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Objective assessment of image quality. IV.
Application to adaptive optics
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The methodology of objective assessment, which defines image quality in terms of the performance of specific
observers on specific tasks of interest, is extended to temporal sequences of images with random point spread
functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and es-
timation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear
estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is
developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing
the effect of measurement noise, random point spread function, and random nature of the astronomical scene.
Figures of merit are developed, and computational methods are discussed. © 2006 Optical Society of America
OCIS codes: 110.0110, 110.3000, 110.4280, 010.0010, 010.7350.
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. INTRODUCTION
cientific and medical images are acquired for specific
urposes, and the quality of an imaging system is ulti-
ately determined by how well the images fulfill those

urposes. In broad terms the purpose, or task, of the im-
ging system is to learn something about the object that
roduced the image. More specifically, the tasks of inter-
st can be divided generically into classification and esti-
ation. In a classification task, the goal is to label the ob-

ect, or to say to which of two or more classes it belongs.
stimation tasks are concerned with extraction of nu-
erical information from the images.
How well the task can be performed depends not only

n the task and imaging system but also on the means by
hich the task is performed, or the observer. For classifi-

ation tasks, the observer is often a human, such as a ra-
iologist or photointerpreter, and some measure of classi-
cation accuracy can be used as a figure of merit for the
ombined performance of the imaging system and the ob-
erver. Alternatively, images can be classified by com-
uter algorithms or mathematical models. It is possible in
any cases to construct ideal observers that achieve the

est possible performance on a given task with images
rom a given imaging system; performance of an ideal ob-
erver can be regarded as a figure of merit for the imaging
ystem alone, since it does not depend on the capabilities
f humans, ad hoc feature-extraction schemes, or other
uboptimal classification methods.

Estimation tasks can also be performed by humans, but
t is more common to use a computer algorithm to analyze
he image and report numerical values for one or more
1084-7529/06/123080-26/$15.00 © 2
arameters of interest. Again, estimation algorithms that
re optimal in some statistical sense can be used to obtain
gures of merit for the imaging system itself, but as with
lassification tasks, this metric will depend on the specific
stimation task chosen.

This task-based approach to image quality, often called
bjective assessment, is now well established in radiologi-
al imaging, and in fact virtually mandatory in that field,
ut it is widely applicable to other areas of imaging as
ell. For a comprehensive review and discussion of both
edical and nonmedical applications, see Barrett and
yers.1

In the first paper of this series,2 it was emphasized that
ask performance is inherently statistical and that calcu-
ation or measurement of objective performance has to ac-
ount for all sources of image randomness, including the
andomness of the objects themselves or the background
n which they are superimposed. This paper examined a
ariety of estimation and classification tasks with both
ptimal and suboptimal observers, and it derived rela-
ionships between the objective figures of merit for esti-
ation and classification tasks. An important conclusion

f this paper is that not only the absolute level of image
oise, but also its correlation structure, is important for
oth kinds of task. Image correlations can be introduced
y the image detector or subsequent image processing or
econstruction, but they are also inherent in the objects
eing imaged.
The second paper in the series3 examined Fourier
ethods for quantifying task performance. Though famil-

ar Fourier techniques are rigorously applicable only for
006 Optical Society of America
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inear, shift-invariant imaging systems with stationary
oise, this paper considered a more general descriptor
alled the Fourier crosstalk matrix, which is applicable to
ny linear imaging system. The crosstalk matrix was re-
ated to the Fisher information matrix for estimation of
ourier coefficients and used to discuss classification and
stimation tasks.

The third paper in the series4 looked specifically at
lassification tasks with the ideal observer. It developed
he theory of the ideal observer and set the stage for prac-
ical computation of its performance in radiological
maging.1,5–7

The goal of the present paper is to show how the meth-
dology of objective assessment of image quality can be
pplied to an important nonradiological imaging area,
amely astronomical adaptive optics (AO). It should serve
s a case study of how the various sources of randomness
n a complex imaging system can be systematically enu-

erated and analyzed and how they affect task perfor-
ance. In addition, this paper adds to the methodology of

bjective assessment in two respects: It considers the ef-
ect of a random system operator, and it analyzes task
erformance on sequences of correlated images.
Section 2 is a background section, containing little that

s new but introducing the viewpoint and notation used in
he remainder of the paper. In particular, the critical con-
ept of multiply stochastic images is introduced and inte-
rated into specific figures of merit for task performance.

Section 3 is a detailed statistical analysis of a generic
O system, and Section 4 applies the results of the analy-
is to task-based assessment of image quality. The goal of
ection 5 is to show that the resulting figures of merit can
ctually be computed in practice. Section 6 summarizes
he results and conclusions of the analysis.

. BACKGROUND
. Descriptions of Digital Imaging Systems
digital imaging system is one that delivers a discrete

et of data, �gm ,m=1, . . . ,M�, or equivalently an M�1
ata vector g. For a single static image, M is the number
f pixels in the image, but multiple image frames indexed
y time, wavelength, or viewing angle can also be in-
luded in the data vector.

The object itself is not discrete, even though we often
odel it as such; instead, a real-world object is a function

f some number of continuous variables. We shall write
his function as f�r� with the understanding that the vec-
or r includes all independent variables needed to de-
cribe the object, including time if the object is not static.
n general, r has q components, where q=2 for a two-
imensional (2D) static object. When we do not wish to be
pecific about the independent variables, we shall denote
he object as f, with the boldface indicating a vector in a
ilbert space.1

The components of g are random variables because the
bject being viewed is randomly chosen from some en-
emble of objects, because of measurement noise and pos-
ibly because the imaging system itself is random. Object
andomness is discussed in Subsection 2.B below, and
onsideration of random systems is postponed to Subsec-
ion 3.B. For now, we define an average data vector ḡ�f�,
here the overbar indicates an ensemble average over the
easurement noise for a given object and imaging sys-

em.
A system is said to be linear if each component of ḡ�f� is
linear functional of f. The most general form of this lin-

ar functional is

ḡm�f� =�
�

drhm�r�f�r�, m = 1, . . . ,M, �2.1�

here the index � indicates that the integral runs over
he complete range of all q variables that make up r. In
bstract operator form, Eq. (2.1) can also be written as

ḡ�f� = Hf, �2.2�

here the linear operator H is defined by the M integrals
n Eq. (2.1). Since H maps a function of continuous vari-
bles to a discrete vector, it is referred to as a continuous-
o-discrete, or CD, operator.1 The kernel hm�r� in Eq. (2.1)
s called the sensitivity function of the linear imaging sys-
em. It is also a point response function in the sense that
m�r0� is the mean response of the mth measurement
hen the object is a point, ��r−r0�, but of course the inte-
ral in Eq. (2.1) is not a convolution.

Since the data vector has a finite dimension and the ob-
ect is a vector in an infinite-dimensional Hilbert space,
D operators necessarily have null functions. The only
omponents of f that can be captured by H, even in the
bsence of noise, are linear combinations of the sensitiv-
ty functions.

. Random Objects and Doubly Stochastic Images
or a single object f, the conditional probability density

unction (PDF) of the image, denoted pr�g �f�, describes
he randomness of the measurement noise only. This PDF
or probability mass function in the case of discrete ran-
om variables) usually has a simple and well-understood
orm, for example a multivariate Gaussian for electronic
eadout noise or a Poisson in the case of photon-counting
tatistics.

To fully characterize random objects, we would need a
DF on f; if we had such a thing, we could write the final
DF on the data as

pr�g� =� df pr�g�f�pr�f�, �2.3�

here in principle the integral is over all parameters
eeded to specify the object. An alternative notation that
eans the same thing is

pr�g� = �pr�g�f��f, �2.4�

here the angle brackets denote an average over the
uantities indicated by the subscript, in this case over an
nsemble of objects.

There are many situations where the average in Eq.
2.4) can be performed analytically or approximated nu-
erically without an explicit PDF for the object ensemble.
umerically, Monte Carlo sampling methods make it pos-

ible to do the averaging whenever we can simulate the
bjects, though the computational requirements are likely
o be severe. Analytically, multivariate normal and log-
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ormal models are tractable even when the dimensional-
ty of the object description is very large, and there are

athematical models known as lumpy and clustered
umpy backgrounds8,9 that accurately represent tissue
istributions encountered in medical imaging yet remain
athematically tractable even in the limit of an infinite-

imensional Hilbert space for the object. Also, there is a
arge literature on constructing lower-dimensional repre-
entations that capture the essential features of interest-
ng objects by the use of wavelets10,11 or independent-
omponents analysis.12,13

A survey of the state of the art in object statistics is
iven in Barrett and Myers,1 and some examples relevant
o astronomy will be given in Section 4 and Appendix A.

The conditional mean image ḡ�f� is defined as the av-
rage of g with respect to pr�g �f�. If we also average over
andom objects, the overall mean image, denoted g�, is
iven in component form by

g�m = �gm�g,f
= ��gm�g�f�f =� df� dg gm pr�g�f�pr�f�.

�2.5�

or a linear imaging system,

g�m = �ḡm�f
=�

�

drhm�r�f̄�r�. �2.6�

Conditional and overall covariance matrices can be de-
ned similarly. The conditional covariance matrix, which
escribes the measurement noise, is given in component
orm as

	Kg�f
mm�
= �	gm − ḡm
	gm� − ḡm�
�g�f �2.7�

r in outer-product form as

Kg�f = �	g − ḡ
	g − ḡ
t�g�f. �2.8�

or Poisson noise, 	Kg�f
mm�= ḡm�mm�.
The overall covariance matrix is defined by

Kg � �	g − g�
	g − g�
t�g,f
= ��	g − g�
	g − g�
t�g�f�f

.

�2.9�

ow add and subtract ḡ in each factor:

Kg = ��	g − ḡ + ḡ − g�
	g − ḡ + ḡ − g�
t�g�f�f

= ��	g − ḡ
	g − ḡ
t�g�f�f
+ �	ḡ − g�
	ḡ − g�
t�f

.

�2.10�

Note that the cross term has vanished identically, since

��	g − ḡ
	ḡ − g�
t�g�f�f
= ��	g − ḡ
�g� f	 ḡ − g�
t�f

= �	ḡ − ḡ
	ḡ − g�
t�f
= 0.

�2.11�

hus, with no assumptions about independence of g and
, we can write
Kg = K̄g
noise + Kḡ

obj, �2.12�

here the first term describes the measurement noise
nd the second term arises from object variability. For
ost kinds of noise, including Poisson noise in photon-

ounting detectors and electronic readout noise in detec-
or arrays, K̄g

noise is diagonal.
The second term in Eq. (2.12) is not diagonal. Recall

hat the object is a random process f�r� and hence de-
cribed by an autocovariance function:

Kf�r,r�� = �	f�r� − f̄�r�
	f�r�� − f̄�r��
� . �2.13�

he autocovariance function can be regarded as the ker-
el of an integral operator Kf, and for a linear imaging
ystem, the second term in the decomposition can be writ-
en formally as

Kḡ
obj = HKfH†, �2.14�

here H† is the adjoint1 of the operator H.

. Tasks and Observers
his subsection provides a brief survey of key concepts

rom statistical decision theory. A more complete discus-
ion can be found in many sources.1,14,15

. Classification Tasks
n a classification task, the goal is to assign the object
hat produced an image to one of two or more classes. If
he hypothesis that f belongs to the kth class is denoted

k, then the probability law for the data when hypothesis
k is true is pr�g �Hk�. In terms of the PDFs discussed

bove,

pr�g�Hk� =� df pr�g�f�pr�f�Hk�. �2.15�

hen regarded as a function of Hk for a fixed (observed)
, pr�g �Hk� is referred to as the likelihood of the hypoth-
sis for that data set.

