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We continue the theme of previous papers [J. Opt. Soc. Am. A 7, 1266 (1990); 12, 834 (1995)] on objective (task-
based) assessment of image quality. We concentrate on signal-detection tasks and figures of merit related to
the ROC (receiver operating characteristic) curve. Many different expressions for the area under an ROC
curve (AUC) are derived for an arbitrary discriminant function, with different assumptions on what informa-
tion about the discriminant function is available. In particular, it is shown that AUC can be expressed by a
principal-value integral that involves the characteristic functions of the discriminant. Then the discussion is
specialized to the ideal observer, defined as one who uses the likelihood ratio (or some monotonic transforma-
tion of it, such as its logarithm) as the discriminant function. The properties of the ideal observer are exam-
ined from first principles. Several strong constraints on the moments of the likelihood ratio or the log likeli-
hood are derived, and it is shown that the probability density functions for these test statistics are intimately
related. In particular, some surprising results are presented for the case in which the log likelihood is nor-
mally distributed under one hypothesis. To unify these considerations, a new quantity called the likelihood-
generating function is defined. It is shown that all moments of both the likelihood and the log likelihood un-
der both hypotheses can be derived from this one function. Moreover, the AUC can be expressed, to an
excellent approximation, in terms of the likelihood-generating function evaluated at the origin. This expres-
sion is the leading term in an asymptotic expansion of the AUC; it is exact whenever the likelihood-generating
function behaves linearly near the origin. It is also shown that the likelihood-generating function at the ori-
gin sets a lower bound on the AUC in all cases. © 1998 Optical Society of America [S0740-3232(98)02106-1]

OCIS codes: 110.3000, 110.4280, 110.5010.

1. INTRODUCTION
This is the third in a series of papers1,2 on the theoretical
basis of objective assessment of image quality (OAIQ).
Fundamental to this theory is the idea that image quality
must be defined by the performance of some observer on
some specific task. The tasks of interest can be broadly
categorized as classification and estimation. An impor-
tant special case of classification is binary hypothesis
testing. In image analysis it is often necessary to detect
some object or abnormality, and the two hypotheses can
be described as signal absent and signal present; in that
case the task is called signal detection.

Previous papers in this series have considered signal-
detection tasks as one possible basis for a definition of im-
age quality. The tasks have, in principle, allowed for a
degree of randomness in both signal and background, but
the theory has been restricted to linear observers, i.e.,
ones that calculate a discriminant function that is a lin-
ear functional of the data. It is well known that linear
observers are suboptimal for detecting random signals, so
the theory presented previously does not accurately re-
flect the maximum achievable performance on such detec-
tion tasks. The figure of merit used was a signal-to-noise
ratio (SNR) based on first- and second-order statistics of
the discriminant function, and there was little discussion
of how it related to other possible figures of merit.

This paper also deals with signal detection and other
binary hypothesis testing, but the performance assess-
ment is based on a construct from radar theory called the
receiver operating characteristic, or ROC curve. The
ROC curve depicts the trade-off between the probability
of detection (true-positive fraction) and the false-alarm
rate (false-positive fraction) as the decision threshold is
varied. The area under the ROC curve (AUC) is often ad-
vocated as an overall figure of merit for the task.

For a normally distributed discriminant function, the
relation between the AUC and the SNR used in previous
papers in the series is well understood, but real-world im-
ages are seldom normal, and even if we model the image
statistics by a multivariate normal (Gaussian) density,
with nonlinear discriminants the normality may be lost.

It is well known, and shown in Section 2, that the ideal
discriminant function is the likelihood ratio. Since
monotonic transformations of the discriminant function
do not change a decision, the logarithm of the likelihood
ratio, or log likelihood for short, can also be used. A de-
cision strategy based on the likelihood or log likelihood is
referred to as the ideal observer. It sets an upper limit to
the performance of any observer on a particular detection
task and thus gives a measure of the quality of image
data that is uncomplicated by consideration of the limita-
tions of humans or other suboptimal observers. On the
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other hand, the ideal observer must perform nonlinear
operations on the image data in almost all cases, so it has
been difficult to compute its performance.

In Section 3 we develop a general theory of the ROC
curve that is applicable to an arbitrary linear or nonlinear
discriminant function. We derive several new expres-
sions for the AUC, depending on what is known about the
statistical properties of the discriminant function.

Then in Section 4 we apply this theory to the ideal ob-
server. First we examine the statistical properties of the
log likelihood and demonstrate that there are strong con-
straints on the form of its probability density functions
under the two hypotheses. This leads to definition of the
likelihood-generating function, a function of one scalar
variable from which all moments of both the likelihood
and the log likelihood can be derived under both hypoth-
eses. Moreover, the value of the likelihood-generating
function at the origin will be shown to play a key role in
determining the AUC.

2. BACKGROUND
A. Image Data
A digital image consists of a set of M real numbers, often
called gray levels or pixel values. We can arrange these
values as an M � 1 column vector g, with the mth com-
ponent being the gray level associated with pixel m. We
regard each gm as a continuous random variable and thus
g as a continuous random vector. In practice, of course,
the gray levels are quantized by analog-to-digital conver-
sion or the discrete number of photons contributing to a
pixel value, but these effects are not treated here. In ad-
dition, real gray levels may be restricted to positive val-
ues, since they correspond to irradiances, but it is never-
theless convenient to take the range of each gm as
(��, �); the positivity restriction is then contained in
the probability density function. We also assume that
the sum of the squares of the elements of g is finite, so
each image is a vector in an M-dimensional Euclidean
space, which we refer to as data space.

An image is related to an object by the action of an im-
aging system, which can include image-forming elements,
image sensors, and image-reconstruction algorithms or
other computer processing. We do not consider any of
these items here in detail. The viewpoint is that the im-
aging system delivers an image vector g, which we shall
use to perform a specific task, and we need only to know
the statistical properties of g to assess the quality of the
imaging system.

We have already begun to describe these statistical
properties in detail in the first paper in this series (Ref. 1,
designated OAIQ I), which dealt with measurement noise
and object variability, and in two papers on statistical
properties of the expectation–maximization algorithm.3,4

We shall continue the process in a later paper with a dis-
cussion of more general nonlinear reconstruction algo-
rithms and their effects on image quality.

B. Binary Decisions and ROC Curves
For each image we must decide between two hypotheses,
H0 and H1 . For definiteness we refer to these hypoth-
eses as, respectively, signal absent and signal present,

but the mathematics applies as well to discrimination be-
tween two signals or two object classes. Moreover, we
shall allow wide latitude in what is considered to be a sig-
nal; the signal is whatever component distinguishes H1
from H0 .

Initially we impose only two restrictions on the decision
strategy: it must be nonrandom (a particular image
must always lead to the same decision), and it must not
allow equivocation (every image must lead to some deci-
sion, either signal present or signal absent). These con-
ditions imply that decision making is equivalent to parti-
tioning the data space. For all data vectors g in one
subspace �1 the decision will be that the signal is present,
and for its orthogonal complement �0 the decision will be
signal absent. Devising a decision strategy is equivalent
to defining �1 .5

The decision strategy can also be expressed as a two-
step process: first compute a discriminant function
t � � (g); then compare it to a threshold x. If t � x,
choose hypothesis H1 ; otherwise choose H0 . This pro-
cess is equivalent to partitioning data space, since the
contours � (g) � x are the surfaces dividing �0 from �1 .
In this view the decision strategy amounts to computing a
(generally nonlinear) discriminant function � (g) and com-
paring it to a threshold.

There are four possible outcomes for each individual
decision. If the decision is signal present and it really is
present, the decision is a true positive (TP), while a deci-
sion of signal present for an image with no signal is a
false positive (FP). The conditional probability of a posi-
tive decision, given that the signal is actually present, is
called the true-positive fraction, or TPF. In the medical
literature, TPF is called sensitivity; in the radar litera-
ture, it is the probability of detection.

True negatives (TN) and false negatives (FN) and asso-
ciated fractions (TNF and FNF) are defined similarly. In
radar, FPF is called the false-alarm rate. In medicine,
TNF (which is the same as 1 � FPF) is called the speci-
ficity.

The TPF at threshold x is given by

TPF�x � � Pr�t � x�H1� � �
x

�

dtpr�t�H1�, (2.1)

where Pr (t � x�H1) is the probability that t � x and
pr (t�H1) is the probability density function of the con-
tinuous random variable t; both of these quantities are
conditional on hypothesis H1 being true or on the signal
actually being present. In general, we use Pr (•) for prob-
abilities and pr (•) for probability density functions,
though other notations are also introduced for the latter
as needed.

