in (14.85).
If an analytic form is known for pr(b), samples bn can also be drawn from the BKE
likelihood pr(g|Θ,b), renormalized as a density on b, and the likelihood estimate

is proportional to 1
N

∑N
n=1 pr(bn).

For a detailed survey of Monte Carlo methods in ML estimation, see Geyer
and Thompson (1992).

PDFs of the estimates Monte Carlo methods can also be used to study the distri-
bution of the estimates themselves. If we simulate multiple data sets with the same
true value, say Θ = Θ0, and compute Θ̂ for each, then we have, in effect, drawn
samples from pr(Θ̂|Θ0). From these samples we can estimate the bias, variance,
MSE and any other figure of merit we might devise.

In many problems, it is also possible to compute pr(Θ̂|Θ0) directly. Building
on earlier work by Müller et al. (1990, 1995), Abbey et al. (1998) developed a
method for approximating the density of maximum-likelihood and MAP estimates
under a Gaussian noise model. They showed that the method was directly applica-
ble to estimating parameters such as tumor volume from medical images, and they
found that the predicted analytic PDFs were in good agreement with Monte Carlo
simulation.

Rogala and Barrett (1997, 1998a, b, c) applied Abbey’s method to a combina-
tion interferometer/ellipsometer where the goal was to estimate surface height and
the real and imaginary parts of the refractive index at all points on a metal surface.
Again, the analytic results were confirmed by Monte Carlo simulation.

Cramér-Rao bounds Rather than using the performance of a particular estimator as
a figure of merit, it is also possible to use various performance bounds that might
be easier to compute. In particular, the Cramér-Rao bound, introduced in Sec.
13.3.5, sets a lower limit to the variance of an unbiased estimator. For an unbiased
estimator, the Cramér-Rao bound is given in (13.371) or (13.372), and for a biased
estimator, the appropriate forms are (13.376) and (13.377). Both the biased and
unbiased form are derived from the Fisher information matrix.

Kupinski et al. (2003c) developed MCMC methods to estimate the Fisher
information matrix for the problem of estimating the position, width and amplitude
of a Gaussian signal in a lumpy background. They did not assume that the signal
was always present, so their treatment applied to a hybrid detection/estimation
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problem, but the figure of merit was based only on the estimation performance,
marginalized over the probability of detection.

Approaches based on the Cramér-Rao bound are attractive, but they have
their limitations. For one thing, if more than one parameter is to be estimated, it is
not clear how to combine the individual bounds into a single scalar figure of merit
that can be used for system optimization. Second, in many problems no efficient
estimator exists, and it is not clear in practice how far actual variance will be from
the bound. Similarly, it is often the case that no unbiased estimator exists, so use of
the unbiased form of the bound can be misleading; the biased form (13.376) is less
useful since it requires knowledge of the bias gradient (derivative of the bias with
respect to the parameter). Considerable work has been done at the University of
Michigan on variance bounds in which the norm of the bias gradient is constrained,
though mostly in the context of estimation of pixel values (Gorman and Hero, 1990;
Hero and Fessler, 1994; Hero et al., 1996).

14.4 SOURCES OF IMAGES

Simulated images play an important role in the practical assessment of image qual-
ity. They can be used to get a subjective impression of the effects of changing
parameters of the imaging system, and they can serve as input for objective studies
with either model observers or humans. If the simulations are realistic, they may
even be preferable to real images since there is no question about the true state of
the object. Most importantly, simulations can be used to assess imaging systems
that do not exist, so they are essential to any program of systematic optimization.

Realistic simulations involve computer implementations of the object, the
image-formation process and the detector, and they must accurately reflect both the
deterministic and stochastic aspects of each of these components. The art of good
simulation is thus necessarily specific to both the imaging system and the use to
which the simulation will be put. Nevertheless, it is our goal in this section to give
some general guidelines on the simulation process, with reference to specific systems
only as examples. We shall refer to the methods for representing deterministic and
random objects given in Chaps. 7 and 8, along with material on the simulation of
image formation provided in Chap. 10.