A binary classification task is one where there are only
wo classes or hypotheses. In a signal-detection task, for
xample, the hypotheses are signal-absent and signal-
resent. If we assume that each image must be assigned
ithout equivocation either to hypothesis H0 (e.g., signal-
bsent) or to H1, the decision on a binary task can be
ade in complete generality by computing some scalar

est statistic t�g� from the data; the observer then decides
n H1 if the test statistic is greater than a decision
hreshold and decides on H0 otherwise. The value of the
hreshold controls the trade-off between true positive de-
isions (correctly choosing H1) and false positive decisions
choosing H1 when H0 is true). In signal-detection prob-
ems, the true-positive fraction (TPF) is called the prob-
bility of detection, and the false-positive fraction (FPF)
s called the false-alarm rate.

A plot of TPF versus FPF as the threshold is varied is
alled a receiver operating characteristic (ROC) curve.
eaningful figures of merit for binary classification in-

lude the TPF at a specified FPF (the Neyman–Pearson
riterion), the area under the ROC curve (AUC), and cer-
ain detectability indices derived from the ROC curve.
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he probability of detection alone is not a meaningful
etric since it can always be made large, even unity, sim-

ly by choosing a low threshold.
Another common figure of merit for binary classifica-

ion tasks is the signal-to-noise ratio (SNR) on the test
tatistic. Not to be confused with the more common pixel
NR, the SNR for a specific test statistic t�g� is defined as

SNRt
2 =

	�t�g��H1� − �t�g��H0�
2

1
2 Var�t�g��H1� + 1

2 Var�t�g��H0�
, �2.16�

here �t�g� �Hk� is the expected value of the test statistic
hen hypothesis Hk is true and Var�t�g� �Hk� is the corre-

ponding variance. If the test statistic is normally distrib-
ted under both hypotheses, the AUC is uniquely deter-
ined by SNRt.

. Optimal Observers for Binary Classification
he ideal observer on a binary task is defined variously as
ne that maximizes the AUC, maximizes the TPF at all
pecified FPFs, or minimizes a cost function defined in
erms of TPF and FPF. By any of these criteria, the test
tatistic used by the ideal observer is the likelihood ratio
�g��pr�g �H1� /pr�g �H0�, so the ideal observer for a bi-
ary problem is one that calculates either the likelihood
atio or its logarithm ��g�� ln ��g�. There are several ex-
mples where this computation is feasible,5–7,16,17 but in
any problems ��g� and ��g� are complicated nonlinear

unctions of the data for which no closed form is possible,
nd in any case their computation requires knowledge of
he data PDF under both hypotheses.

A more tractable alternative to the ideal observer is the
deal linear observer, often called the Hotelling
bserver1,2,18,19 in the literature on objective assessment
f image quality. Linear observers compute linear dis-
riminants, so the test statistic has the form t�g�=wtg,
here w is an M�1 vector called the template, and wtg
enotes its scalar product with the M�1 data vector. The
otelling discriminant uses a template that maximizes a

ertain class separability measure,20 and if the classes are
qually probable it also maximizes the SNR defined in Eq.
2.16). Linear test statistics are usually normally distrib-
ted by virtue of the central limit theorem, and in this
ase maximizing this SNR is equivalent to maximizing
he AUC among linear observers. It can also be shown
hat the Hotelling test statistic is equal to the log-
ikelihood ratio if the raw data are normally distributed
ith the same covariance under both hypotheses, so the
otelling observer is identical to the ideal observer in this

ase and thus maximizes the AUC among all observers,
ot just linear ones.
Computation of the Hotelling test statistic requires

nly the overall mean vectors and the covariance matrices
f the data under the two hypotheses. The test statistic is
iven by

tHot�g� = wtg = 	g�1 − g�0
tKav
−1g, Kav � 1

2	Kg�H1
+ Kg�H0
 .

�2.17�

he inverse of the average covariance matrix is related to
he familiar signal-processing operation of prewhitening,
nd for this reason, the Hotelling observer is sometimes
alled a prewhitening matched filter; unless the noise is
tationary, however, the prewhitening and matched filter-
ng cannot be carried out in the Fourier domain.

The Hotelling discriminant (2.17) should not be con-
used with the Fisher discriminant. Basically the differ-
nce is that the Hotelling discriminant uses ensemble
eans and covariances and the Fisher discriminant uses

ample means and covariances. In fact, the Fisher dis-
riminant is almost never applicable to raw pixel values
n images, since the dimension of the covariance matrix is

�M, where M is the number of pixels, and a sample co-
ariance of this size would be invertible only if the num-
er of sample images were greater than M−1, which is
ery difficult to achieve. As we shall see in detail in Sec-
ion 5, however, it is indeed possible to estimate and in-
ert the ensemble covariance used by the Hotelling ob-
erver.

A figure of merit for the Hotelling observer is the Ho-
elling SNR, sometimes called the Hotelling trace; it is
iven by

SNRHot
2 � 	g�1 − g�0
tKav

−1	g�1 − g�0

= tr�Kav

−1	g�1 − g�0
	g�1 − g�0
t�, �2.18�

here tr�·� denotes the trace (sum of the diagonal ele-
ents) of the matrix.
Often the Hotelling observer is applied not to the raw

ata but to a data set of reduced dimensionality obtained
y passing g through a set of linear filters; in this case it
s referred to as the channelized Hotelling observer
CHO). The channels can be chosen to preserve the class
eparability or to construct an observer that accurately
redicts the performance of human observers as mea-
ured by psychophysical studies. For a thorough review of
he CHO and its many successful applications in medical
maging, see Barrett and Myers.1

. Detection of Signals at Random Locations
hen the signal location is random, the ideal decision

trategy in Gaussian measurement noise is to subtract
he mean background contribution at each pixel (assumed
nown), perform a prewhitening matched filter operation
or each possible signal location, and exponentiate.21,22

he output of these operations is averaged over all pos-
ible locations of the signal to determine the ideal observ-
r’s decision variable. A comparison with a threshold is
hen done to render a decision as to whether or not the
ignal is present in the scene. No location information is
rovided by this observer when the decision is made.
The Hotelling formalism allows signals to be random

ut runs into difficulty when the signal can be at a ran-
om location. If all locations in the field of view are
qually probable, the mean difference image g�1−g�0 is a
onstant and the linear test statistic (2.17) conveys little
nformation. In fact, no linear observer will perform well
n this situation. Nevertheless, as we shall see, the Hotell-
ng framework can still be quite useful in the presence of
ignal-location uncertainty.

If the only randomness in the signal is its location, it is
atural to consider a linear detection strategy that ap-
lies a prewhitening matched filter to each of the possible
ignal locations. Typically, the location that gives the larg-
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st Hotelling test statistic is chosen as the tentative loca-
ion of a signal, and that test statistic is compared with a
hreshold to decide between signal-present and signal-
bsent at that location. The operation of finding the maxi-
um is nonlinear, so the overall operation is nonlinear.
If the inverse covariance is the same for each signal lo-

ation, it can be precomputed and used for each location.
oreover, if the signal is large relative to a pixel, so that

ts image is approximately shift-invariant, there is no
eed to recompute the mean data vector for each possible

ocation either. Then, for a signal with uniform location
ncertainty, the ideal linear approach becomes one of
canning the prewhitening matched filter over the field of
iew, and the observer is referred to as a scanning Hotell-
ng observer.23

When the image of the signal is location-dependent, the
otelling framework can be further generalized to incor-
orate this information into the observer’s template at
ach signal location under test. This will be the case, for
xample, when the pixel size is large relative to the sig-
al. Samson et al.16 investigated the problem of point-
arget detection when the image is comparable in size
ith a pixel and randomly located with respect to the
ixel. Of course, other forms of signal randomness can be
ncorporated into the Hotelling formalism by the requisite
djustment in the expected data at each location.
There are several advantages to the Hotelling formal-

sm over computation of the ideal observer’s test statistic
n the location-uncertain task. The addition of a scanning

echanism to the Hotelling formalism yields a test sta-
istic that is easily computed. Moreover, it was shown by
olte and Jaarsma21 that the scanning Hotelling ob-

erver achieves a performance level that is nearly ideal in
ertain regimes, specifically ones in which the signal is
qually likely at all locations and the noise variance is
mall. In addition, the scanning operation results in a de-
ermination of the signal’s location along with a test sta-
istic for the detection task.

A useful way to characterize the performance on the
oint detection–localization problem is with a localization
OC (LROC) curve,24 which is a plot of the probability of
etection and correct localization versus the false-alarm
ate; the figure of merit for this task is the area under the
ROC curve. If only the probability of detection is of in-
erest, area under the conventional ROC curve (AUC) can
e used, even with the scanning strategy. In many cases
he area under the LROC correlates well with the AUC
or a signal at a fixed location as various system param-
ters are varied.25 For a discussion of observer strategies
hat maximize the area under the LROC curve, see Khurd
nd Gindi.26

. Estimation Tasks
n a pure estimation task, an object of interest is known
o be present, but we wish to determine numerical values
or parameters that describe the object. We assemble
hese parameters into a vector ��f�, and the relevant like-
ihood is denoted pr�g ���. An estimate of � is denoted �̂.
he bias and variance of �̂, often combined into a mean
quare error (MSE), are conventional figures of merit for
he estimation task.
There is a well-known lower bound, called the Cramér–
ao bound, on the variance of any estimator.14,15 An un-
iased estimator that achieves the bound is said to be ef-
cient. An efficient estimator can be regarded as the ideal
bserver for an estimation problem, but in many prob-
ems no efficient estimator exists. A practical alternative
s the maximum-likelihood (ML) estimator, which chooses
he value of ��f� that maximizes pr�g ��� for the observed
. An ML estimator is efficient if an efficient estimator ex-

sts, and it is asymptotically efficient as more or better
ata are acquired.
Another alternative is an ideal linear estimator, which

omputes a linear (or affine) functional of the data. A lin-
ar estimator is ideal if the bias is zero and the variance
s as small as possible. Different forms of the ideal linear
stimator use different degrees of prior information and
ifferent ways of computing the variance, but a useful one
o highlight for this discussion is the generalized Wiener
stimator. This estimator is unbiased in a global sense
the average of �̂ over all data g and over a prior distribu-
ion of � is equal to the prior mean �̄), and it minimizes
he ensemble mean square error (EMSE) defined in the
ame global sense. For doubly stochastic data, this esti-
ator is given by27

�̂ =�̄ + K�,gKg
−1	g − g�
 , �2.19�

here Kg is the overall (doubly stochastic) covariance ma-
rix of g and K�,g is the cross-covariance of � and the data.
he optimal EMSE that results from this estimator is
iven by

EMSE = tr K� − tr K�,gKg
−1K�,g

t . �2.20�

The generalized Wiener estimator is the counterpart of
he Hotelling observer in two respects: Both use prior
nowledge of an ensemble of objects, and both form their
utput by a linear operation on prewhitened data [cf. Eqs.
2.17) and (2.19)]. For both, it is necessary to determine
he overall data covariance and to be able to invert it.

. STATISTICAL ANALYSIS OF ADAPTIVE
PTICS SYSTEMS
generic AO system viewing an astronomical scene

hrough a turbulent atmosphere is shown in Fig. 1. The
stronomical scene consists of the object being studied
the science object), a reference object, which may consist
f one or more natural or laser guide stars, and a back-
round, defined as everything else in the field of view of
he science camera. In some cases the reference object
ay be part of the science object, as when the task is to

etect a faint companion around a known star, which then
lso functions as the guide star.
Light passing through the telescope is reflected from a

eformable mirror before being relayed to the science
amera, which records the final image (or images) of the
cene. Part of the light emerging from the deformable
irror is diverted by a beam splitter to a wavefront sen-

or in order to acquire information about the distorted
avefront. An estimator converts the output of the wave-

ront sensor to estimates of wavefront parameters, and a
ontrol system converts these estimates into control sig-
als to be applied to the deformable mirror. Ideally, the
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ontrol signals would produce a mirror deformation equal
nd opposite to the wavefront distortions produced by the
tmosphere, and an uncorrupted image would be passed
n to the science camera.