The FPF at threshold x is given by

FPF�x � � Pr�t � x�H0� � �
x

�

dtpr�t�H0�. (2.2)

The threshold x controls the trade-off between TPF and
FPF. Graphically, this trade-off is portrayed by the ROC
curve, which is a plot of TPF(x) versus FPF(x).
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C. Optimal Decisions
Most approaches to decision theory start by defining a
cost or loss function. For a binary decision problem, the
cost is a 2 � 2 matrix C, where element Cij (i, j � 0 or 1)
is the cost of making decision Di when hypothesis Hj is
true. Positive costs will usually be assigned to incorrect
decisions and zero or negative costs to correct ones.

The risk is the average value of the cost, but Bayesian
and frequentist approaches to decision theory5–7 differ in
how this average is computed. The frequentist would av-
erage over many realizations of the data for the same true
hypothesis, thereby getting separate risks for the signal-
absent and signal-present conditions. The pure Baye-
sian, on the other hand, would average with respect to
(possibly subjective) prior probabilities on the hypotheses,
saying nothing about other realizations of the data. This
procedure leads to the Bayesian expected loss,6 which is a
function of g.

A hybrid approach, used in many books and adopted
here, is to average over prior probabilities and data, by
use of both Pr (Hj) and pr (g�Hj). These probabilities are
intended to be objective ones, readily interpretable in a
sampling sense. To interpret Pr (H1), for example, we
envision repeated experiments in which the signal is
present in this fraction of the repetitions. Devout Baye-
sians often object to this interpretation, but it is justified
here since we can actually do such experiments, under
controlled conditions with specified frequencies of occur-
rence. Such experiments would form the basis for an em-
pirical measure of image quality, and the quantities com-
puted here should be regarded as long-run, frequentist
averages of those empirical measures. In fact, the ROC
curve itself is a frequentist concept, even when it applies
to a discriminant function derived from a Bayesian view-
point. The ROC curve is a way of keeping score over re-
peated trials, and real Bayesians do not keep score.

The double averaging yields a quantity often called the
Bayes risk, which can be viewed as a frequentist average
of the Bayesian expected loss. The Bayes risk is given by

R � �
i�0

1

�
j�0

1

CijPr�Di , Hj�

� �
i�0

1

�
j�0

1

CijPr�Di�Hj�Pr�Hj�. (2.3)

Since decision Di is a certainty for g in region � i , the
Bayes risk can also be written as

R � �
i�0

1

�
j�0

1

CijPr�Hj��
�i

dMgpr �g�Hj�. (2.4)

The objective is to minimize R through choice of �0 and
�1 .

Following van Trees,5 we rewrite Eq. (2.4) as an inte-
gral over �1 alone. Since the decision rule does not allow
equivocation, �0 and �1 together constitute all of the data
space, and we must have

�
�0

dMgpr �g�Hj� � �
�1

dMgpr �g�Hj� � 1. (2.5)

With this condition and a little algebra, Eq. (2.4) becomes

R � C01Pr�H1� � C00Pr�H0�

� �
�1

dMg� C11Pr�H1�pr�g�H1�

� C10Pr�H0�pr�g�H0� � C01Pr�H1�pr�g�H1�

� C00Pr�H0�pr�g�H0�� . (2.6)

The first two terms are constants, independent of g, and
hence do not affect the decision strategy. To minimize
the integral, we must choose �1 to include all portions of
data space for which the integrand is negative and ex-
clude those for which it is positive. A point g is then in
�1 if

�C00 � C10�Pr �H0�pr�g�H0�

� �C11 � C01�pr �g�H1�Pr�H1�. (2.7)

In other words, we make decision D1 if 8

pr �g�H1�

pr �g�H0�
�

�C10 � C00�Pr �H0�

�C01 � C11�Pr �H1�
. (2.8)

The left-hand side of this relation is the likelihood ratio,
defined by

��g� �
pr�g�H1�

pr�g�H0�
. (2.9)

Thus the optimal discriminant function is the likelihood
ratio, and the optimal threshold is

x �
�C10 � C00�Pr �H0�

�C01 � C11�Pr �H1�
. (2.10)

We refer to any decision strategy based on computing
the likelihood ratio and comparing it to a threshold as the
ideal observer. Equivalently, the ideal observer can com-
pute the logarithm of �, called the log likelihood �, and
compare it to the logarithm of the threshold. Since the
logarithm is a monotonic function, exactly the same deci-
sion is reached with either � or �, and the latter is fre-
quently computationally easier.

3. FIGURES OF MERIT
A. General Considerations and Definitions
The Bayes risk is one possible figure of merit for binary
decision problems. If the ideal observer, using data from
system A, achieves a lower risk on a particular problem
than it would using data from system B, system A can be
ranked higher, at least for this task and observer. The
risk value is, however, difficult to interpret. There are no
generally accepted rules for defining costs, or even any
standard units of measure for them.

Moreover, Bayes risk is seldom useful for suboptimal
observers. For example, linear discriminants are fre-
quently computationally tractable9 when we do not have
sufficient information to compute the Bayesian discrimi-
nant function or the Bayes risk. Another rationale for
certain linear observers is that they may be good models
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of human observers.10 In this case the utility of the ob-
server must be assessed by its correlation with psycho-
physical data.

An alternative figure of merit, applicable to both opti-
mal and suboptimal observers, is the TPF at some speci-
fied FPF (or, in radar terminology, the probability of de-
tection at a specified false-alarm rate). This figure of
merit is called the Neyman–Pearson criterion. Its com-
putation requires knowledge of the probability law for the
discriminant function under the two hypotheses but not
priors or costs.

Both the Bayes risk and TPF at a specified FPF depend
not only on the task and the quality of the data but also
on the chosen operating point on the ROC curve. The op-
erating point, however, is fairly arbitrary; different users
of the image data will assign different costs and priors
and hence use different operating points. For this rea-
son, many workers in signal detection and image quality
advocate using the entire ROC curve as the quality met-
ric. A common scalar figure of merit is the area under
the ROC curve, denoted AUC. AUC varies from 0.5 for a
worthless system to 1.0 for a system that allows the task
to be performed perfectly.

Since the likelihood ratio is the optimum discriminant
function for any particular choice of operating point on
the ROC curve, it gives the maximum TPF at any speci-
fied FPF, and it can also be shown11 to maximize the area
under the ROC curve. Thus the likelihood observer is
ideal with respect to each of these figures of merit.

Another figure of merit, which can be defined for any
discriminant function t, is the SNR, given by

SNR t
2 �

��t�1 � �t�0�2

1
2 var1�t � � 1

2 var0�t �
, (3.1)

where �t� j denotes the conditional expectation of t, given
that Hj is true and varj ( • ) denotes the corresponding
conditional variance.

If t is normally distributed under both hypotheses, it is
well known (and shown in Subsection 3.D) that SNR t is
related to AUC by

AUC �
1
2 �

1
2 erf � SNRt

2 � , (3.2)

where erf( • ) is the error function. Thus in this case
there is a simple monotonic relation between AUC and
SNR t , so it does not matter which we adopt as a figure of
merit.

We can define another SNR simply by inverting Eq.
(3.2):

SNR(AUC) � 2 erf �1�2 AUC � 1 �, (3.3)

where erf�1( • ) is the inverse of the error function. In
the literature, SNR(AUC) is often referred to as da or dA .
Of course, knowledge of SNR(AUC) allows exact compu-
tation of AUC, but it is difficult to compute SNR(AUC)
from first principles without normality assumptions. On
the other hand, the results of psychophysical studies of
human-observer performance are almost universally re-
ported in terms of AUC or SNR(AUC), so methods of com-

puting these metrics for the ideal observer are needed if
we wish to see how nearly the human approximates the
ideal.

In the remainder of this section we consider various
ways of computing the AUC, depending on what knowl-
edge we have of the statistics of the problem.

B. Discriminant Function with Known Probability Law
Suppose that we are given a discriminant function t
� � (g) and that we know its densities pr(t�H0) and
pr(t�H1). For notational convenience we define

pr �t�Hj� � pj�t �. (3.4)

The area under the ROC curve is given by

AUC � �
0

1

TPFd(FPF), (3.5)

where TPF(x) and FPF(x) are given by Eqs. (2.1) and
(2.2), respectively. Since FPF is a monotonic function of
x, we can change the variable of integration from FPF(x)
to x, thus obtaining

AUC � ��
��

�

d x TPF�x �
d

d x
FPF�x � (3.6)

where the minus sign arises, since FPF(x) → 1 as
x → ��.