In Secs. 14.4.1 and 14.4.2 we survey methods for deterministic and stochas-
tic simulation of objects, and in Secs. 14.4.3 and 14.4.4 we treat deterministic and
stochastic simulation of image formation. Finally, in Sec. 14.4.5 we discuss the gold-
standard problem that arises when using real images instead of simulated ones.

14.4.1 Deterministic simulation of objects

In Sec. 7.1 we emphasized that real objects are functions, but we also acknowledged
that numerical computations require approximate discrete representations. In all
fields of image science, there is considerable emphasis on linear representations, and
we know from (7.27) that the general form of such a representation is

fa(r) =

N∑

n=1

θnφn(r) . (14.110)
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Thus object simulation involves two steps: choosing the expansion functions φn(r)
and choosing the coefficients θn.

It is all but universal in simulation studies to choose the expansion functions
as pixels or voxels, for two reasons. First, if we humans are simply inventing the
simulated objects, it is easiest for us to think in terms of spatial variables. Pixels
and voxels are discretizations of our natural visual domain, and it would be much
harder for us to think in terms of, say, Fourier basis functions. Second, as we
shall see below, we may also want to use images from some high-resolution imaging
system as objects for another system of lower resolution. Since the first system is
designed to present data to humans, it is likely to provide us with digital data in a
pixel or voxel representation. Thus we have a ready-made discrete simulation if we
stick with those expansion functions.

When the goal of the simulation is to evaluate imaging systems, it is not so
much the simulated objects as the resulting simulated images that interest us. Our
goal is to use the discrete representations of objects and systems to produce images
that are as near as possible to those that would be obtained with actual continuous
objects and continuous-to-discrete systems (see Sec. 7.4.3). That means that we
should take N in (14.110) as large as possible. The only cost to increasing the
number of pixels and voxels, in most cases, is increased computational time, and
that commodity continues to plummet in price. In particular, we do not need to
worry about whether the resulting system matrix is highly non-square and hence
leads to an underdetermined inverse problem. In this section we are concerned only
with accurate simulation of the forward problem; issues associated with choice of
representation in inverse problems are discussed in detail in the next chapter.

Geometric objects The easiest way to get started in object simulation is to use
superpositions of simple geometric shapes (circles, squares, ellipses...). In a pixel
representation, the coefficients θn are assumed to have the same value for all pixels
within one elemental shape, but generally different values within different elements.
If the number of pixels N is large, we need not worry too much about pixels that
straddle the border between elements. By using a range of sizes for the elemental
shapes, we can get a simulated object that has small structures to challenge the
spatial resolution of a simulated imaging system and large uniform structures with
which to study system uniformity, radiometric accuracy and noise properties.

Such seemingly naive simulated objects have proven particularly valuable in
tomographic imaging. They are known as mathematical phantoms in that field,
and some have been so durable that they are commonly referred to by the name(s)
of the investigators who devised them. Thus we have the Shepp-Logan phantom
(an arrangement of ellipses somewhat resembling a 2D cross-section of the human
brain; Shepp and Logan, 1974) and the Defrise phantom (a 3D set of thin paral-
lel disks meant to challenge certain cone-beam tomographic systems; Defrise and
Clack, 1994).

Geometrical shapes can also be manipulated to mimic much more complicated
objects. For example, Tsui et al. (1993) devised a 3D representation of the human
torso that includes a static model of the heart, and Pretorius et al. (1997) extended
the work to a beating heart. This so-called MCAT (mathematical cardiac torso)
phantom has become a de facto standard in simulation of nuclear-medicine cardiac
studies.
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The mathematical theory that treats efficient ways of representing and manip-
ulating geometrical forms within the computer is called computational geometry.
Two useful textbooks in this emerging field are O’Rourke (1998) at an undergradu-
ate level and the more comprehensive graduate-level text by Preparata and Shamos
(1985).

Digitized real objects Useful though these geometric objects may be, they do not
capture the complexity of object variation from pixel to pixel within a given geo-
metric element, and for this reason they may not give accurate results when used
for the objective assessment of image quality. One way around this difficulty is
stochastic simulation, discussed in Sec. 14.4.2, but another approach is use of real
image data.