The wavefront sensor and estimator are often treated
s a single element in the literature; a wavefront sensor
n that view is a subsystem that delivers estimates of pa-
ameters such as local wavefront tilts. We shall find it
onvenient, however, to separate these two boxes as in
ig. 1. The wavefront sensor box might, for example, in-
lude a lenslet array and an image detector in a Shack–
artmann configuration, and the estimator box could in-

lude computation of image centroids to get the tilts for
ach lenslet aperture. One reason for showing the estima-
or box separately is that sophisticated ML methods can
lso be used for going from the detector output in the sen-
or to estimates of wavefront parameters.28 These meth-
ds are based on accurate statistical models, and they
ermit estimation of parameters other than simple tilts.
The control system uses the estimated wavefront pa-

ameters, sometimes for several consecutive frames of
ata, to derive the signals to be applied to the actuators in
he deformable mirror. The control system is often re-
erred to as a wavefront reconstructor since it is concep-
ualized as a two-step process, first reconstructing (esti-
ating) the entire wavefront from tilts or other sensor

ata, then deriving the control signals from the recon-
truction. As a black box, however, it just transforms the
avefront parameter estimates to control signals. Usu-
lly the transformation is implemented as a matrix mul-
iplication.

Fig. 1. Illustration of an adaptive optics system.
Various random processes affect the statistics of the
ata from the science camera. The most obvious source of
andomness is the photon or electronic noise associated
ith detection of the image by the science camera. The at-
osphere would not be a source of randomness if the AO

ystem were perfect, but it is not for several reasons.
irst, a deformable mirror with a finite number of actua-

ors cannot exactly match a continuous wavefront even if
he latter is known perfectly; second, the wavefront sen-
or itself measures only a finite number of parameters of
he wavefront; and third, this measurement is degraded
y photon or electronic noise in the sensor. Finally, there
s always a temporal delay between measuring the wave-
ront and applying the correction. For all of these reasons,
he corrected wavefront is imperfect and noisy, and the
oint spread function (PSF) in the main imaging path be-
ween the astronomical scene and the science camera is
andom.

Moreover, as discussed in Section 2, objects being im-
ged are themselves random. The astronomical scene will
sually include some unknown background that has to be
reated as a random process, and a laser guide star is ran-
om because of laser fluctuations and variable character-
stics of the atmospheric layer from which the laser light
s scattered. Even the science object can have random pa-
ameters; a faint companion, for example, can be at an
nknown location and have unknown brightness.
The goal of this section is to analyze the statistical

roperties of this AO system without saying much about
pecific implementations and without making very many
estrictive assumptions. Emphasis will be on determining
he covariance properties of the images, since, as we saw
n Subsections 2.C and 2.D, several important figures of

erit for task performance can be computed from covari-
nce matrices without knowledge of the full PDF. The re-
ults from this section will be related to task performance
n Section 4.

. Notation and Assumptions

. Science Data
ecause our goal is to characterize the statistics of the
ata from the science camera, we begin by establishing
he notation for those data. Suppose that a sequence of J
iscrete frames of data is acquired, and each frame con-
ists of the outputs of M detector pixels. An individual
easurement (one pixel in one frame) can be denoted gm

�j�,
here j=1, . . . ,J and m=1, . . . ,M. The set {gm�j�,
=1, ,M� for fixed j is the M�1 vector g�j�, and the set

g�j� , j=1, . . . ,J� is the complete data set from the science
amera, denoted G.

The object being imaged is denoted as f�r , t�, where r is
2D vector of x–y coordinates in the telescope focal

lane; angular coordinates of the astronomical object are
ound by dividing x and y by the focal length of the tele-
cope.

The relation between object and mean image is as-
umed to be linear as in Eq. (2.1). With the extra index for
rame number and with r= �x ,y , t� and r= �x ,y�, Eq. (2.1)
ecomes
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m
�j� =�

�

d2r�
−�

�

dt hm
�j��r,t�f�r,t�, m = 1, . . . ,M, j = 1, . . . ,J,

�3.1�

here the overbar in this case denotes an average with
espect to the conditional PDF pr	gm

�j� �hm
�j��r , t� , f�r , t�
.

ote that linearity in this sense holds even if the PSF is
erived from the object, since the average implied by the
verbar is conditional on a specified PSF.

Both the object f�r , t� and the kernel hm
�j��r , t� are spa-

iotemporal random processes. The kernel is related to
he incoherent PSF of the main imaging path (atmo-
phere, telescope, deformable mirror, science camera) by

hm
�j��r,t� = rect� t − tj − 1

2T

T 
 � d2rd dm�rd�p�rd,r,t�,

�3.2�

here the jth frame extends from time tj to tj+T, dm�r�
escribes the response of the mth detector pixel, and
�rd ,r , t� is the time-dependent incoherent PSF of the
ain path, with the variable rd denoting position in the

etector plane. Note that the PSF is not assumed to be
hift-invariant (isoplanatic).

With Eq. (3.2), the linear imaging relation in Eq. (3.1)
an be written in detail as

ḡm
�j� =� d2rd dm�rd��

tj

tj+T

dt� d2r p�rd,r,t�f�r,t�.

�3.3�

n words, the noiseless incoherent image of a particular
bject through a particular PSF is integrated over the
rame time and the pixel area to get ḡm

�j�.
We shall assume that the object is a slowly varying

unction of time, essentially constant over one frame of
he science camera, in which case Eq. (3.3) becomes

ḡm
�j� =�

�

d2r hm
�j��r�f�j��r�, m = 1, . . . ,M, j = 1, . . . ,J,

�3.4�

here f�j��r�= f�r , tj�,

hm
�j��r� =� d2rd dm�rd�p�j��rd,r�, �3.5�

p�j��rd,r� =�
tj

tj+T

dt p�rd,r,t�. �3.6�

A useful abstract notation analogous to Eq. (2.2) is

Ḡ = HsF, �3.7�

here Hs is a linear operator mapping the object se-
uence F, which is the set of all f�j��r�, to a sequence of
igital images, with the jth image in the sequence deter-
ined by the kernel hm

�j��r�. The operator Hs is random,
ince the PSF p�rd ,r , t� and hence the kernel hm

�j��r� is ran-
om.
To summarize the notation for the main imaging path,
he science camera produces an image sequence G, where
¯ (the average of G over only the measurement noise in
he science camera) is related to the object F by a random
perator Hs, the properties of which are determined by
he set P of random incoherent PSFs, each of which has
een temporally averaged over a frame.

. Control Loop
he control loop comprises the wavefront sensor, estima-

or, control system, and deformable mirror. The detector
n the wavefront sensor consists of L pixels, and it ob-
erves the wavefront for a time T�, not necessarily the
ame as the frame time for the science camera. After the
th frame, the detector on the wavefront sensor produces
set of signals, �vl

�k�, l=1, . . . ,L�, or equivalently an L�1
ata vector v�k�; the whole set of �v�k�, k=1, . . . ,K� is de-
oted V. The total time duration for wavefront sensing is
he same as for data acquisition with the science camera,
o KT�=JT.

The estimator uses the vector of sensor signals for one
rame, v�k�, and produces estimates of wavefront param-
ters for that frame, �̂�k�, which might, for example, be
ilts over the subapertures in a Shack–Hartmann sensor.
he control system takes estimates of wavefront param-
ters for previous frames, �̂�k−1�, �̂�k−2� , . . ., and computes
rive voltages to apply to the N actuators of the deform-
ble mirror on the current frame; for reasons that will be-
ome clear, we denote these signals as �̂n

�k� or as the
�1 vector �̂�k�.
We assume that the control system is linear and that it
akes use of the output of the estimator for the K0 frames

receding the current one. Thus its input–output relation
an be written in matrix–vector form as

�̂�k� = �
k�=1

K0

M�k���̂�k−k��, �3.8�

here M�k�� is the control matrix for a lag of k� frames.
his matrix might be derived by considering some algo-
ithm for wavefront reconstruction and then estimating
ˆ �k� from the reconstruction, but if these steps are linear,
heir effect can be included in the control matrix.

. Mirror and Atmosphere
he wavefront perturbation produced by the deformable
irror is assumed to be a linear combination of influence

unctions ���r� , n=1, . . . ,N�, where N is the number of
ctuators. If the deformable mirror is in a plane conjugate
o the telescope pupil and the voltage �̂n

�k� is applied to the
th actuator during frame k of the control loop, then the
ffect of the mirror on the wavefront is represented as

WDM
�k� �r�� = �

n=1

N

�̂n
�k��n�r��, �3.9�

here r� denotes a point in the pupil.
To use the same representation for the mirror and the

tmosphere, we expand the atmospheric wavefront as a
um of influence functions plus a residual. For a mono-
hromatic point source that would image to point r in the
0
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mage plane in the absence of aberrations, we express the
ctual wavefront in the pupil as

Watm�r�,t;r0� = �
n=1

N

�n�t;r0��n�r�� + �Watm�r�,t;r0�,

�3.10�

here the sum is the least-squares fit of Watm�r� , t ;r0� by
he set of influence functions, and the residual
Watm�r� , t ;r0� is the portion of the wavefront that cannot
e corrected by the deformable mirror.
The corrected wavefront emerging from the mirror is

hus given by

W�r�,t;r0� = Watm�r�,t;r0� − WDM
�k� �r��

= �
n=1

N

	�n�t;r0� − �̂n
�k�
�n�r�� + �Watm�r�,t;r0�,

kT� 	 t 
 �k + 1�T�. �3.11�

f �n�t ;r0� is approximately constant over the frame pe-
iod and well approximated by �̂n

�k�, then the wavefront is
ompensated as closely as it can be with the given mirror;
ence the notation �̂n

�k� for the mirror drive voltages. Note,
owever, that the actual �n�t ;r0� is a function of the con-
inuous time variable while �̂n

�k� is a constant during one
rame of the control loop.

. Random Point Spread Functions
he relation of the PSF to the pupil function of the imag-

ng system is well-known. For quasimonochromatic light
f wavelength � and a point object at r0 (in image-plane
oordinates), we can define an effective pupil function by

apup�r�,t;r0� = aap�r��exp�i
2�

�
W�r�,t;r0�
 , �3.12�

here again r� specifies location in the pupil, aap�r�� is a
inary (0–1) function describing the clear aperture of the
upil, and �2� /��W�r� , t ;r0� is the phase distortion for an
bject at r0 (in image-plane coordinates).

The anisoplanatic coherent PSF is a scaled Fourier
ransform of the pupil function, given by

pcoh�rd,r0,t� ��
�

d2r�aap�r��exp�i
2�

�
W�r�,t;r0�


�exp�i
2�

�f
�rd − r0� · r�
 , �3.13�

here f is the back focal length of the science camera. The
ncoherent PSF is proportional to the squared modulus of
he coherent one, and the effective PSF for the jth frame
s given from Eq. (3.6) as

p�j��rd,r0� = C�
tj

tj+T

dt �pcoh�rd,r0,t��2, �3.14�

here the constant C and the units of f�r0� are chosen so
hat ḡm

�j� is the mean number of photons detected by pixel
during frame j. If the atmosphere and deformable mir-

or could be modeled jointly as a thin phase screen in the
upil, W�r� , t ;r0� would be independent of the object coor-
inate r0 and the system would be isoplanatic.
For simplicity we drop the subscript on r0 in what fol-

ows. Moreover, the PSF p�j��rd ,r� will be denoted as p�j�

or short, and the set of all p�j� for j=1, . . . ,J will be de-
oted by P.

. Speckle
e can usually assume that the control loop works well

nough that the corrected phase excursions are small, so
hat relation (3.13) can be approximated as

pcoh�rd,r,t� ��
�

d2r�aap�r��	1 + i
�r�,t;r� − 1
2
2�r�,t;r�


�exp�i
2�

�f
�rd − r� · r�
 , �3.15�

here 
�r� , t ;r���2� /��W�r� , t ;r�. The form in relation
3.15) is general enough to describe weak atmospheric
cintillation if 
�r� , t ;r� is allowed to be complex.