From Eq. (2.2) and Leibniz’s rule, we have

d
d x

FPF�x � � �p0�x �, (3.7)

so

AUC � �
��

�

d xp0�x ��
x

�

dtp1�t �. (3.8)

There are various ways of rewriting this expression. One
is to recognize that the cumulative probability distribu-
tion function of t under H1 is given by

P1�x � � Pr �t � x�H1� � �
��

x

dtp1�t � � 1 � �
x

�

dtp1�t �.

(3.9)

Thus

AUC � 1 � �
��

�

dx p0�x �P1�x �. (3.10)

Another form for AUC is obtained by use of the step func-
tion to rewrite Eq. (3.8) as

AUC � �
��

�

d x�
��

�

d t p0�x �p1�t �step�t � x �.

(3.11)

With a change of variables y � t � x, we obtain

AUC � �
��

�

d x�
��

�

d yp0�x �p1�y � x �step� y �

� �
0

�

d y� p0 � p1�� y �, (3.12)
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where � denotes a one-dimensional correlation integral.
Computation of AUC by this formula thus requires cross
correlating p0 and p1 and then integrating the result
from 0 to �.

We can also use the signum function, related to the
step by

step�x � � 1
2 � 1

2 sgn�x �, (3.13)

so Eq. (3.11) becomes

AUC �
1
2 �

1
2 �

��

�

dx�
��

�

dtp0�x �p1�t �sgn�t � x �.

(3.14)

The step function can be expressed in terms of its Fourier
transform,

F �step�x �� �
1
2 ���� � P � 1

2�i�� , (3.15)

from which we easily find

step�x � �
1
2 �

1
2�i

P �
��

� d�

�
exp�2�i� x �, (3.16)

where P indicates that the singular integral must be in-
terpreted as a Cauchy principal value. With Eq. (3.16),
Eq. (3.11) becomes

AUC �
1
2 �

1
2�i

P �
��

� d�

� �
��

�

dx�
��

�

dtp0�x �

� p1�t �exp�2�i��t � x ��

�
1
2 �

1
2�i

P �
��

� d�

�
�0����1*���, (3.17)

where � j(�) is the characteristic function for t under hy-
pothesis Hj . Specifically,

� j��� � �exp��2�i�t �� j

� �
��

�

dtpj�t �exp��2�i�t �

� F � pj�t ��. (3.18)

C. Discriminant Function with Known Moments
In the derivation in Subsection 3.B we assumed that the
densities pj (t) were known, but we rarely have that much
information about a test statistic. Suppose now that we
know only a few low-order moments of t under the two hy-
potheses.

The moments can, of course, be related to derivatives of
the characteristic function, but it is somewhat more con-
venient to use the moment-generating function, defined
by

Mj��� � �exp��t �� j � �
��

�

dtpj�t �exp��t � � � j � i�
2� � .

(3.19)

If we think of � and � as complex variables, the functions
� j (�) and Mj (�) are related by a 90° rotation in the com-
plex plane and a scaling of the argument by 2�.

Except for an unconventional sign in the exponent,
Mj (�) is the two-sided Laplace transform12 of pj(t). The
integral in Eq. (3.19) converges for complex � in a strip
parallel to and including the imaginary axis. The strip is
defined by �c1 � Re � � c2 , where Re denotes real part
and c1 and c2 are some positive constants. In Appendix
A we show by use of the Cauchy–Riemann conditions that
Mj (�) is an analytic function in this strip.

A related function is the cumulant-generating function,
which is simply the logarithm of the moment-generating
function:

Lj ��� � log�Mj����. (3.20)

Since Mj (�) is analytic at the origin, so is its logarithm,
and Lj (�) can therefore be expanded in a Taylor series
about the origin (Maclaurin series) as

Lj ��� � �
n�0

� 1

n!
Lj

�n ��0 ��n, (3.21)

where Lj
(n) (�) denotes the nth derivative of Lj(�). De-

rivatives of Lj (�) (known as cumulants) are related to de-
rivatives of Mj (�), which in turn are related to moments
of t by derivatives of the moment-generating function:

�tn� j � M �n ��0 �. (3.22)

The first five coefficients in Eq. (3.21) are

Lj
�0 ��0 � � log �Mj�0 �� � 0, (3.23a)

Lj
�1 ��0 � �

Mj
�1 ��0 �

Mj�0 �
� �t� j � t̄ j, (3.23b)

Lj
�2 ��0 � � ��t � t̄ j�

2� j � � j
2, (3.23c)

Lj
�3 ��0 � � ��t � t̄ j�

3� j � � j
3Sj , (3.23d)

Lj
�4 ��0 � � ���t � t̄ j �4� j � 3��t � t̄ j�

2� j
2� � � j

4Kj .
(3.23e)

Here t̄ j, � j
2, Sj , and Kj are, respectively, the mean, vari-

ance, skewness, and kurtosis of pj(t). Different defini-
tions of kurtosis appear in the literature, but with the one
used here, K � 0 for a Gaussian.

With these moments, � j(�) can be written as

� j��� � Mj��2�i�� � exp��2�i t̄ j� � 2�2� j
2�2

� i
4�3

3 � j
3Sj�

3 �
2�4

3 � j
4Kj�

4 � . . . � .
(3.24)

From Eqs. (3.17) and (3.24), AUC is given by

AUC �
1
2 �

1
2�

P �
��

� d�

�

� sin�2�� t̄1 � t̄0�� �
4�3

3 ��1
3S1

� �0
3S0��3 � ¯�exp��2�2��0

2 � �1
2��2

� �2�4/3���1
4K1 � �0

4K0��4 � . . . �.

(3.25)
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Care must be used in truncating this expansion. For
example, suppose that the term in � 4 has a negative coef-
ficient but the one in � 6 has a positive coefficient; then the
integral would converge if terms through � 4 were re-
tained but not with terms through � 6.

D. Univariate Normal Statistics
If p0(t) and p1(t) are both univariate normal (not neces-
sarily with the same variance), then the skewness and
kurtosis of each are zero, and all higher terms in the ex-
pansion (3.24) vanish identically. In that case, the
moment-generating and characteristic functions are
given by, respectively,

Mj��� � exp�tj� � 1
2 � j

2�2�, (3.26)

� j��� � exp��2�itj� � 2�2� j
2�2�. (3.27)

Note that � j (�) falls off rapidly as Re �→ ��, but Mj(�)
blows up as Re �→ ��.

From Eq. (3.25), we now have

AUC �
1
2 �

1
2�

P �
��

� d�

�
sin�2��t1 � t0���

� exp��2�2��0
2 � �1

2��2�. (3.28)

The principal value can be implemented as a limit:

AUC �
1

2
�

1

2�
lim

� → 0
�

��

�

d�
�

�2 � �
sin�2��t1 � t0���

exp��2�2��0
2 � �1

2��2�. (3.29)

A tabulated integral13 then yields the error-function rela-
tion, Eq. (3.2).

E. Arbitrary Test Statistic, Unknown Probability Law
When t is a complicated function of g, we may know nei-
ther its densities nor its moments. We may, however,
know pr(g�Hj) from the basic physics of the image-
forming process and from knowledge of the signal and
background.14 In those cases we can express AUC in
terms of integrals over g rather than over t.

Even though t is a specific function � (g), it is useful to
regard this function as a probabilistic mapping. As a for-
mal device15 we can write

pr �t�g� � � �t � ��g��, (3.30)

so that

pr�t�Hj� � �
�
dMgpr�t�g�pr�g�Hj�

� �
�
dMgpr�g�Hj�� �t � ��g��. (3.31)

A shorthand form for this expression is obtained if we use
the notation of Eq. (3.4) and also define

qj�g� � pr�g�Hj�. (3.32)

Then Eq. (3.31) is

pj�t � � �
�
dMgqj�g�� �t � ��g��. (3.33)

The delta function defines an (M � 1)-dimensional sur-
face in the M-dimensional data space; all points on this
surface have � (g) � t and hence contribute to the prob-
ability density on t at the same t.

From Eqs. (3.11) and (3.33) we have

AUC � �
��

�

dx�
��

�

dt�
�
dMgq0�g�� �x � ��g��

� �
�
dMg�q1�g��� �t � � �g���step�t � x � .

(3.34)

The delta functions allow us to perform the integrals over
t and x, with the result

AUC � �
�
dMg�

�
dMg�q0�g�q1�g��step���g�� � ��g��.

(3.35)

This expression demonstrates that AUC is unchanged
by a monotonic point transformation. If we replace � (g)
with �(g) � h�� (g)�, where h(x) is a monotonically in-
creasing function, then the step function remains un-
changed: if step �� (g�) � � (g)� � 1 for some set of val-
ues of g� and g, then step��(g�) � �(g)� � 1 for
precisely this same set.