As mentioned above, we might have access to high-resolution images of objects
that we also wish to image with a lower-resolution system. Often the high-resolution
system will measure fundamentally different parameters of the object, or it might
be that the higher-resolution system is more expensive or more invasive than the
system under development. Under these circumstances, the higher-resolution sys-
tem might not be one we would use in practice, but we can nevertheless use the
images it produces to guide the development of the new system.

An example of considerable interest for medical imaging is the Visible Human
Project. In this project a human cadaver was imaged with computed tomography
at high spatial resolution and high (but irrelevant) radiation dose. High-resolution
magnetic resonance imaging was also performed, and then literal tomograms15 were
obtained by slicing the cadaver into thin layers and photographing each.

The CT images obtained in this project have higher resolution and lower noise
than any obtainable with living patients, so they can serve directly as objects for
simulation studies of new CT systems. The MRI images are less useful for this
purpose since the object in MRI is specified in a complicated way by three distinct
scalar fields, the spin density and two relaxation times (see Prologue and Sec. 7.1.1).
Any particular image represents some nonlinear combination of these three compo-
nents and cannot be used to simulate objects for imaging systems that respond to
other combinations. The optical images are useful mainly because they accurately
delineate borders of the organs, so they provide an alternative to the stylized geo-
metric shapes discussed above. The actual gray levels (or colors) do not, however,
correspond to anything that would be seen with any real medical imaging system.

For many further details on the Visible Human images and their applications,
the reader may consult the proceedings of conferences that have been held on the
project (Banvard, 2000).

Similarly, Zubal et al. (1994) at Yale have developed torso and brain phan-
toms by starting with high-resolution CT images and painstakingly labelling dif-
ferent anatomical regions by hand. To simulate objects in lower-resolution nuclear-
medicine simulations, these labelled regions can be assigned different gray levels,
corresponding to uptakes of some radiopharmaceutical of interest.

Computer graphics Perhaps the greatest impetus to progress in image simulation
today is computer games and the closely related field of virtual reality. Since

15Greek τoµoσ = slice.
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the everyday reality we see around us consists mainly of surface reflections from
opaque objects, virtual reality and computer graphics are particularly useful for
simulating such objects. Useful books in this area include works by Neelamkavil
(1987), Anand (1993), Sillion and Puech (1994), Glassner (1995) and Rogers (1998).
Graphics-related journals and magazines include: IEEE Transactions on Visualiza-
tion and Computer Graphics, IEEE Computer Graphics and Applications and IEEE
Multimedia; ACM Transactions on Modeling and Computer Simulation and ACM
Transactions on Graphics, and Computer Vision, Graphics and Image Processing
(CVGIP).

14.4.2 Stochastic simulation of objects

In Sec. 8.4 we discussed a wide variety of statistical models for objects. Each of these
models provides a PDF that at least partially describes the random variation in
objects, and stochastic simulation of objects amounts to drawing sample functions
(or vectors) from those PDFs. Often the first thing we need to simulate is the
overall shape of the object or of key components in the object; see Chap. 8 for a
brief discussion of the statistical description of shape. Then we need to add in a
random texture.

Random textures Methods of generating samples of texture fields with specified
statistics were discussed in Sec. 8.4.4, and the literature on computer graphics can
provide additional approaches. A common approach in image simulation is to as-
sume that the texture is stationary within the boundaries of a single geometric
element of the simulated object.

How accurately the texture needs to be simulated depends critically on the
purpose of the simulation. If the task used to assess image quality is detection
of a low-contrast lesion in a medical image, then, as we have noted earlier in this
chapter, the texture results from anatomical variations that may, in fact, constitute
the main noise source limiting task performance, so accurate modeling is essential.
On the other hand, if measurement noise is high or if the task is estimation or
mensuration, then task performance might be relatively insensitive to fine details
of the object structure.