The Fourier integral in relation (3.15) can be written as

�
�

d2r�aap�r��	1 + i
�r�,t;r� − 1
2
2�r�,t;r�
exp�2�i� · r��

= Aap��� + i	Aap � �
��� − 1
2	Aap � � � �
���, �3.16�

here ���rd−r� /�f is a 2D spatial frequency (measured
n cycles per unit length in the focal plane of the science
amera), Aap��� and ��� , t ;r� are, respectively, the 2D
ourier transforms of aap�r�� and 
�r� , t ;r� with respect to

he pupil coordinate r�, and the asterisk denotes convolu-
ion.

From Eq. (3.14), the effective incoherent PSF for the jth
rame is given to second order in ��� , t ;r� by

p�j��rd,r� = C�
tj

tj+T

dt �pcoh�rd,r,t��2

= C�
tj

tj+T

dt ��Aap�2 + �	Aap � �
�2

− Re	Aap
� �Aap � � � ��


− 2 Im	Aap
� �Aap � ��
��=�rd−r�/�f, �3.17�

here the arguments in the integrand have been omitted
or clarity.

The randomness in this PSF stems from the three ran-
om processes evident in Eq. (3.11), namely the atmo-
pheric coefficients �n�t ;r�, the control signals �̂n

�k�, and
he uncorrectable part of the atmospheric turbulence,
Watm�r� , t ;r�. The resulting PSF can be regarded as a
peckle pattern produced by the weak residual phase
ariations across the pupil. The last two terms in Eq.
3.17) show that this speckle pattern is modulated or
pinned” by the Airy rings of the ideal PSF (proportional
o Aap). Pinned speckle in AO has been studied by several
uthors,29–32 but usually in the context of univariate sta-
istics such as variance and PDF at a single point. In Sec-
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ion 5 we shall see how to obtain the covariance proper-
ies needed for objective assessment of image quality with
inear observers.

. Random Objects
e have already denoted the temporal sequence of astro-

omical scenes as F, and it will also be useful to decom-
ose an astronomical scene into science object, guide star,
nd background (everything else), so that

F = Fsci + Fgs + Fbg. �3.18�

he three components are random for different reasons
nd require different stochastic descriptions. If the task is
etection of a faint star, the science object can be modeled
s a point source of unknown location and brightness, so
t is described fully by a three-dimensional PDF on these
arameters. A natural guide star is at a known location
nd its brightness can be measured independently, so it is
ot random at all. A laser guide star is random because of
ariations in laser intensity and fluctuations in the distri-
ution of atmospheric molecules being excited.
The background term could describe a complicated star

eld, modeled as a random point process,1 or it could refer
o the thermal sky background in the far infrared, which
ears a striking similarity to the lumpy backgrounds used
o model medical images. Even if the background is spa-
ially uniform, it has to be treated as a random process
ince the background brightness is unknown and possibly
ime-varying.

. Triply Stochastic Averaging
n this subsection we generalize the doubly stochastic av-
raging process introduced in Subsection 2.B in two ways:
e add a third source of randomness (the random PSF),

nd we consider a sequence of correlated images. We be-
in by developing a general formalism of nested averages
ver the three main sources of randomness, and then we
pply it to calculation of the mean vectors and covariance
atrices of the science-camera data. As we know from
ection 2, these quantities are important determinants of

mage quality for both classification and estimation tasks.

. Nested Probability Density Functions
et T�G� denote an arbitrary (possibly vector-valued)

unction of the image sequence G. An overall average of
his function is given formally by

T�G�
�

= ���T�G��G�P,F
�

P�F
�

F

=� dF� dP� dG T�G�pr�G�P,F�pr�P�F�pr�F�.

�3.19�

Consider first the inner average, over G given P and F.
ince the PSF and the object are fixed by the conditional
DF, the only remaining randomness in this average is
he measurement noise of the science camera. Since dif-
erent photons are detected in different frames and the
rame time is far larger than any electronic correlation
ime, we can write
pr�G�P,f� = �
j=1

J

pr�g�j��p�j�,f�j��. �3.20�

oreover, the measurement noise components in differ-
nt detector pixels in the same frame are usually statisti-
ally independent (an exception sometimes occurs in de-
ectors with built-in gain28), in which case

pr�g�j��p�j�,f�j�� = �
m=1

M

pr�gm
�j��p�j�,f�j��. �3.21�

inally, for pure electronic noise (but not for Poisson
oise), we can assume that pr�gm

�j� �p�j� ,f�j��=pr�gm
�j��, inde-

endent of the random PSF and the object. For Poisson
oise, the statistics are determined by the mean, so
r�gm

�j� �p ,f�j��=pr	gm
�j� � ḡm

�j��p ,f�j��
.
With the object decomposition (3.18), the second aver-

ge, over the random PSFs P given the object sequence F,
eally involves pr�P �Fsci ,Fbg,Fgs�; different circum-
tances will permit different assumptions about this den-
ity. The greatest simplification is when the background
nd science object make a negligible contribution to the
utput of the wavefront sensor and when the guide star is
onrandom; in that case, pr�P �F�=pr�P�. An intermedi-
te case is that where the randomness of the guide star
annot be neglected, and then pr�P �F�=pr�P �Fgs�. Fi-
ally, if the wavefront data are derived from the science
bject itself, we have to use pr�P �F� without simplifica-
ion. We shall carry along the two extremes, a general
r�P �F� and an independent model, pr�P �F�=pr�P�, in
hat follows.
Even if we assume that P is independent of F, however,

t is generally not correct to assume that the PSFs for dif-
erent science-camera frames, p�j� and p�j�� with j� j�, are
ndependent; temporal correlations are present because of
he atmospheric correlation time and because the control
ystem uses outputs of the wavefront sensor for multiple
revious sensor frames to determine the drive signals to
he mirror on the current sensor frame.

The final average in Eq. (3.19) is over the object vari-
bility, and in principle it requires a huge-dimensional
DF pr�F�, or even several such PDFs for different hy-
otheses if we consider a classification task. In practice,
owever, the decomposition (3.18) suggests several sim-
ler stochastic descriptions. It will often be valid, for ex-
mple, to assume that the science object, background, and
uide star are statistically independent, so pr�F�
pr�Fsci�pr�Fbg�pr�Fgs�, and further assumptions can be
pplied to each factor. If the science object is independent
f time, for example, pr�Fsci� reduces to pr�fsci�, where f
enotes a single object rather than a sequence. Moreover,
s discussed at the end of Subsection 3.B, pr�fsci� might be
low-dimensional PDF on a few parameters of scientific

nterest. The background PDF pr�Fbg� is more difficult in
eneral, but the figures of merit discussed here require
nly the mean object and a spatiotemporal autocovari-
nce function. The guide-star PDF pr�Fgs� is trivial for a
onrandom natural guide star but more complicated for a

aser guide star.
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. Means
o see how triply stochastic averaging works in a rela-
ively simple case, let T�G� be a single datum gm

�j�, the out-
ut of one detector pixel for one frame of data from the
cience camera. The statistics of gm

�j� depend on the inco-
erent PSF p�j� and noise realization for frame j, and the
oise can depend on the object for that frame in the case
f Poisson noise. The PSF for frame j can, however, de-
end on the object (especially the guide star) for previous
rames. The overall (triple-bar) average of this datum can
hus be written most generally as

g�m
�j� = ���gm

�j��gm
�j��p�j�,f�j��

p�j��F
�

F

. �3.22�

If we average over detector noise alone, then the single-
ar average is given in component form directly from our
ssumption of conditional linearity, Eq. (3.7), by

ḡm
�j� = ḡm

�j��p�j�,f�j�� =� d2r hm
�j��r�f�j��r�, �3.23�

here the PSF and object for frames other than the jth
re irrelevant for this conditional average, conditioned on
SF and object.
The next average is over the random PSFs P given F.

ince averaging is a linear operation that can be inter-
hanged with integration under broad conditions (loosely
peaking, so long as all integrals converge), it follows that

g�m
�j� = g�m

�j��f�j�� =� d2r h̄m
�j��r�f�j��r�, �3.24�

here the average kernel is related to the average inco-
erent PSF by [cf. Eq. (3.5)]

h̄m
�j��r� =� d2rd dm�rd�p̄�j��rd,r�. �3.25�

f we assume that the PSF is temporally stationary and
rgodic, the index j on p̄�j��rd ,r� and hence on h̄m

�j��r� can
e omitted. On the other hand, though the notation does
ot show it, p̄�j��rd ,r� can depend on the object sequence F
nd in particular on the guide star over multiple frames.
The final average, over the object variability, yields

g�m
�j� =� d2r �h̄m

�j��r�f�j��r��F =� d2r h̄m
�j��r�f̄�j��r�,

�3.26�

here the second form holds if p�j� is independent of F.
Each of these component averages is the mth compo-

ent of a corresponding M�1 average vector; for ex-
mple, g�m

�j� is the mth component of g��j�. We shall also use
verbars on the whole set G in a similar fashion. For ex-
mple, G� can be regarded as an MJ�1 vector with the
m , j�th component given by g�m

�j�.

. Covariance Matrices
y analogy to Eq. (2.9), the overall covariance matrix of a

riply stochastic image sequence is defined as
KG � ��G − G
�
�G − G

�
t�
G,P,F

����	G − G
�
	G − G

�
t�G�P,F
�

P�F
�

F
. �3.27�

o be explicit, KG is an MJ�MJ matrix with components
iven by [cf. Eq. (2.7)]

	KG
mm�

�j,j��
= ����gm

�j� − g�m
�j�
�gm�

�j�� − g�m�
�j��
�

G�P,F
�

P�F
�

F

.

�3.28�

Now, as in Eq. (2.10), add and subtract terms in each
actor of Eq. (3.27):

KG = ����G − Ḡ + Ḡ − G� + G� − G
�


��G − Ḡ + Ḡ − G� + G� − G
�
t�

G�P,F
�

P�F
�

F

.

�3.29�

ven without any assumptions of independence, the cross
ovariance ���	G−Ḡ
	Ḡ−G�
t��� vanishes identically, just
s it did in Eq. (2.10). A similar argument shows that

��	Ḡ−G�
	G�−G
�


t��� also vanishes, and we can write

KG = K�G
noise + K̄Ḡ

PSF + KG�
obj, �3.30�

here

K�G
noise ����	G − Ḡ
	G − Ḡ
t�G�P,F

�
P�F
�

F

, �3.31�

K̄Ḡ
PSF � ��	Ḡ − G�
	Ḡ − G�
t�P�F�F

, �3.32�

KG�
obj � �	G� − G

�
	G� − G
�
t�F

. �3.33�

hus the overall covariance matrix for a triply stochastic
mage sequence can be rigorously decomposed into three
erms representing, respectively, the contributions from
easurement noise, from the random PSF, and from ran-

omness in the object being imaged.
The first term, K�G

noise, comes from readout and Poisson
oise, with at least the Poisson component averaged over
and F. With the noise modeled as in Eq. (3.21), we can

rite

	K�G
noise


mm�

�j,j��
= 	�m

2 + g�m
�j�
�mm��jj�. �3.34�

The second term, K̄Ḡ
PSF, is the contribution from the

andom PSF, averaged over the object class. If the AO sys-
em worked perfectly, this term would vanish since the
SF would not be random. Also, if the integration time of

he science camera goes to infinity and the atmospheric
tatistics are ergodic, so that infinite time averages are
he same as ensemble averages, then again the PSF term
anishes. With a real system and a finite integration
ime, this term describes the residual speckle pattern
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rom the uncorrected part of the random atmospheric
hase. In the most general case, it is given in component
orm by

	K̄Ḡ
PSF


mm�

�j,j��
=� d2r� d2r���f�j��r�f�j���r��	hm

�j��r� − h̄m
�j��r�


�	hm�
�j���r�� − h̄m�

�j���r��
�P�F�F
. �3.35�

f P is independent of F, we obtain

	K̄Ḡ
PSF


mm�

�j,j��
=� d2r� d2r��f�j��r�f�j���r���F�	hm

�j��r� − h̄m
�j��r�


�	hm�
�j���r�� − h̄m�

�j���r��
�P
. �3.36�

ne way to interpret Eq. (3.36) is to move the average
ver F outside the integral. The integral then represents
he covariance of the sensitivity function as manifest in
he data for a particular spatiotemporal object, and the
esult is averaged over objects.