As in Subsection 3.B, we can represent the step func-
tion by means of its Fourier transform and obtain

AUC �
1
2 �

1
2�i

P �
��

� d�

� �
�
dMg�

�
dMg�q0�g�

� q1�g��exp�2�i��� �g�� � � �g���

�
1
2 �

1
2�i

P �
��

� d�

�
�exp��2�i�� �g���0

� �exp�2�i�� �g����1

�
1
2 �

1
2�i

P �
��

� d�

�
�0����1*���. (3.36)

The final form of Eq. (3.36) is identical to Eq. (3.17); we
have taken advantage of the fact that the expectations
can be computed from either the probability density on g
or the one on � (g).

F. Two-Alternative Forced-Choice Interpretations
Equations (3.11) and (3.35) can be interpreted in terms of
two-alternative forced-choice (2AFC) experiments. In a
2AFC experiment, two independent data vectors g and g�
are generated, with g drawn from pr(g�H0) and g� drawn
from pr (g��H1). Two test statistics � (g) and � (g�) are
computed, and the data vector that gives the higher value
is assigned to H1 . This assignment is correct if �(g�)
� � (g). Thus the probability of a correct decision is

Pr(correct)�Pr ���g�� � � �g��

� �
�
dMg�

�
dMg�q0�g�q1�g��step�� �g�� � � �g��,

(3.37)

which, by Eq. (3.35), is AUC.
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A similar interpretation applies to Eq. (3.11). If we de-
note the test statistics by x � � (g) and t � � (g�), the
2AFC decision is correct if t � x and Eq. (3.11) gives the
probability of this event occurring.

G. Linear Discriminants
Now suppose that t � � (g) is a linear function of the
data, so we can write it as

� �g� � w tg, (3.38)

where w is an M � 1 vector and w tg is the scalar product
of w and g.

With this form of the test statistic, Eq. (3.35) becomes

AUClin � �
�
dMg�

�
dMg�q0�g�q1�g��step�wt�g� � g��.

(3.39)

The change of variables g � � g� � g yields

AUClin � �
�
dMg��

�
dMgq0�g�q1�g � g ��step�wtg ��

� �
�
dMg��q0 � q1��g ��step�wtg ��, (3.40)

where �q0 � q1�(g �) denotes a multidimensional cross-
correlation integral with shift g �. This equation shows
that the AUC can be found by cross correlating q0 and q1
and then integrating the result over the half-space w tg
� 0.

The similarity in form between Eqs. (3.12) and (3.40)
should be noted; Eq. (3.12) holds for an arbitrary discrimi-
nant function (but requires the probability densities for
that function), while Eq. (3.40) holds specifically for a lin-
ear discriminant and requires knowledge of the data den-
sities.

With a linear discriminant, we can also relate AUC to
the multivariate characteristic functions for g, defined by

� j��� � �
�
dMgp�g�Hj�exp��2�i� tg�, (3.41)

where j � 0 or 1 and � is an M-dimensional frequency
vector conjugate to the data vector g.

From the definition of � j(�) in Eq. (3.18), along with
Eq. (3.38), we have

� j��� � �
�
dMgp�g�Hj�exp��2�i�wtg� � � j�w��,

(3.42)

so that Eq. (3.36) becomes

AUClin �
1
2 �

1
2�i

P �
��

� d�

�
�0�w���1*�w��.

(3.43)

Thus all we need to know to compute AUC for a linear
discriminant is the behavior of the characteristic func-
tions of the data along a line through the origin and par-
allel to w in the M-dimensional Fourier space. This
statement is equivalent to saying that all we need are in-
tegrals of the data densities q0 and q1 over
(M � 1)-dimensional hyperplanes normal to w. With

nonlinear discriminants we need integrals over
(M � 1)-dimensional surfaces defined by � (g)
� constant.

In practice, however, we can often get by with even less
information for computing AUClin. A linear discriminant
w tg is univariate normal if g is multivariate normal, so
SNR t is easily computed and the conditions for the use of
Eq. (3.2) are exactly satisfied. Moreover, even if g is not
normally distributed, we can often appeal to the central-
limit theorem and show that w tg is approximately
univariate normal anyway. In summary, it is usually
safe to compute AUC from SNR by Eq. (3.2) for a linear
discriminant.

4. IDEAL OBSERVER
As we saw in Section 2, the discriminant function for the
ideal observer can be either the likelihood ratio �(g) or its
logarithm �(g). To compute the ideal-observer AUC with
the formalism of Section 3, we need the probability den-
sity functions of either � or � under both hypotheses.
Equivalently, we can also get AUC from the characteristic
functions or moment-generating functions. If these exact
specifications prove difficult to get, we can attempt to
compute some low-order moments of � or � and relate
them approximately to AUC.

With all of these approaches, the ideal observer differs
fundamentally from other observers because its discrimi-
nant function (whether � or �) already contains all of the
relevant statistical information about the task. As we
shall see, this fact imposes strong constraints on the
forms of the densities, moments, or other statistical de-
scriptors.

We shall illustrate these points first in Subsection 4.A
with respect to moments and moment-generating func-
tions and then in Subsection 4.B for the probability den-
sity functions. A particularly strong constraint will
emerge when we consider normal log likelihoods in Sub-
section 4.C.

A. Moments of � and �
The likelihood ratio is a ratio of two densities q1(g) and
q0(g), and the same two densities are the ones needed to
compute moments of � under two hypotheses. It follows
at once that the moments under H0 are related to those
under H1 by

��k�1�0 � �
�
dMgq0�g��q1�g�

q0�g��k�1

� �
�
dMgq1�g��q1�g�

q0�g��k

� ��k�1 . (4.1)

In particular, the mean of � under H0 is always 1, since

���0 � ��0�1 � �
�
dMgq0�g�

q1�g�

q0�g�
� �

�
dMgq1�g� � 1,

(4.2)

and the variance of � under H0 is easily expressed in
terms of the mean under H1 :

var0��� � ��2�0 � ���0
2 � ���1 � 1. (4.3)
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Moreover, since � � e�, we can rewrite Eq. (4.1) as

�exp��k � 1 ����0 � �exp�k���1 . (4.4)

Since Eq. (4.4) holds for arbitrary (even complex) k, we
see that

M0�� � 1 � � M1���, (4.5)

where Mj (�) denotes the moment-generating function for
� under Hj . In fact, this property of the moment-
generating functions holds only for log-likelihood ratios.
Swensson and Green16 showed that there is no other sta-
tistic whose moment-generating functions satisfy Eq.
(4.5).

From Eqs. (4.5) and (3.19), the corresponding relation
for characteristic functions is

�0� � �
i

2� � � �1���. (4.6)

Notice that M0(�) can be used to generate moments of
both � and � under both hypotheses. From Eq. (3.22)
with t � � we have

��k�0 � M 0
�k �

�0 �, (4.7)

and with Eq. (4.5),

��k�1 � M1
�k ��0 � � M0

�k ��1 �. (4.8)

Moments of � are found from M0(�) even more simply;
moments under H0 are given by

��k�0 � �exp�k���0 � M0�k � (4.9)

and under H1 by

��k�1 � �exp��k � 1 ����0 � M0�k � 1 �. (4.10)

B. Probability Density Functions
Since a probability density function is uniquely deter-
mined by the corresponding characteristic function,17 Eq.
(4.6) implies that there is a relation between p0(�) and
p1(�). To derive this relation, we write

p1��� � F �1��1���� � �
��

�

d��0� � �
i

2� � exp�2�i���

� e��
���i/2�

��i/2�

dz�0�z �exp�2�iz��, (4.11)

where z � � � i/(2�). If �0(z) is analytic in the strip
0 � Im(z) � 1/(2�), we can shift the contour and get

p1��� � e��
��

�

dz�0�z �exp�2�iz��. (4.12)

We show in Appendix A that the shift is allowed as long
as ���1 is finite.

Equation (4.12) shows that we need only multiply p0(�)
by e� to get p1(�):

p1��� � e�p0���. (4.13)

Of course, both p0(�) and p1(�) must be properly normal-
ized to unity, so the only functions that can be densities
for the log likelihood under H0 are ones that remain nor-
malized after multiplication by e�, i.e.,

�
��

�

d� e�p0��� � 1. (4.14)

If we know that p0(�) really is the density for a log like-
lihood under H0 , however, Eq. (4.14) is trivially satisfied,
since it is equivalent to Eq. (4.2).