We urge the reader to be skeptical of simulations that omit texture modeling,
particularly if the goal of the simulations is to provide input for image reconstruc-
tion. As we shall see in the next chapter, any reconstruction algorithm involves a
choice of how much fine detail to attempt to reconstruct. Often this choice is made
on the basis of claimed prior information, and the most common such claim amounts
to saying that the object contains little or no fine detail. At the extreme, it may be
asserted that the object is piecewise constant within boundaries of regions such as
organs. Of course, it is easily possible to simulate objects and hence tomographic
data consistent with this assertion, but the simulations then provide essentially no
information about how the algorithms would perform on tasks that are sensitive to
fine details.

Random signals In signal-detection studies it is useful to think of the object as a
superposition of signal and background (see Sec. 8.4.5), and the signal component
might be particularly amenable to simulation. In medical imaging, for example, a
common task is tumor detection, and it might suffice to model the tumor as a small
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sphere or ellipsoid of low contrast. When the task is discrimination between types
of tumors or between benign and malignant lesions, however, it may be necessary
to include other features such as spicules (needle-like protrusions from the body of
the tumor), but these too can be incorporated in realistic simulations.

Simulated signals may be superimposed on simulated or real backgrounds. As
we saw in Sec. 8.4.5, the signal can sometimes be regarded as simply added to
background, and in those cases we can maintain separate files of simulated signals
and real or simulated backgrounds, adding them together in various combinations
as needed. Moreover, when we are dealing with linear systems, we can choose to
add the images rather than the objects (see Sec. 8.5.4). This makes it possible to
add simulated signals to actual images of normal (signal-absent) objects as seen
through real imaging systems. Since normal images are much easier to acquire and
verify than abnormal ones, this approach can be very beneficial in avoiding the
gold-standard problem.

14.4.3 Deterministic simulation of image formation

Linear systems Once we have a discrete object representation, it is generally straight-
forward to compute its mean image through a linear imaging system by matrix mul-
tiplication. The only real difficulty is in formulating the matrix, and that problem
is specific to the imaging modality. We shall give an example of how to construct
the matrix for emission computed tomography in Sec. 17.2.6.

We emphasize again, however, that it is important in simulation studies to
sample the object finely, especially in image-reconstruction problems. If the recon-
struction algorithm assumes that the object consists of voxels of a certain size, and
the data are generated on precisely this same assumption, then a false consistency
may result. When the same matrix is used in data simulation and reconstruction,
and the resulting images are good in some sense, all that has been proved is that
the matrix is nonsingular; no useful conclusions can be drawn about the true CD
system or about real data. Simulation studies that use the same matrix for both a
forward problem and its inverse problem should be regarded with strong suspicion.

Sparseness of the H matrix Though the H matrix used in simulation may be huge,
it is often very sparse, with most of its elements equal to or very near zero. In
direct-imaging systems, for example, the point response function hm(r) will tend
to be highly concentrated; for any chosen source point r, only a small subset of
the detector pixels will receive radiation. (Indeed, this is essentially a definition of
direct imaging.) When such systems are represented by matrices, the same thing
holds: for any chosen n, Hmn is nonzero for only a small subset of m. Put another
way, each column of H is mostly zero, no matter how many columns we choose to
use. The zero elements need not be stored, and of course there is never any point
in multiplying by zero.

Indirect-imaging systems may also result in sparse matrices. In tomography,
for example, radiation is received from points along or near a thin pencil through
the object (at least when scatter is neglected). Conversely, for any chosen object
point and any projection direction, only a small subset of the detector elements
receive radiation. In this case elements in one column of H are indexed by both the
detector index and the projection direction, but nevertheless only a small fraction
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of the elements in each column are nonzero. For more discussion of this point in
the context of emission computed tomography, see Sec. 17.2.6.

Shift-invariance Another structure that we might consider using is shift-invariance.
As we have discussed in Sec. 7.2.3, it may be reasonable to describe certain CC sys-
tems with shift-invariant point spread functions. When the output of such a system
is sampled with a regular detector array, and the object is represented by a regular
grid of the same spacing, it is tempting to say that the system exhibits discrete
shift-invariance and hence that the images are convolutions that can be computed
efficiently with fast Fourier transforms or FFTs.