The final term, KG�
obj, is the contribution from object ran-

omness. In the general case, it is given by

	KG�
obj
mm�

�j,j��
=� d2r� d2r��	h̄m

�j��r�f�j��r� − �h̄m
�j��r�f�j��r��F


� 	h̄m�
�j���r��f�j���r�� − �h̄m�

�j���r��f�j���r���F
�F
.

�3.37�

f P is independent of F, we get

	KG�
obj
mm�

�j,j��
=� d2r� d2r� h̄m

�j��r�h̄m�
�j���r���	f�j��r� − f̄�j��r�


�	f�j���r�� − f̄�j���r��
�F

=� d2r� d2r� h̄m
�j��r�h̄m�

�j���r��Kf
�j,j���r,r��,

�3.38�

here Kf
�j,j���r ,r�� is the spatiotemporal autocovariance

unction of the object, sampled at discrete time points:

Kf
�j,j���r,r�� � Kf�r,r�,t,t���t=tj,t�=tj�

= �	f�j��r� − f̄�j��r�
	f�j���r�� − f̄�j���r��
� .

�3.39�

he interpretation of Eq. (3.38) is that KG�
obj is the object

utocovariance function mapped through the ensemble-
verage CD imaging system to the final image sequence
rom the science camera. Some useful analytic forms for
he autocovariance function are given in Appendix A.

When P is independent of F, the object and PSF terms
an usefully be combined. Adding Eqs. (3.36) and (3.38)
nd doing some algebra, we get
	K̄Ḡ
PSF + KG�

obj

mm�

�j,j��
=� d2r� d2r��f̄�j��r�f̄�j���r��	Kh


mm�

�j,j�� �r,r��

+ h̄m
�j��r�h̄m�

�j���r��Kf
�j,j���r,r��

+ 	Kh

mm�

�j,j�� �r,r��Kf
�j,j���r,r���, �3.40�

here

	Kh

mm�

�j,j�� �r,r�� � �	hm
�j��r� − h̄m

�j��r�
	hm�
�j���r�� − h̄m�

�j���r��
�P
.

�3.41�

ow the PSF and object enter symmetrically into the
verall covariance, reflecting the fact that we can do the
verages over P and F in either order if they are indepen-
ent. Note, however, that the autocovariance of the dis-
retized PSF is more complicated than the object autoco-
ariance since hm

�j��r� depends on a pixel index m in
ddition to the spatial variable r and the discretized time
ndex j.

Various special cases of Eqs. (3.36), (3.38), and (3.40)
an be given. If the object is independent of time, as it of-
en is in astronomy, the superscripts j and j� can be
mitted on f�·� everywhere and on Kf. On the other hand,

f the object is temporally stationary, then Kf
�j,j���r ,r��

Kf
�j−j���r ,r��. Similarly, if the atmospheric statistics are

emporally stationary, we can omit the superscript on

m�r� and regard the average over P in Eq. (3.36) as a
unction of j− j�. To combine these cases, if the atmo-
pheric statistics are temporally stationary and the object
s either nonrandom, time-independent (but spatially ran-
om), or temporally stationary, then both the object and
SF terms depend on j− j�.
An important practical situation is that when the im-

ge detector in the science camera does not introduce
ixel-to-pixel correlations, the object is independent of
ime, the atmospheric statistics are temporally station-
ry, and the PSF is independent of the object; if all of
hese conditions are satisfied, the overall covariance can
e written in component form as

	KG

mm�

�j,j�� = 	�m
2 + g�m
�mm��jj� + 	K̄Ḡ

PSF

mm�

�j−j��
+ 	KG�

obj
mm�
.

�3.42�

. TASK PERFORMANCE IN
STRONOMICAL ADAPTIVE OPTICS

n this section we consider three important tasks that
rise in astronomical imaging: detection of point objects
n a random background, detection of faint companions
uch as exoplanets, and photometry. For each task, we
riefly discuss how it is performed in current practice,
nd then we discuss statistically optimal approaches that
ake use of the formalism developed above. For each

ask, two distinct outcomes are obtained: expressions for
ask-based figures of merit for assessment of image qual-
ty and methods that might be useful for actually per-
orming the tasks. Computational aspects are treated in
ection 5.
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. Detection of Point Objects on a Random Background
he detection of point sources is an essential task in ob-
ervational astronomy.33 Increasing sensitivity to point
ources permits detection of fainter objects up to a given
istance or the detection of objects of a given luminosity
t larger distances. Applications inside the solar system
nclude the early detection of near-earth asteroids, as well
s Kuiper-belt and other trans-Neptunian objects. In stel-
ar astronomy, it is of interest to detect free-floating
rown dwarfs and planets, which may make up a sub-
tantial fraction of the missing dark matter. Point-source
etection is also relevant to the detection of extragalactic
bjects such as quasars or active galactic nuclei, which
re unresolved even with the largest available apertures.
Point-source detection is strongly influenced by the

ackground. A spatially uniform diffuse background cre-
tes Poisson noise that interferes with the ability of any
bserver to perform the detection, and spatial inhomoge-
eities as in galactic cirrus or dense unresolved star fields
an cause spurious peaks that lead to false alarms in the
etection task. Even isolated nearby stars can cause false
larms if their PSFs overlap the site of a potential detec-
ion; the effect of the PSF is random because the luminos-
ty and precise location of the interfering star are random
or at least unknown to the observer) and the PSF itself is
andom because of noise in the wavefront sensor and un-
orrected atmospheric effects.

. Current Practice
he standard imaging practice in observational as-
ronomy consists of obtaining one or several images of the
bject of interest, together with other images that are
eeded for the image processing. These include dark im-
ges, which are obtained with the shutter closed, and flat
elds, which are obtained with uniform illumination on
he sky or of a screen inside the telescope dome. The dark
mages reveal structure in the detector readout noise and
re subtracted from the object frames. The flat fields are
sed to determine the detection sensitivity across the
eld of view. The dark image is subtracted from the flat
eld, and the object images are divided by the result. Me-
ian filters may be applied to sequences of dark images
nd flat fields to obtain smoother estimates.
The mean and variance of the sky background are usu-

lly estimated before source detection is attempted. This
nformation may be obtained either from an image or se-
uence of images of a source-free field or by median filter-
ng the actual image of the object. Variations of the sky
ackground over the image may be estimated by dividing
he image into regions called tiles and estimating the sky
ackground in each tile by median filtering.
For observation at near-infrared wavelengths (as is the

ase for most current AO systems), the sky background is
trong and variable. For broadband observations at wave-
engths shorter than 2 �m, an important component of
he background is dominated by emission from hydroxyl
adicals in the ionosphere, which vary due to the passage
f gravity waves.34 Longward of 2 �m, the background is
ominated by thermal emission from the sky and tele-
cope. In the far infrared, background due to thermal
mission from galactic dust clouds has a fractal-like spa-
ial structure.35
The thermal background from the telescope and sky is
sually removed by chopping and nodding; chopping re-
ers to rapidly interchanging the field of view on and off
he object, usually by rocking the telescope secondary
irror at several hertz. However, the telescope back-

round estimated from the off-object measurements will
ot be identical to the background at the object, so the
elescope is moved periodically (nodded) so that the new
ff-object position corresponds to the previous on-object
osition. This process will introduce artifacts if there are
bjects present in the regions of interest or if the object is
arger than the chop throw. Bertero et al.36 describe a
ourier-based algorithm to restore nodded and chopped

mages that can remove these artifacts.
After the noise in the image is estimated, objects are

sually detected by searching for pixels that are higher
han the background by some amount, say three standard
eviations. Extended objects are then detected by finding
onnected pixels that are significantly higher than the
oise.37 A more sophisticated approach involving wavelet
ransforms has been proposed38 but does not seem to be
tandard practice.

. Spatiotemporal Hotelling Observer
hough the current practice in astronomy certainly recog-
izes the importance of background in point-source detec-
ion, little attention has been given to optimal detection
lgorithms that incorporate information about the spatial
nd temporal correlations of the background or knowl-
dge of the statistics of the random PSF. The Hotelling ob-
erver provides a rigorous framework for doing so.

In contrast to the purely spatial Hotelling observer de-
cribed in Subsection 2.C, however, the Hotelling observer
or astronomy should be spatiotemporal. The raw data in
ost astronomical observations are a sequence of frames

rom a CCD camera or other electronic detector, but these
rames are almost always summed, after various correc-
ions as described above, to get a single image that is used
or the science task. There is no reason in principle to be-
ieve that this summation preserves the information con-
ent of the data, defined in terms of ability of an ideal ob-
erver to perform the task. If the task will be performed
y a human observer, however, a long sequence of indi-
idual frames is of little use, so some form of summation
s required. In what follows we discuss the optimal spa-
iotemporal Hotelling observer applied to an image se-
uence and show how it can be used to provide a single
ummed image for direct observation, without loss of in-
ormation. Suboptimal summation methods are also dis-
ussed for comparison.

By analogy to Eq. (2.17), the Hotelling test statistic for
triply stochastic image sequence is

tHot�G� = WtG = 	G
�

1 − G
�

0
t

Kav
−1G,

Kav � 1
2	KG�H1

+ KG�H0
 . �4.1�

ote that the template W is itself an image sequence.
An important special case is where the signal is weak,

o that the spatiotemporal covariance matrix is the same
nder both hypotheses (signal-present and signal-absent)
nd given in general by Eq. (3.30). Since the noise term in
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he covariance matrix is diagonal, as shown by Eq. (3.34),
he inverse needed to compute tHot�G� exists. Practical
ays of finding (or avoiding) the inverse are discussed in
ection 5; for now, we simply proceed as if the inverse
ere known.
The Hotelling test statistic for a weak spatiotemporal

ignal is

tHot�G� = �
m=1

M

�
m�=1

M

�
j=1

J

�
j�=1

J

s�m
�j�	KG

−1

mm�

�j,j��
gm�

�j��, �4.2�

here s�m
�j� is the mean signal at pixel m in frame j. The

veraging implied by the double overbar here is over mea-
urement noise and an ensemble of PSFs. Often we will
ant to consider the signal that we want to detect as ran-
om, and in those cases a third overbar can be added to
ccord with Eq. (4.1).
We see from Eq. (4.2) that the ideal linear detection

trategy is to do a spatiotemporal prewhitening operation
ollowed by a matched filter with the mean signal. The
orresponding Hotelling detectability is given by [cf. Eq.
2.18)]

SNRHot
2 = �

m=1

M

�
m�=1

M

�
j=1

J

�
j�=1

J

s�m
�j� 	KG

−1

mm�

�j,j��
s�m�

�j��. �4.3�

If we assume that the object to be detected is indepen-
ent of time and that the PSF statistics are temporally
tationary, the mean difference signal is independent of j,
nd we can write its value at the mth pixel simply as s�m.
he interpretation is that s�m is the image of the signal ob-

ect blurred by the long-term average of the partially cor-
ected PSF and with measurement noise averaged out.
ote that this signal can be random, so long as its en-

emble mean is independent of time. In that case, we can
ewrite Eq. (4.2) as

tHot�G� = �
m=1

M

s�m gm
�pw�,

gm
�pw� � �

m�=1

M

�
j=1

J

�
j�=1

J

	KG
−1


mm�

�j,j��
gm�

�j��. �4.4�

he set �gm
�pw�� or the vector g�pw� represents a single frame

f prewhitened data; after the spatiotemporal prewhiten-
ng, it is easy to form the Hotelling test statistic for many
ifferent signals that one might seek to detect. In fact, the
ingle image g�pw� can also be presented to a human ob-
erver as an optimally preprocessed summary of the raw
mage sequence.