From Eq. (4.13) we readily find a relation between the
densities for � under the two hypotheses. Since � and �
are related by a monotonic transformation, we can write

pj ��� �
pr ���Hj�

�d� /d�� . (4.15)

The Jacobian �d� /d�� is the same under H0 and H1 , so
Eq. (4.13) becomes

pr ���H1� � e�pr ���H0� � �pr ���H0�. (4.16)

It is instructive to rewrite this equation as

pr ���H1�

pr ���H0�
� �. (4.17)

In this form, the relation was known to Green and
Swets,18 who described it as follows: ‘‘ To paraphrase
Gertrude Stein, the likelihood ratio of the likelihood ratio
is the likelihood ratio.’’ To paraphrase Green and Swets,
the likelihood ratio is a sufficient statistic for deciding be-
tween H0 and H1 . If we were given any function of the
data, t(g) and we wanted to make an optimal decision
based only on t(g) and not on the original g, we would
form the likelihood ratio pr(t(g)�H1)/pr(t(g)�H0) and
compare it with a threshold. In most cases this strategy,
though optimal when only t(g) is available, would be in-
ferior to forming the likelihood ratio from the original
data, and there would thus be an information loss inher-
ent in using t(g) in place of g. From Eq. (4.17) we see
that there is no such information loss if t(g) is the suffi-
cient statistic �(g).

C. Normal Log Likelihoods
Much of the literature on the ideal observer has pro-
ceeded from the assumption—implicit or explicit—that
the log likelihood is normally distributed. One justifica-
tion for this assumption is that � is a linear functional of
g for nonrandom signals and Gaussian noise, and it may
be approximately linear even with random signals and/or
non-Gaussian noise. As noted in Subsection 3.G, the
central-limit theorem often leads to normality for a linear
discriminant.

Even if � is not a linear discriminant, however, it may
still be approximately or asymptotically normal. It is
common in statistics to consider data sets g that consist of
many independent observations gk . Because of the inde-
pendence, we can write

pr �g�Hj� � �
k�1

K

pr �gk�Hj�. (4.18)

The log likelihood is then given by

� � �
k�1

K

�log pr �gk�H1� � log pr �gk�H0��. (4.19)
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By the central-limit theorem, � is asymptotically normal
as the number of observations K becomes large.

A similar argument can be made in an imaging context.
Suppose that the image g can be divided up into K statis-
tically independent subimages gk , so that Eq. (4.18)
again applies. If N of the subimages are different under
the two hypotheses [so that the log probabilities in Eq.
(4.19) do not simply cancel], then � is a sum of N indepen-
dent random variables; it is therefore normally distrib-
uted by the central-limit theorem if N is large.

There are situations in imaging in which normality is
not a good approximation, and a detailed discussion of
ideal-observer performance in those cases is given in Sub-
section 5.C, but first we explore some little-recognized
consequences of a normality assumption for the log like-
lihood.

Suppose that � is normally distributed under H0 with
mean �̄0 and variance var0(�). One might expect that �̄0
and var0(�) could be specified independently and that two
additional independent parameters would be needed to
specify the mean and variance under H1 ; we shall show
that this expectation is incompatible with Eq. (4.13).

The moment-generating functions for a general, nor-
mally distributed, discriminant function are given by Eq.
(3.26). If, however, the discriminant function is the log
likelihood, then Eq. (4.2) requires that ���0 � 1, or, with
Eqs. (3.26) and (4.9),

M0�1 � � exp� �̄0 � 1
2 var0���� � 1. (4.20)

Thus �̄0 and �0
2 must be related by

�̄0 � � 1
2 var0���, (4.21)

and Eq. (3.26) must take the form

M0��� � exp� 1
2 ��2 � ��var0���� (4.22)

if it is to apply to a log likelihood.
For Eq. (4.13) to hold, p1(�) must also be normal, and

we can apply Eq. (4.8) to Eq. (4.22) and determine the
mean and variance of � under H1 . The results are

�̄1 � M0
�1 �

�1 � � 1
2 var0��� � ��̄0 , (4.23)

var1��� � M0
�2 �

�1 � � �M0
�1 ��1 ��2 � var0���. (4.24)

The moment-generating function under H1 is then given
by

M1��� � M0�� � 1 � � exp� 1
2 ��2 � ��var0����.

(4.25)

The probability density functions for a normal log likeli-
hood are thus

p0��� �
1

�2� var0����1/2 exp��
�� � 1

2 var0����2

2 var0���
� ,

(4.26)

p1��� �
1

�2� var0����1/2 exp��
�� � 1

2 var0����2

2 var0���
� .

(4.27)

It is easy to verify that Eq. (4.13) is satisfied.

Relations (4.23)–(4.27) were also derived by
Fukunaga,8 who started with the assumption that the
data are normally distributed with equal covariance,
which implies that the log likelihood is normal under both
hypotheses. The derivation given above uses only the
weaker assumption that � is normal under H0 . Since ex-
act or approximate normality of � can occur with decid-
edly nonnormal data, our approach is much more general.

With this normal model, all statistical properties of �
under both hypotheses are determined by the single pa-
rameter var0(�). From Eqs. (4.10) and (4.22), this pa-
rameter can also be expressed as

var0��� � log���1 . (4.28)

Therefore, to fully characterize a normal log likelihood,
we need only calculate the mean of the likelihood under
H1 .

Next we examine the AUC for this model. Since the
discriminant function is normal under both hypotheses,
AUC is given exactly by Eq. (3.2), and the relevant SNR is
given by

SNR�
2 �

����1 � ���0�2

1
2 var1��� � 1

2 var0���
� var0��� � log���1 .

(4.29)

Hence with Eq. (3.2),

AUC � 1
2 � 1

2 erf � 1
2 �log���1�. (4.30)

This expression, like all the others in Subsection 4.C, fol-
lows rigorously once we make the initial assumption that
� is normally distributed under H0 ; no further assump-
tions or approximations are required.

5. LIKELIHOOD-GENERATING FUNCTION
A. Definitions and Basic Properties
In view of Eq. (4.13), both p0(�) and p1(�) can always be
derived from a single nonnegative function f(�) as fol-
lows:

p0��� � exp�� 1
2 ��f ���, p1��� � exp� 1

2 ��f���.
(5.1)

Though it is easy to find the f (�) associated with the nor-
mal densities of Eqs. (4.26) and (4.27), normality is not re-
quired for the existence of this function or for any of the
other results in this section.

The characteristic functions and moment-generating
functions are determined from f(�) by

�0��� � F� � �
i

4� � , �1��� � F� � �
i

4� � ,

(5.2)

M0��� � FL�� � 1
2 �, M1��� � FL�� � 1

2 �,
(5.3)

where F(�) is the Fourier transform of f (�) and FL(�) is
its two-sided Laplace transform,

FL��� � �
��

�

d� f ���exp����. (5.4)
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Normalization of the densities requires that � j (0)
� 0 and Mj (0) � 0, which means that F(�i/4�) � 1
and FL(� 1

2 ) � 1. We can enforce these conditions by de-
fining new functions T(�) and G(�) such that

F��� � exp� � � �
i

4� � � � �
i

4� �T���� , (5.5)

FL��� � exp��� � 1
2 ��� � 1

2 �G����. (5.6)

The functions T(�) and G(�) are related to each other by

T��� � �4�2G��2�i��. (5.7)

If we allow complex arguments, we can derive all statis-
tical properties of the likelihood and log likelihood from
either T(�) or G(�). We choose to work with G(�),
which we call the likelihood-generating function.

In terms of G(�), the characteristic and moment-
generating functions for the log likelihood are given by

�0��� � exp��� � �
i

2� �T� � �
i

4� � �
� exp��4�2�� � �

i
2� �G� �2�i� �

1
2 � � , (5.8)

�1��� � exp��� � �
i

2� �T� � �
i

4� � �
� exp��4�2�� � �

i
2� �G� �2�i� �

1
2 � � , (5.9)

M0��� � exp���� � 1 �G�� � 1
2 ��, (5.10)

M1��� � exp���� � 1 �G�� � 1
2 ��. (5.11)

From these equations we see that the basic requirements
� j (0) � 1 and Mj (0) � 1 are satisfied.

Two equivalent expressions for G(�) can be derived
from Eqs. (5.10) and (5.11) by changing variables:

G��� �
log M0�� � 1

2 �

�� � 1
2 ��� � 1

2 �
�

log M1�� � 1
2 �

�� � 1
2 ��� � 1

2 �
.

(5.12)

Moments of the likelihood ratio are easily expressed in
terms of G(�):

log��k�1 � log��k�1�0 � k�k � 1 �G�k � 1
2 �.

(5.13)

Furthermore, we can compute SNR� if we know G(�); the
requisite moments are given by

�̄0 � �G�� 1
2 �, �̄1 � G� 1

2 �; (5.14)

var0��� � 2�G�� 1
2 � � G��� 1

2 ��,

var1��� � 2�G� 1
2 � � G�� 1

2 ��, (5.15)

where G�(�) is the derivative of G(�). Hence

SNR�
2 �

�G� 1
2 � � G�� 1

2 ��2

G� 1
2 � � G�� 1

2 � � G�� 1
2 � � G��� 1

2 �
.