There are several problems with this approach. The first is that discrete con-
volutions (with N samples in 1D) are described by modulo-N arithmetic (see Sec.
3.6.2). The result is an entirely unphysical wrap-around such that images that
disappear from one edge of the detector as the object point is shifted magically
reappear on the other side. Various stratagems can be employed to minimize this
effect, but their adequacy is seldom verified.

The second problem is that any real CC system must have some departures
from strict shift-invariance. In a lens system with aberrations, for example, the
form of the PSF varies with field angle. This problem is incompatible with any con-
volutional description. It can be minimized by restricting the object field and/or
the image field, but then wrap-around effects may become more significant.

Finally, a great hazard of working with FFTs and discrete convolutions is that
it entices the user to choose the number of samples in object space to be the same as
the number of samples in image space. As we stressed above, accurate simulation of
CD systems requires fine sampling of the object. The FFT approach to simulation
requires sacrificing accuracy for speed; this tradeoff becomes increasingly difficult
to justify as computers get faster, and it is especially questionable when only one
or a few images are to be simulated.

These warnings do not imply that we should ignore approximate shift-invariance
when constructing an H matrix or performing simulation studies. If neighboring
columns of H are nearly equal but for a shift, we can take advantage of this struc-
ture and reduce the computation time needed to find the matrix and the memory
needed to store it. For an example in the context of emission computed tomography,
see Sec. 17.2.6.

Deterministic transport calculations In principle, the Boltzmann transport equation,
discussed in detail in Secs. 10.3 and 10.4, allows us to compute the image of any
object where the radiation can be considered particle-like, which for electromag-
netic radiation means that interference and diffraction, polarization and quantum-
mechanical effects such as squeezing can be neglected. To oversimplify, the domain
of the Boltzmann equation is the same as that of geometric optics.

14.4.4 Stochastic simulation of image formation

Stochastic simulation was introduced in Sec. 10.4.5 as a broad class of methods
in which some quantity is estimated by performing random experiments, either
physically or in a computer. These methods can be applied to the generation of
samples of noisy data for use in psychophysical experiments and model observer
calculations.
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Detectors and image noise So far we have discussed ways of computing or estimat-
ing the mean data {gm}, but for many purposes we need to simulate the actual
noisy data {gm}, so we must also be able to simulate the noise contributions {nm}.

For simple noise processes, we can just call an appropriate random-number
generator to generate a noisy image. For example, many detector arrays are dom-
inated by electronic noise, which we know from the discussion in Chap. 12 to be
usually well described by Gaussian probability laws. Moreover, we can often argue
from physical grounds that the noise in different detector elements is statistically
independent, so the noise can be simulated by calling an independent Gaussian
random-number generator at each element. Similarly, if Poisson noise dominates,
we can first calculate the mean number of counts at each element by deterministic
methods and then call a Poisson random-number generator with this mean.

Some detectors generate excess noise as a result of a random amplification pro-
cess (see Secs. 11.4), and the detector therefore introduces noise correlations. To
accurately simulate a noisy image in this case, we must draw random vectors from
a multivariate PDF, or we must simulate the amplification process itself.

In summary, for the results of an evaluation study to be valid, it is crucial that
realistic object models and accurate models of the imaging system be employed.
Particularly when the investigation involves an imaging system or a task for which
model and human observer data have not been compared before, performance es-
timates based on simulated data sets and model observers should be verified using
real data and human observers.

14.4.5 Gold standards

Conventional ROC analysis requires knowledge of the truth status of the images
in order to score observer responses as correct or incorrect. Thus standard ROC
methods are not directly applicable when the truth status of the images is unknown.
The requirement that independent truth status be known can lead to case-selection
bias that can favor one system over another.