An alternative strategy, routinely used in astronomy, is
imply to sum the frames without the prewhitening step.
he test statistic for such a nonprewhitening (NPW) ob-
erver is given by

tnpw�G� = �
m=1

M

s�m gm
�npw�, gm

�npw� � �
j=1

J

gm
�j�. �4.5�

he Hotelling and NPW observers are equivalent (their
est statistics differ by an irrelevant constant factor) if
nd only if the data are independent and identically dis-
ributed both spatially and temporally. Correlations in ei-
her the pixel index m or the frame index j necessarily re-
uce the detection performance of the NPW observer
elative to that of the Hotelling observer; such correla-
ions can arise from either the PSF term or the object
erm in the data covariance.

. Signal-Known-Exactly Detection on a Uniform
ackground
o illustrate the spatiotemporal Hotelling observer, con-
ider the detection of a nonrandom point object on a sky
ackground that is spatially constant over the field of
iew but can vary randomly with time over the duration
f the observation. The autocovariance function for the
bject in this case is discussed in Appendix A.

The PSF term in the covariance can usually be ne-
lected in this problem. To see this point, we assume that
he background is spatially constant at the random time-
arying value C�t� and rewrite Eq. (3.36) as

	K̄Ḡ
PSF


mm�

�j,j��
= 	C̄2 + KC�tj,tj��
 � d2r� d2r��	hm

�j��r� − h̄m
�j��r�


�	hm�
�j���r�� − h̄m�

�j���r��
�P

= 	C̄2 + KC�tj,tj��
��� d2rhm
�j��r� −� d2rh̄m

�j��r�

��� d2r�hm�

�j���r�� −� d2r�h̄m�
�j���r��
�

P

. �4.6�

e note from Eq. (3.5), however, that �d2rhm
�j��r� is a non-

andom constant so long as �d2r p�j��rd ,r� is a constant,
hich it is whenever the underlying continuous PSF is

soplanatic. Thus, if the atmosphere can be modeled as a
hin phase plate in the pupil, the PSF term in the data
ovariance for a spatially constant background vanishes.
f there is substantial anisoplanatism, the PSF term is
ot identically zero, but it should be small since the image
f a constant background should be nearly constant in
ny practical case.
The mean PSF is still important, however, since it de-

ermines the signal to be detected. For a time-
ndependent point object of known luminosity at a known
ocation [the so-called signal-known-exactly (SKE) task],
he signal part of the object distribution is fs�r�
As��r−rs�. In general the corresponding mean signal in

he data will depend on j through h̄m
�j��r�, but if the atmo-

phere is temporally stationary, the mean signal at the
th detector pixel is

s�m = Ash̄m�rs�. �4.7�

We also assume that all detector elements are identi-
al, so that the variances of the electronic noise and the
oisson noise from the uniform background are indepen-
ent of m. With Eqs. (3.42), (A10), and (3.38), the overall
ovariance matrix is

	KG

mm�

�j,j�� = ��2 + �C̄��mm��jj� + �2KC�tj,tj��, �4.8�

here ���d2r h̄m�r�, which can be interpreted as the flat-
eld image; � is independent of m if the system is
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soplanatic and the detector elements are identical.
It is shown in Subsection 5.B that the inverse covari-

nce has the form

	KG
−1


mm�

�j,j�� = ��2 + �C̄�−1�mm��jj� − Q�j,j��, �4.9�

here Q�j,j�� is defined by Eq. (5.16). With Eqs. (4.2), (4.7),
nd (4.9), the Hotelling test statistic can be written as

tHot�G� =
As

�2 + �C̄
�
m=1

m

�
j=1

J

h̄m�rs�	gm
�j� − �Ĉ�j�
 , �4.10�

here

�Ĉ�j� � ��2 + �C̄� �
m�=1

M

�
j�=1

J

Q�j,j��gm�
�j��. �4.11�

he interpretation of Eq. (4.10) is that the data are first
reprocessed by subtracting the estimate �Ĉ�j� of the
ackground in each frame and then passed through a
atched filter. The background estimate is found, accord-

ng to Eq. (4.11), by summing over all pixels in each frame
nd also doing a weighted sum over correlated frames,
ith the weighting specified by Q�j,j��. The resulting test

tatistic is optimal in terms of task performance; for de-
ection of a nonrandom point object on a time-varying but
patially uniform background by a linear observer, the
est statistic defined in Eq. (4.10) gives the largest Hotell-
ng detectability and, to a good approximation, the largest
rea under the ROC curve.
From Eqs. (4.3), (4.7), and (4.9), the Hotelling detect-

bility for this task is given by

SNRHot
2 = As

2 �
m=1

M

�
m�=1

M

�
j=1

J

�
j�=1

J

h̄m�rs�	KG
−1


mm�

�j,j��
h̄m��rs�

=
JAs

2

�2 + �C̄
�
m=1

M

	h̄m�rs�
2

− As
2��

m=1

M

h̄m�rs�
2

�
j=1

J

�
j�=1

J

Q�j,�j�. �4.12�

he last line represents the reduction in detectability
rom having to estimate the background, even when that
stimation is done optimally. It can be shown, however,
hat this term varies asymptotically as M−1, where M is
he number of pixels in a frame and hence, in this prob-
em, the number of pixels that can be averaged to get an
stimate of the background. Thus

SNRHot
2 �

JAs
2

�2 + �C̄
�
m=1

M

	h̄m�rs�
2
�M large�, �4.13�

hich is exactly the expression that would be obtained if
he background were nonrandom and known to the ob-
erver.

Several important conclusions can be drawn from rela-
ion (4.13). Obvious ones are that the detectability is
arger for stronger sources, more frames, and less elec-
ronic noise. We see also that the detectability is propor-
ional to the sum of the squares of the discretized mean
SF values; since this sum increases with the Strehl ratio
f the system, it can be used to quantify the effect of un-
orrected atmospheric blur on the flat-background SKE
etectability.
Another consequence of the sum over m is that the de-

ectability can be high even if no single pixel exceeds the
oise level; detection by a Hotelling observer is deter-
ined by the noise in the test statistic tHot�G�, and it is

nly the SNR of that quantity that matters, not the pixel
NR. The Hotelling SNR can be much better than the
ixel SNR because of the optimal summation across pix-
ls. Indeed, the human observer also does a very good job
f summing over pixels, a fact that was known already to
lbert Rose in 1950 and has been very well verified in the
ecades since then.39

Since data from multiple pixels are used by both hu-
an and Hotelling observers, it follows that there is no

isadvantage in detection performance to using small de-
ector pixels; if more pixels fit within the mean PSF, more
f them are used in forming the test statistic and the per-
ormance cannot decrease (at least for pure Poisson
oise). This contradicts the common view40 that oversam-
ling is bad because it decreases the SNR; it decreases
nly the irrelevant single-pixel SNR. There might be en-
ineering or economic arguments for using larger pixels,
ut they cannot be justified on grounds of detectability.

. Random, Nonuniform Backgrounds
KE detection tasks with random, spatially nonuniform
ackgrounds (so-called lumpy backgrounds) have played
n important role in developing realistic task-based fig-
res of merit in medical imaging,1,6–9 and they should
rove equally useful in astronomy. The important differ-
nce, however, is that the PSF term varies randomly with
ime in astronomy; therefore, as we shall see, the correla-
ions are spatiotemporal even for a temporally constant
ackground.
When the PSF is independent of the object, the PSF

erm in the data covariance is given by Eq. (3.36). An im-
ortant special case is when the time-independent back-
round is spatially stationary (or at least approximately
o over the field of view), so that �f�r� f�r���= f̄ 2+Kf�r ,r��.
y the same argument as that used in Eq. (4.6), the term
roportional to f̄2 in Eq. (3.36) vanishes identically if the
ontinuous PSF is isoplanatic, and it should be small in
ost practical cases. If the PSF is also temporally station-

ry, Eq. (3.36) becomes

	KḠ
PSF
mm�

�j−j��
� � d2r� dr�Kf�r − r���	hm

j �r� − h̄m�r�


�	hm�
�j���r�� − h̄m��r��
�P. �4.14�

his expression is zero if the PSF is nonrandom (perfect
O system), and it is often small by the argument below
q. (4.6) if the background is spatially uniform but of ran-
om level. More generally, spatiotemporal correlations re-
ult from an interaction of spatial background structure
nd a spatiotemporal PSF.
If we combine the object term with the PSF term as in

q. (3.40) and use the noise term from Eq. (3.34), we get
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	KG

mm�

�j−j�� = 	�2 + g�
�mm��jj� +� d2r� d2r�Kf�r − r��

��hm
�j��r�hm�

�j���r���P
. �4.15�

e have dropped the indices on g� to be consistent with
he assumptions of spatial and temporal stationarity, and
e have dropped the index on the electronic noise vari-
nce �2 on the assumption that all detectors are identical.
In most practical applications in astronomy, the spatial

orrelation length of the background is large compared
ith the field of view of the telescope, and any particular

ealization of the background might be well described by
constant plus a linear variation in brightness. In that

ase, the integral in Eq. (4.15) can be evaluated if the
eans and variances of the constant and linear terms are

nown.
Once the integral is performed, the evaluation of the

otelling test statistic and SNR requires a matrix inver-
ion. Common practice in image analysis is to approxi-
ate covariance matrices as block-circulant matrices
hen they arise from digital representations of stationary

andom processes. This approximation, which is reason-
ble if the correlation length of the random process is
mall compared with the image size, permits diagonaliza-
ion and inversion of the covariance by use of the discrete
ourier transform (DFT). Unfortunately the circulant ap-
roximation would rarely be applicable in the present
roblem because the correlation length is usually long. In
hat case the matrix in Eq. (4.15) is block-Toeplitz rather
han block-circulant, and the inverse can be performed
ith the help of methods discussed in Subsection 5.B. The
ethod of preconditioned conjugate gradients, in which

he circulant approximation to the Toeplitz is used only in
he preconditioner, may also be useful.41

However the inverse is performed, the resulting spa-
iotemporal prewhitening operation will, by definition,
erform an optimal linear compensation for the back-
round nonuniformity, consistent with the statistical in-
ormation built into it. No other linear operation, such as
ocal background estimation, can achieve better perfor-

ance.

. Detection of Faint Companions
ver 160 extrasolar planets have been detected in the de-

ade since the detection of a planet orbiting the star 51
eg.42 Most of these planets have been detected by spec-

roscopic monitoring of radial velocity variations of the
arent stars. Some planets have also been detected by the
bservation of transits of the planet behind the parent
tar43 and “anomalous” microlensing events.44

Recently, direct images of what appear to be substellar
bjects have been obtained by using the adaptive optics
ystem on the Very Large Telescope. In both of these de-
ections, the companion object was approximately
.7 arcsec from the central star, which was about ten
imes the diffraction limit, and approximately 6 mag
ainter than the central star (in the K band). The central
tar in the detection by Neuhauser et al.45 is a young T
auri star, and the companion mass is not tightly con-
trained [1–42 Jupiter masses (MJup)]. This companion
ay therefore be a brown dwarf rather than an exoplanet.
he detection of Chauvin et al.46 does seem to be an ex-
planet, as they constrain the mass to 5±2 MJup (the
oundary mass between brown dwarf and exoplanet is
ontroversial but is in the region of 12 MJup). The central
tar in this detection is itself a brown dwarf, which
reatly reduces the magnitude difference with the ex-
planet. Direct detection of exoplanets nearer to the dif-
raction limit around main-sequence stars is much more
ifficult, as the ratio of the intensities will be �109 at vis-
ble wavelengths and �106 in the near infrared.