(5.16)

We see that SNR�
2 has the structure X2/X if the deriva-

tive of G is approximately the same at 1
2 and � 1

2. In that
case,

SNR�
2 � �̄1 � �̄0 � G� 1

2 � � G�� 1
2 � � 2G�0 �.

(5.17)

It is interesting to compare these results with those for
a normally distributed log likelihood, as discussed in Sub-
section 4.C. Comparing Eqs. (5.10) and (5.11) with Eqs.
(4.22) and (4.25), we see that the likelihood-generating
function for a normal log likelihood is G(�)
� 1

2 var0(�) � constant. With that observation, Eq.
(5.17) is in accord with Eq. (4.29); by Eq. (4.8), log M1(1)
� log �̄1 � 2G( 3

2 ), so Eqs. (4.29) and (5.17) agree exactly
in the Gaussian case in which G( 3

2 ) � G( 1
2) � G(� 1

2).

B. Restrictions on the Likelihood-Generating Function
One restriction on the form of G(�) is Marcinkiewicz’s
theorem,17 which says that if exp(P) is a characteristic
function and P is a polynomial, the order of the polyno-
mial can be at most 2. This means that the only polyno-
mial form for G(�) is the one assumed when � is normally
distributed, namely, G � constant. Nevertheless, it may
be a useful approximation to treat G(�) as a low-order
polynomial if we restrict attention to � near the origin.

Another restriction arises from the so-called hermitic-
ity property of Fourier transforms (which has nothing to
do with Hermitian operators). Since the function f (�)
defined in Eq. (5.1) is real, its Fourier transform must sat-
isfy F(��) � F*(�) for real �. In Eq. (5.5) the coefficient
of T(�) in the exponent is real and even, so hermiticity of
F(�) implies that T(��) � T*(�), which in turn requires
that

G�2�i�� � G*��2�i��, �� real�. (5.18)

Other restrictions on the behavior of G(�) arise from
fundamental inequalities. Jensen’s inequality1,19 says
that h(�x�) � �h(x)�, where h is any concave function
(negative second derivative) and x is a random variable.
Applying this inequality to Eq. (5.11) with � real and
h(x) � log(x) yields

�� � � 1 �G�� � 1
2 � � log�exp�����1 � ��̄1 � �G� 1

2 �.

(5.19)

With a change of variables, we find

�� � 1
2 �G��� � G� 1

2 �, � real, � � 1
2 , (5.20)

which says that G(�) can fall off with increasing � along
the real axis but no faster than 1/(� � 1

2).
Other useful results can be obtained by applying Jens-

en’s inequality to the expectation of �� (� real and non-
negative):

log���� j � ���� j , j � 0, 1. (5.21)
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For � � 1 and j � 0, we find

�G�� 1
2 � � �̄0 � 0, (5.22)

and for � � 1 and j � 1,

�̄1 � log �̄1 � 2G� 3
2�. (5.23)

C. Relation of the Likelihood-Generating Function to
Area under an ROC Curve
The key expression for AUC is Eq. (3.17), which we can
rewrite in terms of the likelihood-generating function as

AUC �
1
2 �

1
2�i

P �
��

� d�

�
exp� �4�2� �2 �

i�
2� �

� �G� �2�i� �
1
2 � � G� 2�i� �

1
2 � � �

�
1
2 �

1
2�i

P �
��

� d�

�
exp� �4�2� �2 �

i�
2� �H���� ,

(5.24)

where

H��� � G��2�i� � 1
2 � � G�2�i� � 1

2 �. (5.25)

The AUC is thus determined completely by a particular
combination of likelihood-generating functions, denoted
H(�). From the fact that �0(�)�1*(�) is the Fourier
transform of a real quantity, we can show that H*(�)
� H(��) for real �. That means that we can write

H��� � Hr��� � iHi���, (5.26)

where Hr(�) and Hi(�) are both real and

Hr���� � Hr���, Hi���� � �Hi���. (5.27)

Moreover, from basic properties of characteristic
functions17 we know that �� j(�)� � 1 for real �. Hence
��0(�)� 1*(�)� � 1, from which we can show that

�2Hr��� �
�

2�
Hi��� � 0. (5.28)

To make use of these properties, we recognize that the
factor 1/� in the AUC integral is odd and the integral is
over a symmetric interval, so only the odd part of
�0(�)�1*(�) contributes to the integral. Thus

AUC �
1
2 �

1
2�

P �
��

� d�

�

� exp� �4�2��2Hr��� �
�

2�
Hi���� �

� sin� 4�2��2Hi��� �
�

2�
Hr���� � . (5.29)

Because of relation (5.28), the exponential factor in Eq.
(5.29) falls off rapidly as � increases unless Hr(�) de-
creases more rapidly than 1/� 2. In addition, the factor
1/� serves to emphasize small �, so the main contribution
to the integral comes from � very near the origin. It is
therefore reasonable to expand H(�) in a Taylor series
about � � 0 (Maclaurin series). It is shown in Appendix
A that H(�) is analytic for all real �, so this series is guar-
anteed to converge.

Since H(�) is a combination of likelihood-generating
functions, we begin by expanding G(�) as

G��� � �
n�0

� 1

n!
G �n ��0 ��n. (5.30)

The derivatives G (n)(0) are all real, since G(�) is real for
real �.

When we combine Eqs. (5.25) and (5.30) the terms with
odd n cancel, so the expansion for H(�) is

H��� � 2�
k�0

� 1

�2k �!
G �2k ��0 �� 2�i� �

1

2 � 2k

. (5.31)

As a first approximation we might assume that the ex-
pansion for G(�) can be truncated after n � 1, so that
G(�) is approximated by a linear function near the origin.
If this approximation is valid, then H(�) � 2G(0). The
AUC integral then has the same structure as Eq. (3.28),
and we find readily that

AUC � 1
2 � 1

2 erf � 1
2 �2G�0 ��. (5.32)

This result is compatible with relations (3.2) and (5.17).
If G(�) is approximately linear, the derivative terms in
the denominator of Eq. (5.16) cancel and SNR�

2 is 2G(0).
In addition, AUC is determined solely by G(0) in this ap-
proximation.

The upshot of this calculation is that we have extended
the range of validity of the error-function formula, Eq.
(3.2). As originally derived, it held exactly only for
Gaussian discriminant functions, which in the case of the
ideal observer would mean G(�) � constant. Now we
see that the formula also holds with non-Gaussian log
likelihoods as long as we can approximate G(�) by a lin-
ear function near the origin.

Though motivated by the approximation that G(�) is
linear near the origin, Eq. (5.32) is actually much more
general. We demonstrate in Appendix B that Eq. (5.32)
is the leading term in an asymptotic expansion for AUC.
This term alone approaches the true AUC as G(0) in-
creases. As shown in Eq. (B22), the first correction term
is proportional to the second derivative G�(0), and it falls
off as �G(0)��3 exp�� 1

2G(0)�. Thus, if the curvature of
the likelihood-generating function at the origin is small or
if G(0) is moderately large, Eq. (5.32) is an excellent ap-
proximation to AUC.

D. Lower Limit on Area under an ROC Curve
We shall now show that G(0) can be used to set a lower
limit on AUC with no approximations at all. The start-
ing point is Eq. (B8), which, with the change of variables
� � 2��, becomes

AUC � 1 �
1

2� �
0

� d�

a2 � 1
4

exp��2� �2 �
1
4 �Re G�i��� .

(5.33)

From Eq. (5.10) with � � 1
2 � i� and Eq. (4.9), it follows

that

exp��2��2 � 1
4 �G�i��� � M0� 1

2 � i�� � ��1/2� i��0 .

(5.34)
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Now we can separate G(i�) into real and imaginary parts
and recognize exp��2i(� 2 � 1

4)Im G(i�)� as a pure phase
factor, so

exp��2��2 � 1
4 �Re G�i��� � �M0� 1

2 � i���

� ���1/2� i��0�, �� real�.

(5.35a)

Using this equation with

���1/2� i��0� � ���1/2� i���0 � ��1/2�0 � exp�� 1
4 G�0 ��,

(5.35b)

we can infer that

exp��2��2 � 1
4 �Re G�i��� � exp�� 1

4 G�0 ��.
(5.36)

Returning to the AUC integral in Eq. (5.33), we now have

AUC � 1 � 1
2 exp�� 1

2 G�0 ��. (5.37)

This inequality was derived without any approximations
on the form of G(�). It provides a lower bound for the
AUC obtained by an ideal observer, regardless of the
probability laws for the data or for the likelihood ratio.
As with the approximate formula (5.32), the bound de-
pends solely on G(0).