Even when a method for establishing the truth status of the images exists,
giving a so-called “gold standard,” the method is more often a bronze standard
rather than gold. New modalities are often evaluated with an older technology
as the gold standard, even though the new modality may allow for the detection
of subtle objects missed when using images from the older device. In medical
applications, biopsy proof is the gold standard, but even biopsy is not perfect.
Biopsy needles can miss their mark, and pathologists have been shown to make
mistakes as well. Pathologist is another name for a human observer performing a
classification task, so the process should be amenable to objective evaluation based
on task performance. But what would be the gold standard?

Given the need to keep score of the observer’s performance using a specified
figure of merit, it is clear that simulations offer an added advantage—they solve
the ground truth problem. For simulated images, the truth state of the objects are
known because this information is in the hand of the investigator.

In this section we shall describe the effect of inaccurate gold standards on
ROC methods and present approaches to the evaluation of imaging systems in the
absence of ground truth. As we shall see, methods for the assessment of imaging
systems in the absence of ground truth exist, but the uncertainty in the estimate of
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the system’s performance is much larger than what is achieved when ground truth
is known.

Truth by expert panel One approach to the establishment of truth is the use of an
expert panel of observers. This method raises a multitude of questions and concerns
regarding the number of experts to be used, how they will be chosen, and how their
responses will be combined to establish “truth.” Revesz et al. (1983) showed that
the ranking of 3 systems could be made to favor any one of the 3, depending on the
way in which the expert opinions were used to determine truth.

Mixture-distribution analysis Mixture-distribution analysis is based on the assump-
tion that experts are likely to be correct when they agree. Kundel and Polansky
(1997) suggested the use of a mixture-distribution analysis as an alternative to ROC
methods when ground truth is not available. The method is based on dichotomizing
the images into groups on the basis of the extent of a set of observers’ agreement
on them. It is assumed that the image groups represent different levels of case diffi-
culty; i.e., lower agreement indicates harder cases while higher agreement indicates
easy cases. The number of groups is arbitrary. Thus the underlying model is a
mixture distribution with a user-defined number of groups. Given the observer’s
ratings, an expectation-maximization (EM) method can be used to estimate the
proportion of images in each group and the probability of truth given a certain level
of agreement. Having estimated the truth status, the reader ratings can be used to
determine the ROC curve.

Kundel and Polansky (1997) have compared mixture-distribution analysis to
the results of an ROC analysis, where the ROC method used a separate expert
panel to determine truth. Both methods gave similar estimates for the percent-
age of correct diagnoses for the task of image interpretation in chest radiography.
Kundel and Polansky (1998) have shown that the results are fairly robust to the
number of groups used in the model. The method may be especially useful in the
evaluation of CAD algorithms; Kundel et al. (2001) recently demonstrated the use
of the mixture-distribution approach for the evaluation of CAD in mammography.
Recent emphasis on lung cancer screening programs using high-resolution CT raises
the spectre of a very large number of potential lesions in the images for each patient;
biopsy proof is simply not viable. Mixture-distribution analysis may be useful for
the assessment of adjunctive CAD algorithms for this application.

See Polansky (2000) for a tutorial on the mixture-distribution method and
other agreement-based approaches.

ROC analysis without truth of diagnosis It is not possible to perform an ROC evalu-
ation of a single imaging system in the absence of ground truth because the problem
is underdetermined. However, if each object has associated with it ratings from im-
ages obtained on two or more modalities, Henkelman et al. (1990) demonstrated
that an EM algorithm can be used to estimate the class prevalences and the model
parameters of a mixture distribution for the underlying objects.

The EM model makes the assumption that there are two underlying distribu-
tions for the decision variables, one for each class, and the distributions are corre-
lated by an unknown amount. The dimensionality of each distribution is equal to the
number of modalities under test. The EM algorithm estimates the relative propor-
tion of each distribution (the prevalences), the locations of the observer’s thresholds
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corresponding to each rating level along the decision axis for each modality, and
the parameters specifying the distributions. For example, the use of a 5-point rat-
ing scale for 2 medical imaging modalities involves the estimation of 10 category
boundaries, one disease prevalence and, in the case of a bivariate normal model for
the distributions, the difference in means of the two distributions, their widths in
two dimensions, and their correlations. Thus, given a sufficient number of images
and observers, the estimation problem becomes tractable.