. Current Practice
he limitation on direct detection of faint companions is
oise from the central star, but it is speckle noise associ-
ted with the random PSF rather than photon noise that
ominates.47,48 These speckles arise from uncorrected at-
ospheric aberrations and slowly varying telescope or in-

trumental aberrations. There is a lot of work going on in
he development of techniques to suppress the speckles by
sing coronography and pupil masks.49

A promising approach to removing the speckles is si-
ultaneous differential imaging (SDI). Images are ac-

uired simultaneously in at least two adjacent passbands,
n one of which the companion is expected to be dim or ab-
ent. If the images are subtracted, then the speckle struc-
ure should be practically identical and the detection of
ny companions is limited by photon noise. A suitable
avelength is 1.6 �m, which corresponds to the methane
bsorption band found only in cold atmospheres. A critical
ssue with this technique is the minimization of non-
ommon-path errors between the different wavelength
hannels.50

. Covariance Terms
s the discussion above indicates, the dominant covari-
nce term limiting the detection of faint companions is
ikely to be the PSF term, since it is this term that de-
cribes the speckle pattern. We know from Eqs. (3.35) and
3.36) that the PSF term involves an average over random
bjects, where the object in this problem includes the com-
anion (under the signal-present hypothesis), the host
tar, light from the host star scattered by a circumstellar
ust cloud, and any other background that might be
resent. For the purpose of the PSF term, however, we
an assume that the host star is far brighter than any
ther light source in the field of view. If we also assume
hat the host star is nonrandom, with a known luminosity
nd position, then no averaging over random objects is
eeded to construct the PSF term. To be specific, if the
ost star is described by f��r�=A���r−r��, with A� and r�

xed and known to the observer, then the PSF term is
iven from Eq. (3.35) as

	K̄Ḡ
PSF
mm�

�j,j��
=A�

2�	hm
�j��r�� − h̄m

�j��r��
	hm�
�j���r�� − h̄m�

�j���r��
�P

=A�
2	Kh


mm�

�j,j�� �r�,r��. �4.16�

The noise term, though likely to be weak in this appli-
ation, should be included for a complete theory. The noise
s uncorrelated, as shown in Eq. (3.34), but nevertheless
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he form of the average PSF plays a role since the noise in
he mth pixel includes Poisson fluctuations from light
riginating from the star and coupled into that pixel by
he average PSF. In addition, there are noise contribu-
ions arising from other background light and from elec-
ronic noise. If the electronic noise variance and the mean
umber of detected background photons are independent
f m and j, we get

	K�G
noise


mm�

�j,j��
= 	�2 + g�bg + A�h̄m

�j��r��
�mm��jj�. �4.17�

The object term in the data covariance does not include
he effects of the direct light from the host star, which is
ssumed to be nonrandom and known, but it does include
ight from random dust clouds and general sky back-
round. The background considerations are the same as
hose in Subsection 4.A, and dust clouds can be included
y simulation methods described in Subsection 5.A.

. Hotelling Observer
or a specified position rc where a companion might or
ight not be present, the mean signal in the Hotelling

ormulas is given by Āch̄m
�j��rc�, where Āc is the mean

rightness of possible companions. This mean brightness
nters into the final expressions for detectability but is
ust an irrelevant constant in the template.

Of course rc is not known a priori, so the Hotelling test
tatistic can be evaluated for a range of possible locations
nd the maximum chosen as the final test statistic to be
sed for the detection decision. If other data suggest pos-
ible locations, then the search over locations can be con-
trained accordingly.

If the observations cover a sufficient time that signifi-
ant movement of the companion might be expected, a
ully spatiotemporal Hotelling observer can be con-
tructed. For a particular assumed orbit, the function
c�t� will be known and the corresponding mean signal
ill be s�m

�j�= Āch̄m
�j�	rc�tj�
. For faint companions the covari-

nce matrix is independent of the orbit chosen, so it is
traightforward to compute the Hotelling test statistic for
set of possible orbits consistent with other data such as

adial velocity measurements.

. Simultaneous Differential Imaging
o adapt the Hotelling theory to SDI, we need one more
ndex on the data to indicate the spectral band. We denote
n observation at pixel m in frame j for band b as gbm

�j� ,
here b=1,2 if there are just two spectral bands. The
rst step in processing SDI data is to form the difference

mage, with components given by

�gm
�j� � g2m

�j� − g1m
�j� , �4.18�

nd the problem is to detect a companion from this new
ata set.
To simplify the analysis, we assume that the contribu-

ions to the data covariance from sky background, dust
louds, and any possible companion are negligible and
hat the brightness and position of the host are nonran-
om and known to the observer. With these assumptions
he object term in the covariance is zero.
The noise is assumed to be independent in the two
ands, so the noise variances add. With no background,
he same readout noise in all pixels of both detectors, and
emporally stationary atmospheric statistics, Eq. (4.17)
ecomes

	K̄�G
noise


mm�

�j,j��
= 	2�2 + A1�h̄1m�r�� + A2�h̄2m�r��
�mm��jj�,

�4.19�

here h̄bm�r� is the mean sensitivity function and Ab� is
he brightness of the host star for band b. One overbar on

has been deleted, since averaging over random objects
s not needed.

The PSF term for the difference data is defined by

	K
�Ḡ
PSF
mm�

�j,j��
� �	�ḡ − ��ḡ�P
m

�j�	�ḡ − ��ḡ�P
m�

�j���
P

.

�4.20�

or a nonrandom point object and a wavelength-
ependent PSF,

	�ḡ − ��ḡ�P
m
�j� = A2�	h2m

�j� �r�� − h̄2m�r��

− A1�	h1m

�j� �r�� − h̄1m�r��
 , �4.21�

ut the usual assumption in SDI is that the PSF is inde-
endent of wavelength. In that case, we find that

	K
�Ḡ
PSF
mm�

�j,j��
= �A2� − A1��2	Kh


mm�

�j,j�� �r�,r��. �4.22�

omparing this result with Eq. (4.16), we see that the
SF term has the same form but is reduced in magnitude
y �A2�−A1��2 /A�

2.
The signal from the faint companion is also reduced. If

e denote the object function for the companion in band b
s fbs�r�, then

�s�m =� d2rh̄m�r�	f̄2s�r� − f̄1s�r�
 . �4.23�

Thus the noise is doubled in forming the difference im-
ge (compared with a single image with the same mean
umber of photons), the PSF term in the covariance is re-
uced by a potentially large factor, and the mean signal is
lso reduced. The signal and both terms in the covariance
re reduced further by the need to use narrowband filters
n SDI. The net gain or loss in detectability can be deter-

ined by comparing the Hotelling SNR2 values for the
wo data sets G and �G and comparing both with the
NR2 for data obtained over a broader spectral range.

. Photometry
stronomers are interested not only in detecting objects
ut also in determining the flux coming from them. By es-
imating flux, and in particular estimating the flux in dif-
erent wavelength ranges (i.e., the color), they can deter-
ine physical properties (temperature, age, mass, etc.) of

he object in question.
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. Current Practice
he estimation of flux from images, which is referred to
s photometry, is usually carried out in one of two ways:
perture photometry or PSF fitting. In aperture photom-
try the flux in an area including the object is summed,
nd an estimate of the background is subtracted. The
ackground estimate is obtained simply by summing the
ux inside an aperture where no objects are believed to be
resent. The aperture used to estimate the background is
sually an annulus around the object.
Aperture photometry will not work in crowded fields,

nd in this case it is usual to employ PSF fitting. In this
pproach a model of the objects in the field is fitted to the
ata. This requires accurate knowledge of the PSF and is
omplicated if the PSF varies over the field. Esslinger and
dmunds51 simulated crowded fields with PSFs from a

eal AO system and used a standard photometry package,
AOPHOT, to estimate stellar magnitudes by PSF fitting.
hey found that even when using the correct PSF in fit-
ing, the rms error in magnitude determination was as
igh as 0.1 mag for densities lower than a few stars per
quare arcsecond, and they concluded that they cannot
et good photometric precision in crowded fields. They
lso tested the photometry of simulated faint companions
y means of deconvolution and found that deconvolution
ave worse results than PSF fitting.

. Spatiotemporal Wiener Estimator
ince aperture photometry makes questionable assump-
ions about the background, and PSF fitting breaks down
n crowded star fields, it is reasonable to investigate lin-
ar methods like the Wiener estimator that incorporate
tatistical models of the background.

The Wiener estimator for a doubly stochastic spatial
roblem was given in Eq. (2.19), and the associated en-
emble mean square error (EMSE) was given in Eq.
2.20). For estimation of a parameter ��F� from triply sto-
hastic spatiotemporal data, these equations generalize to

�̂ =�̄ + K�,GKG
−1	G − G

�
 , �4.24�

EMSE = tr K� − tr K�,GKG
−1K�,G

t . �4.25�

Calculation of the grand mean G
�

and the two covari-
nces KG and K�,G must now include the fact that � is
andom. Since � is a function of F, we can write

�¯�F
= ��¯�F����

, �4.26�

nd the grand mean is

G
�

= ����G�G�P,F�P�F�F����

� �G
�

���
. �4.27�

e do not add a fourth overbar, since there are still fun-
amentally just three sources of randomness: measure-
ent noise, PSF, and object.
If � is an N�1 vector and G is MJ�1, then the cross-

ovariance K is an N�MJ matrix given by
�,G
K�,G = ����	� − �̄
	G − G
�
t�G�P,F

�
P�F
�

F��
�

�

= �	� − �̄
	G
�

� − G
�
t�

�
. �4.28�

useful form of the overall covariance KG is obtained if

e add and subtract G
�

� in definition (4.27) and then use
q. (4.26):

KG = ����	G − G
�
	G − G

�
t�G�P,F
�

P�F
�

F��
�

�

= �KG����
+ �	G

�
� − G

�
	G
�

� − G
�
t�

�
, �4.29�

here

KG�� ����	G − G
�

�
	G − G
�

�
t�G�P,F
�

P�F
�

F��
. �4.30�

. Estimating the Luminosity of a Star at a Known
ocation
o illustrate the use of the Wiener estimator, consider the
roblem of estimating the luminosity of a star at a known
ocation on a time-independent random background fbg�r�.
he star of interest will be described by f��r�=���r−r��
here the scalar � is the parameter to be estimated.
For this problem, the conditional mean in component

orm is

	G
�

�
m

�j�
=� d2r h̄m

�j��r�	f̄bg�r� + ���r − r��


=� d2r h̄m
�j��r�f̄bg�r� + �h̄m

�j��r��, �4.31�

nd the grand mean is

	G
�
m

�j�
=� d2r h̄m

�j��r�f̄bg�r� + �̄ h̄m
�j��r��. �4.32�

rom these results and Eq. (4.28), the cross-covariance
ecomes simply

	K�,G
m
�j� = ��

2h̄m
�j��r��, �4.33�

here the terms involving f̄bg have canceled and the
ross-covariance has only a single pair of indices �m , j�
ince � is a scalar.