E. Some Interpretations and Interrelations
We have just seen that G(0) plays a pivotal role in speci-
fying the performance of an ideal observer. It fully speci-
fies AUC if the linearity approximation holds, and it sets
an exact lower bound in all cases. Because of its impor-
tance, we now look at some ways of interpreting G(0).

Note from Eqs. (5.1) and (5.6) that

G�0 � � �4 log�FL�0 �� � �4 log� �
��

�

d�f ���� .

(5.38)

The nonnegative function f (�) introduced in Eq. (5.1) is
not a normalized probability density function, so the loga-
rithm does not vanish. Curiously, when f (�) is multi-
plied by either exp(1

2�) or exp(� 1
2�), it is a normalized

density; but without the exponential factors it is not nor-
malized, and, moreover, the ideal-observer performance is
determined (or at least strongly influenced) by just how
far away it is from being normalized.

Other forms for G(0) are obtained by expressing f (�)
in terms of p0(�) or p1(�), yielding

G�0 � � �4 log� �
��

�

d�p1���exp�� 1
2 ���

� �4 log���1/2�1 � �4 log� �
��

�

d�p0���exp� 1
2 ���

� �4 log��1/2�0 . (5.39)

Thus, within the linear approximation, AUC is fully de-
termined by ���1/2�1 or ��1/2�0 . This conclusion is to be
compared with Eq. (4.30), in which we related AUC to
���1 . There is no contradiction in this difference; Eq.
(4.30) was derived on the assumption that � was normally

distributed, which means G(�) � constant. From Eq.
(5.13) we see that log���1 � 2G( 3

2), so Eqs. (4.30) and
(5.32) agree if G( 3

2) � G(0), as it must for a normal log
likelihood. If normality fails, Eq. (5.32) will be the better
approximation, since it approximates G(� 1

2) by G(0)
rather than G( 3

2).
The average ��1/2�0 can also be expressed as an inte-

gral over data space, so Eq. (5.39) can be written as

G�0 � � �4 log� �
�

dMg�q0�g�q1�g�� . (5.40)

This form shows that G(0) increases as the overlap be-
tween q0(g) and q1(g) is reduced.

An interesting way to visualize the effect of G(0) is to
plot M0(�) (which is identical to ����0) versus � for real �
(see Fig. 1). From Eq. (5.10) this plot must necessarily go
through unity at � � 0 and � � 1, but the value at �

� 1
2 (which is not necessarily the minimum of the curve)

is given by

M0� 1
2 � � ��1/2�0 � exp�� 1

4 G�0 �� � �
��

�

d�f ���.

(5.41)

It can be shown from the Schwarz inequality that G(0)
� 0 and hence M0( 1

2 ) � 1. At � � 3
2, the plot goes

through ���1 , which is �1. From the behavior of the
curve in Fig. 1, we see that larger values for ���1 imply
smaller values for ��1/2�0 .

In summary, AUC increases as any of the following
things occur: G(0) gets larger, the integral of f (�) gets
smaller, the expectation of the square root of the likeli-
hood under H0 gets smaller, the expectation of the likeli-
hood ratio under H1 get larger, or the overlap between
q0(g) and q1(g) is reduced. In a signal-detection prob-
lem, all of these things occur when the signal contrast is
increased or the noise level is reduced. Conversely, in
the limit of very small signal contrast or large noise, f (�)
is indistinguishable from p0(�) or p1(�) and hence nor-
malized to unity, ���1 is indistinguishable from ���0 and
hence unity, q0(g) is indistinguishable from q1(g) so the
integral of their geometric mean in Eq. (5.40) is unity,
G(0) is zero, and AUC � 1/2. We note that inequality
(5.37) becomes an equality in both limits, large and small
G(0).

Fig. 1. Illustration of the behavior of the function M0(�).
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As a practical matter, we can use (5.39) to evaluate
G(0) for any problem in which we have an analytic ex-
pression for � and a way of generating sample data vec-
tors g under the null hypothesis. All we have to do is re-
peatedly generate g, form ��(g)�1/2 for each g, and
approximate the ensemble average ��1/2�0 with a sample
average. The same approach gives us a way of numeri-
cally evaluating G(�) for any �, even complex ones.

6. SUMMARY AND CONCLUSIONS
The main purpose of this paper has been to bridge the gap
between two segments of the literature on task-based as-
sessment of image quality. One segment, which includes
the earlier papers in this series, has mainly expressed
performance on detection and classification tasks in terms
of simple SNR’s determined from the first and second mo-
ments of the discriminant function. The other segment,
which includes much of the psychophysical literature, has
reported the full ROC curve and used the area under it as
a summary figure of merit. In the past, contact between
these two segments was made mainly by assuming nor-
mal statistics and relating AUC to SNR by the error-
function formula (3.2). Little attention was paid to es-
tablishing the validity of the normality assumption or to
investigating the relation between SNR and AUC if nor-
mality did not hold.

Here we began in Section 2 with a broad overview of
decision theory. After demonstrating that any nonran-
domized decision rule could be cast in the form of compar-
ing a discriminant function to a threshold, we derived the
well-known result that the optimum discriminant func-
tion was the likelihood ratio or its logarithm. The ideal
observer was defined as one that used one of these dis-
criminants.

In Section 3 we derived many different expressions for
SNR and AUC metrics. Several of these expressions
have not appeared previously in the literature. In par-
ticular, we demonstrated that AUC for an arbitrary dis-
criminant function could be expressed by a principal-
value integral involving the characteristic functions of the
discriminant function. This formula was to play a key
role in the subsequent discussion.

In Section 4 we examined the properties of the ideal ob-
server from first principles. Several strong constraints
on the moments of the likelihood ratio or the log likeli-
hood were derived, and it was shown that the probability
density functions for these test statistics were intimately
related. In particular, we were able to derive some sur-
prising results for the case in which the log likelihood is
normally distributed under one hypothesis. We showed
that it is then necessarily normal under the other hypoth-
esis and that the two means and two variances could be
expressed in terms of a single parameter. This led to un-
anticipated new expressions for AUC in the normal case.
In particular, we found that AUC was determined exactly
by the mean of � under H1 .

In Section 5 we attempted to unify these considerations
by defining a new quantity called the likelihood-
generating function G(�). We showed that all moments
of both the likelihood and the log likelihood under both
hypotheses could be derived from this one function.

Moreover, the AUC could be expressed exactly as a
principal-value integral involving the likelihood-
generating function. Perhaps the most surprising result
was that the AUC could be expressed, with one reason-
able approximation, in terms of a single value, G(0).
Moreover, this same value sets a lower bound to AUC
without approximation.

The obvious next step in the exploitation of this new
theory is to apply it to practical problems in signal detec-
tion and image quality. This will be the theme of a sub-
sequent paper in this series.

APPENDIX A: ANALYTICITY
CONSIDERATIONS
A function of a complex variable is analytic if and only if it
satisfies the Cauchy–Riemann conditions.20 To apply
this test to the characteristic function � j(z), we write

� j�z � � uj��,�� � ivj��,�� � �
��

�

d�pj���exp��2�iz��

� �
��

�

d�pj���exp��2�i���exp�2����, (A1)

where z � � � i�. The function � j(z) is analytic at
point z if and only if

�uj��,��

��
�

�vj��,��

��
,

�vj��,��

��
� �

�uj��,��

��
.

(A2)

Since pj (�) is real, separating real and imaginary parts of
Eq. (A1) shows that

uj��,�� � �
��

�

d�pj���cos�2����exp�2����, (A3)

vj��,�� � ��
��

�

d�pj���sin�2����exp�2����. (A4)

It is easy to show that Eq. (A2) is satisfied if we can dif-
ferentiate under the integral sign. Lang21 gives the con-
ditions under which this operation is permissible; in es-
sence, the integral must be absolutely convergent before
and after differentiation. The conditions are thus

�
��

�

d�pj���exp�2���� � �, (A5)

�
��

�

d�pj������exp�2���� � �. (A6)

If pj (�) is specifically the density for the log likelihood
under Hj , relation (A5) reads

��2��� j � �. (A7)

In addition, the Cauchy–Schwarz inequality shows that
relation (A6) is satisfied if

��2� j��4��� j � �. (A8)

For � � 0 (i.e., z on the real axis), relation (A7) is trivi-
ally satisfied and relation (A8) is satisfied if the second
moment of � exists, so � j (z) is analytic on the real axis
under this weak assumption.
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If ��� � 0, however, the exponential factor might cause
one of the integrals to diverge. Some special cases are of
interest. For example, in some problems the range of
values of � is restricted. If pj (�) � 0 for � � a � 0,
then � j (z) is analytic in the upper half-plane, and if
pj (�) � 0 for � � b � 0, then � j (z) is analytic in the
lower half-plane. And if pj (�) � 0 unless a � � � b,
then � j(z) is an entire function (analytic for all finite z);
this result is a statement of the Paley–Wiener
theorem.22,23

In Subsection 4.B we need to assume that �0(z) is ana-
lytic in the strip 0 � Im(z) � 1/(2�). For any point in
this strip we can bound the integral in relation (A5) by us-
ing Jensen’s inequality with the concave function h(x)
� x2��. The result is

�
��

�

d�p0���exp�2����

� �
��

�

d�p0���exp��� � �exp����0 . (A9)

This expectation is the same as ���0 , which we know to
be unity by Eq. (4.2), so relation (A7) is always satisfied in
the strip under consideration. By a similar argument,
relation (A8) is satisfied if ��2�0 � ���1 � �. Thus, as
long as the mean of � is finite under H1 , we are safe in
making the assumption required to derive Eq. (4.13).