In a commentary on the Henkelman approach, Begg and Metz (1990) point out
that the method breaks down if the imaging systems have low AUC (Henkelman et

al. restricted their investigations to systems with an AUC ≥ 0.92). Begg and Metz
suggest that each system must have an AUC of 0.80 or better for this technique to
be applicable.

The work of Henkelman et al. has been extended by Beiden et al. (2000b),
who performed Monte Carlo simulations to determine the uncertainties in the EM
estimates of AUC obtained in the absence of ground truth. These authors found
that many more patients were required in the truth-unknown case to yield estimates
of AUC with standard deviations of those determined in the truth-known case, for
the particular choice of true underlying distributions they investigated.

More investigation is required to better understand the usefulness of the EM
approach to the no-gold-standard problem in ROC analysis in order to better un-
derstand the impact of the forms of the underlying distributions, the number of
samples, the number of observers, the model assumptions made in the EM algo-
rithm, and so on. Henkelman et al. suggest that the estimation problem may
become better conditioned as the number of imaging modalities increases. More
research is required to investigate this issue as well. Nonimaging diagnostic tests,
including pathology readings, might also be included as additional modalities along
with one or more imaging tests in the EM procedure.

Evaluation of estimation performance without a gold standard The issue of ground
truth arises also in evaluating imaging systems on the basis of estimation tasks.
For example, cardiac ejection fraction (the fraction of the blood expelled on each
beat) can be measured by many different methods, including SPECT, planar nu-
clear medicine, MRI, ultrasound, CT and biplanar projection x rays. Each of these
methods has significant errors, and none is universally accepted (except by its prac-
titioners) as the “gold standard.” When a new method is developed, it is customary
(perhaps even mandatory) to publish a plot of ejection fractions obtained by the
new method against ones obtained on the same patients with some older method.
Ideally such plots would show a high correlation, with regression slopes near one
and intercepts near zero. It is not uncommmon, however to find slopes around 0.6-
0.8 and intercepts around 0.2-0.3. Something is wrong with one or both methods,
but there appears to be no way of telling which without a gold standard.

It would be desirable to regress the estimates obtained from each modality
against the true value of the parameter rather than against another estimate, and
in fact it is possible to do so if each patient is studied on each of two or more
modalities (Hoppin et al., 2002; Kupinski et al., 2002). The basic assumption is
that there exists a linear relation between the mean value of the estimates and the
true value for each patient (though nonlinear relations can also be used). If θpm is
the estimate obtained from patient p on modality m, and Θp is the true value for
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that patient, the assumed relation is

θpm = amΘp + bm + npm , (14.111)

where npm is a zero-mean random variable. For simplicity, Hoppin et al. assumed
that npm was normally distributed, but this does not appear to be critical. It was
also assumed that npm was statistically independent of np′m′ for p 6= p′ or m 6= m′,
and that the random variables for different patients but the same modality had the
same variance. If P patients are each studied on M modalities, there are a total of
PM measurements and 3M unknowns, namely the M values of am and bm as well
as the variances of npm for each m.

The basic idea is to estimate the 3M unknowns from the PM measurements
by maximum-likelihood methods. With the assumptions made about npm it is
straightforward to write down a probability density function on the measurements
conditional on the unknown parameters and on the true values Θp, but of course we
don’t know these true values. Therefore Hoppin et al. assumed that the Θp were
drawn independently from some parametric density pr(Θp|α), where α is a vector
of unknown parameters describing the density. For example, since ejection fraction
is defined on 0-1, a natural choice for pr(Θp|α) is a beta distribution, which has two
free parameters. These two parameters are of course unknown, so they are simply
added to the list of parameters to be estimated. For example, with three modalities
and the beta distribution, there are a total of 3M + 2 = 11 unknowns, but if 100
patients are studied, there are 300 measurements.

This method has been well validated in simulation studies, and it has been
placed on a firm theoretical footing by calculation of the Fisher information matrix.
Not only does it give accurate estimates for the desired regression parameters, it
also gives good values for the nuisance parameters contained in α.