If we have established a horizontal strip of analyticity
for � j (z), we get a vertical strip of analyticity for Mj (�)
by dint of Eq. (3.19). If � j (z) is analytic for a � Im z
� b, then Mj(�) is analytic for 2�a � Re � � 2�b.
With the minimal assumptions of the last paragraph, this
argument shows that M0(�) is analytic at least over 0
� Re � � 1.

Moreover, from the strip for M0(�), we can get a strip
of analyticity for G(�) by rewriting Eq. (5.10) as

G� � �
1
2 � �

log M0���

��� � 1 �
. (A10)

Appearances not withstanding, the right-hand side of this
equation is analytic in the same vertical strip where
M(�) is. In spite of the denominator, there are no poles
at � � 0 or 1; M0(�) must be unity at these points for
proper normalization of the densities (see Subsection
5.A), so the logarithm vanishes. The multiple-valued na-
ture of the logarithm causes no problems either, since
M0(�) does not go to zero in the strip. The branch cut
lies outside the strip, so the strip lies entirely in a single
branch of the logarithm.

Thus G(�� 1
2 ) is analytic in the strip 0 � Re �

� 1, and G(�) itself is analytic in the shifted strip
� 1

2 � � � 1
2. Specifically, this guarantees that

G(2�i� � 1
2 ) is analytic for all real �, so the function H(�)

defined in Eq. (5.25) is analytic for all real �.

APPENDIX B: AN ASYMPTOTIC
EXPANSION FOR THE AREA UNDER AN
ROC CURVE OF THE LIKELIHOOD RATIO
Beginning with Eq. (3.17) and using Eq. (4.6) together
with � 1*(�) � �1(��), we may write

AUC �
1
2 �

1
2� i

P �
��

� d�

�
�0��� �0� �� �

i
2� � .

(B1)

Let z � � � i� as in Appendix A. From that appendix
we know that �0(z) is analytic for 0 � Im(z) � 1/2�.
Therefore �0(�z � i/2�) is analytic for 0 � Im(�z
� i/2�) � 1/2�, which simplifies to 0 � Im(z) � 1/2�
also. Thus the integrand in Eq. (B.1) is analytic in this
region except for the simple pole at � � 0. Since �0(0)
� �1(0) � 1, the residue at this pole is 1. Let C be the
contour that traverses the negative real axis in the z
plane from z � �� to z � ��, follows the upper semi-
circle of radius � centered at the origin to z � �, and then
continues over the rest of the real axis from z � � to z
� �. Then, letting � → 0, we have

AUC �
1
2 �

1
2�i �C

dz
z

�0�z �

� �0� �z �
i

2� � � � 1
2�i �� i. (B2)

The last term cancels the contribution from the integral
over the semicircle, so that what is left is the principal-
value integral in Eq. (B.1).

Now let C� be the contour that traverses the horizontal
line Im(z) � 1/4� from Re(z) � �� to Re(z) � �. Since
the integrand is analytic between these two contours, we
may replace C with C� in Eq. (B2). This gives

AUC � 1 �
1

2�i ���

� d�

� � i
4�

�0� � �
i

4� �
� �0� �� �

i
4� � . (B3)

By use of Eq. (5.2), this is

AUC � 1 �
1

2�i ���

� d�

� � i/�4��
F���F����. (B4)

From Eq. (5.5) we may express this in terms of T(�). Us-
ing the fact that F(��) � F*(�), we know that T(��)
� T*(�). This means that T(��) � T(�) � 2 Re T(�)
and that this is an even function of �. Now we have

AUC � 1 �
1

2�i ���

� d�

� � i/�4��

� exp�2� �2 �
1

16�2�Re T���� . (B5)

A little algebra gives us

1

� � i/�4��
�

�

�2 � 1/�16�2�
�

1

4�

i

�2 � 1/�16�2�
.

(B6)

The odd part of the integrand drops out, and we are left
with
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AUC � 1 �
1

4�2 �
0

� d�

�2 � 1/�16�2�

� exp�2� �2 �
1

16�2�Re T���� . (B7)

To express this in terms of G(z), we use Eq. (5.7) and the
fact that Re T(�) � Re T(��) to get

AUC � 1 �
1

4�2 �
0

� d�

�2 � 1/�16�2�

� exp��8�2� �2 �
1

16�2�Re G�2�i��� .

(B8)

From Section 5 we know that G(0) is real and positive.
Let G̃(z) � G(z) � G(0). Then we may write

AUC � 1 � I0 � I, (B9)

with

I0 �
1

4�2 �
0

� d�

�2 � 1/16�2

� exp��8�2� �2 �
1

16�2�G�0 �� , (B10)

I �
1

4�2 �
0

�

d� exp��8�2� �2 �
1

16�2�G�0 ��b���,

(B11)

b��� �
1 � exp��8�2��2 � 1/�16�2��Re G̃�2�i���

�2 � 1/�16�2�
.

(B12)
If we define

h��� � exp��8�2�2�, (B13)

then

I � exp��
G�0 �

2 � �
0

�

d�h��G�0 ���b���. (B14)

Note that b(0) � 0 and b�(0) � 0. This means that the
magnitude of I can be expected to be small if G(0) is not
too small and b�(0) is not too large.

The integral I0 can be computed analytically22 to give

AUC � 1
2 � 1

2 erf � 1
2 �2G�0 �� � I (B15)

For I there is an asymptotic expansion as �G(0) → �.23

To compute this expansion, we need the Maclaurin series
for b(�),

b��� � �
n�1

�

bn�2n, (B16)

and the Mellin transform of h at the odd integers,

Mh�2n � 1 � � �
0

� d�

�
h����2n�1. (B17)

The asymptotic expansion for I is then given by

I �
1

4�2 exp��
G�0 �

2 � �
n�1

�

bnMh�2n � 1 � ��G�0 ���2n�1.

(B18)

Assuming that this expansion is valid, we have for any
given integer N � 1 positive numbers �N and EN such
that, for �G(0) � �N ,

�4�2I exp�G�0 �

2 � � �
n�1

N�1

bnMh�2n � 1 � ��G�0 ���2n�1 �
� EN��G�0 ���2N�1. (B19)

(For N � 1 there is no sum on the left). Generally
speaking, we expect �N to increase without bound as N
increases so that, for a fixed G(0), there are only a finite
number of N with �G(0) � �N . This is because
asymptotic series do not necessarily converge. They are
nevertheless useful approximations in many circum-
stances.

The N � 1 case in relation (B19) gives

�AUC � � 1
2 �

1
2 erf �1

2
�2G�0 �� � �

�
E1

4�2��G�0 ��3
exp��

1
2 G�0 �� (B20)

for �G(0) � �1 . The values for E1 and �1 depend ulti-
mately on the probability density p0(�). Clearly, for
large enough G(0), the error-function expression pro-
vides a good approximation to the AUC.

To compute this asymptotic expansion explicitly, we
use22

Mh�2n � 1 � �
1 � 2 � ¯ � �2n � 1 �

4�4��2n � 1

2�
, (B21)

Re G̃�2�i�� � �2�2G��0 ��2 �
2�4

3 G �4 ��0 ��4 � . . . .

(B22)

The latter expansion may be used to compute the num-
bers bn . For example, b1 � �16�4G�(0). Using this
value in the first term of the asymptotic expansion for I
gives us an approximation

AUC �
1
2 �

1
2 erf �1

2
�2G�0 ��

�
G��0 �

8 exp��
G�0 �

2 ���G�0 ���3. (B23)

We would expect this to be good for large G(0). There
are also indications that the approximation

AUC � 1
2 � 1

2 erf � 1
2 �2G�0 �� (B24)

is good for small G(0).
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