The last term in Eq. (4.29) is given by

��	G
�

� − G
�
	G

�
� − G

�
t�
�



mm�

�j,j��

= ��
2 h̄m

�j��r��h̄m�
�j���r��,

�4.34�

nd the overall covariance is

	KG

mm�

�j,j�� = 	�KG���
mm�

�j,j�� + ��
2h̄m

�j��r��h̄m�
�j���r��. �4.35�

he details of the first term depend on the background
odel chosen.
If the atmospheric statistics are stationary, we can drop

he superscript on h̄�j� and write Eq. (4.24) as
m
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�̂ =�̄ + ��
2 �

m=1

M

h̄m�r��	gm
�pw� − g�m

�pw�
 , �4.36�

here gm
�pw� is defined in Eq. (4.4) and, from Eq. (4.32),

g�m
�pw� � �

m�=1

M

�
j=1

J

�
j�=1

J

	KG
−1


mm�

�j,j���� d2r h̄m��r�f̄bg�r�

+ �̄h̄m��r��
 . �4.37�

Use of Eq. (4.36) requires prior knowledge of the mean
nd variance of � as well as knowledge of the mean and
ovariance of the data. If the prior variance ��

2→0, Eq.
4.36) shows that �̂→�̄; if we have no prior uncertainty, the
est estimate is the prior mean. In more realistic cases, ��

2

ontrols the relative weights placed on the prior mean
nd a correction term computed by a prewhitening
atched filter. One way to choose �̄ and ��

2 is to first esti-
ate � by a conventional algorithm and to assign a real-

stic error to the result.
The EMSE that results from the optimal estimator

4.36) is

EMSE = ��
2 − ��

4 �
m=1

M

�
m�=1

M

�
j=1

J

�
j�=1

J

h̄m�r��	KG
−1


mm�

�j,j��
h̄m��r��.

�4.38�

he second term here is very similar to the expression in
q. (4.12) for detection of a point object; both are qua-
ratic forms in the mean signal, and both involve the in-
erse of the overall covariance matrix KG (though this
atrix is different in the two problems because of the ran-

omness of �). Increasing such a quadratic form increases
he SNR of the optimal linear discriminant and decreases
he EMSE of the optimal linear estimator. For more on
he connection between detection and estimation prob-
ems, see the first paper in this series.2

. COMPUTATIONAL METHODS
n this section we discuss the practical issues involved in
pplying the formalism developed above. In keeping with
he title of this paper, the primary goal is to develop meth-
ds of estimating task-based figures of merit for image
uality, but in fact the approaches used will also lead to
ays of actually performing the tasks.
The major practical difficulties for both the Hotelling

bserver and the generalized Wiener estimator fall into
wo categories: (1) determining various averages of the
ata (G with different numbers of overbars) and the three
omponents in a covariance decomposition like Eq. (3.30)
r Eq. (3.42); (2) actually computing figures of merit in-
olving matrix inverses as in Eq. (4.3) or Eq. (4.38). These
wo aspects are treated in Subsections 5.A and 5.B, re-
pectively.

. Finding the Means and Covariance Components
n categorizing the possible approaches to finding the
eans and covariance components for purposes of assess-
ent of image quality, we should first ask if the assess-
ent is to be carried out on a real imaging system, on a
imulated system, or purely theoretically. A simulated
ystem is advantageous since there we have the luxury of
imulating the various random effects separately, and in
articular we can simulate noise-free images. Fortu-
ately, numerous highly developed simulation codes are
ow available for AO,52–54 and much of the discussion be-

ow will assume that such code is available.
In a sense, a real imaging system is the ultimate simu-

ation; it is more realistic and far faster than any software
pproach to producing similar images. Though we cannot
turn off” noise or atmospheric degradations, we can ac-
umulate large numbers of images rapidly and therefore
et good statistical quality in covariance estimates. The
ain drawback to using real systems, however, is that we
ust build them first; often we would like to use objective
gures of merit to evaluate and optimize systems that do
ot yet exist.

. Means
ingle, double, and triple averages of the data are defined

n Eqs. (3.23), (3.24), and (3.26), respectively. In general,
ach of these averages depends on the hypothesis for a
lassification task or on the parameter value for an esti-
ation task. In a sense, only the final triple-bar average

s important in task performance, since that is the only
verage that appears in the final figures of merit, but the
wo others are needed to compute covariance components;
s the notation implies, K̄Ḡ

PSF is the average conditional
ovariance of the single-bar mean data (conditional on a
xed F and then averaged over F), while KG�

obj is the cova-
iance of the double-bar mean.

Key to computing both the double-bar and triple-bar
verages is the mean CD kernel h̄m

�j��r� [see Eqs. (3.24)
nd (3.26)]. As noted several times above, this mean ker-
el is independent of j if the atmosphere is temporally
tationary, but it depends on the seeing, as specified for
xample by the Fried parameter r0, and of course it de-
ends on the details of the AO system.
In principle, h̄m

�j��r� could be computed directly from the
ean continuous PSF by Eq. (3.25), and the mean PSF it-

elf could be found by averaging Eq. (3.17). This would re-
uire modeling the atmosphere, the noise on the output of
he detector in the wavefront sensor, the propagation of
he noise through the estimator and control system of Fig.
, the effect of the noisy control signals on the pupil wave-
ront, and finally the nonlinear relation between wave-
ront and incoherent PSF. A more practical approach is to
un one of the simulation codes mentioned above and
ompute a sample average. Alternatively, for an existing
maging system, the kernel can be obtained by imaging
n isolated bright star.
Finally, various analytical approximations to h̄m

�j��r� can
e found in the literature. Usually the approach is to as-
ume that the partially corrected mean PSF can be repre-
ented as a diffraction-limited core and a more or less uni-
orm halo of size determined by r0, with the relative
mount of light in each component determined by the
trehl ratio achieved by the closed-loop AO system. Such
ne-parameter descriptions risk oversimplification of a
ery complex system, but they may be adequate for com-
uting the triple-bar mean signal and the object term in
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he covariance. The Strehl ratio provides almost no infor-
ation about the PSF term in the covariance (except that

t vanishes as the Strehl ratio approaches unity).

. From Object Autocovariance Function to Data
ovariance Matrix
hen the PSF is independent of the object, the object

erm in the covariance can be computed in two steps:
irst calculate or estimate the autocovariance function of

he object, Kf
�j,j���r ,r�� as defined by Eq. (3.39), then use

he average response function of the system to transfer it
o the discrete data domain as in Eq. (3.38), thereby ob-
aining the contribution of the object randomness to the
ovariance matrix of the data. Note carefully the distinc-
ion between the autocovariance of the object (a function)
nd the contribution of the object variability to the co-
ariance of the data (a matrix). Note also that only the en-
emble average of the CD response function enters into
q. (3.38); we do not need knowledge of individual, ran-
om PSFs or response functions to compute the object
erm in the covariance.

There are numerous situations where the autocovari-
nce function of the object can be stated analytically. Ap-
endix A provides such expressions for three important
ases: a collection of independent stars or other point ob-
ects, a diffuse sky background modeled as a spatially sta-
ionary random process, and a spatially uniform sky
ackground that varies randomly with time. In all of
hese cases, it is straightforward to transfer the object
ariability through the imaging system by Eq. (3.38) and
o store the result for later use.

Similar advantages accrue if we consider either spa-
ially stationary backgrounds as in relation (A8) or tem-
orally stationary ones as in Eq. (A10). For example, if
he background is spatially stationary and time-
ndependent and the atmosphere is temporally stationary,
hen Eq. (3.38) becomes

	KG�
obj
mm�

�j,j��
=�

�

d2r�
�

d2r�h̄m�r�h̄m��r��Kf�r − r��.

�5.1�

f the PSF is isoplanatic over the portion of the detector
eeded for performing the task and all detector elements
re identical, then h̄m�r�= h̄�r−am�, where the mth pixel
s centered at r=am and the function h̄�·� is the same for
ll pixels. In that case standard Fourier manipulations
ield

	KG�
obj
mm�

�j,j��
=�

�

d2r�
�

d2r�h̄�r − am�h̄�r� − am��Kf�r − r��

=�
�

d2� Sf����H̄����2 exp	2�i� · �am� − am�
 ,

�5.2�

here H̄��� is the 2D Fourier transform of h̄�r� and, by
he Wiener–Khinchin theorem, the power spectral density
f��� is the Fourier transform of Kf�r�. Thus the covari-
nce matrix with these assumptions is a function of only
he single 2D vector am�−am, and it can be stored and dis-
layed as an image with just M pixels.

. Object Term: Sample Methods
ften no analytic autocovariance function will be avail-
ble but good simulation code will exist for generating re-
listic objects. For example, Refregier55 discusses efficient
ays of representing galaxies in terms of Hermite–Gauss

unctions.
Suppose that L sample objects are generated, with each

bject being a spatiotemporal sequence in general. Let the
th such object at time t= tj be denoted as fl

�j��r�. The simu-
ated noise-free image of this object through the
nsemble-average imaging system is given in component
orm by [cf. Eq. (3.24)]

g�lm
�j� =�

�

d2r h̄m
�j��r�fl

�j��r�. �5.3�

n a high-quality simulation, the integral in this expres-
ion will be approximated by sampling r on a discrete grid
ith a grid spacing that is small compared with the reso-

ution of the imaging system.
After L images have been simulated, the sample cova-

iance matrix, denoted K̂G�
obj, is computed from

�K̂G�
obj


mm�

�j,j��
=

1

L − 1�
l=1

L

�g�lm
�j� �g�lm�

�j�� ,

�g�lm
�j� � g�lm

�j� −
1

L�
l=1

L

g�lm
�j� . �5.4�

ince the images used here are generated by passing
oise-free sample objects through the ensemble-average
SF, this sample covariance is an estimate of the object

erm in the ensemble covariance, with no contribution
rom measurement noise or randomness in the PSF.

The sample covariance defined in Eq. (5.4) is an unbi-
sed estimate of KG�

obj, but it is not invertible since its rank
s at most L−1. The ensemble matrix in general has J2M2

lements, but the sample matrix is fully specified by LMJ
ixel values; it can be stored as L separate images (or im-
ge sequences), where in practice L can be a few hundred
r a few thousand. If the object is independent of time and
he atmospheric statistics are stationary, the object term
s independent of j and j�, so we can take J=1 and reduce
he storage and computation still further.

. Point Spread Function Term in the Covariance
iven the complexity of the random mechanisms in-
olved, a full theoretical treatment of the PSF term may
ot be possible. The only realistic approach may be simu-

ation, but even here theory will provide some simplifica-
ion in special cases.

Consider, for example, the problem of detecting faint
ompanions, where it can be argued that the object
mainly the host star) is nonrandom and the PSF term is
iven by Eq. (4.16). That expression can be estimated by a
ample covariance analogous to Eq. (5.4):
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�K̄ˆ Ḡ
PSF


mm�

�j,j��

=
A�

2

L − 1�
l=1

L

�hlm
�j� �r���hlm�

�j�� �r��,

�hlm
�j� �r�� � hlm

�j� �r�� −
1

L�
l=1

L

hlm
�j� �r��. �5.5�

he result needs to be stored only for m and m� such that
he corresponding pixel locations are within the width of
he PSF from the host star and, if the atmosphere is tem-
orally stationary, only for a few values of j− j�, so the
torage requirements are modest.

For random objects with independent P and F, we need
he second moment of the object in order to compute the
SF term in the data covariance by Eq. (3.36), and we
ave two simulation options. First, if an analytic form for
he second moment �f�j��r�f�j���r��� is known, it can be used
o generate Monte Carlo samples of r and r�, for example
y the rejection method.1 If we generate I such coordinate
airs, with the ith denoted �ri ,ri��, then

�K̄ˆ Ḡ
PSF


mm�

�j,j��

=
N
I �

i=1

I � 1

L − 1�
l=1

L

�hlm
�j� �ri��hlm�

�j�� �ri��
 ,

�5.6�

here the normalizing constant, defined by N
�d2r�d2r��f�j��r�f�j���r���, can often be computed analyti-

ally if the second moment is known. Storage of the result
ay be more onerous in this case than in Eq. (5.5), since

ixels m and m� could be rather far apart and still
oupled by the second moment; in that case, however, the
SF term would describe long-range, slowly varying cor-
elations, so it could be smoothed and sampled coarsely
or storage.

If we do not have an analytic expression for the second
oment but do have good object simulation code, we can

till use simulation methods to estimate the PSF term.
e can simulate L� objects, each a discretized version of

ome fl�
�j��r�, l�=1, . . . , L�. We can also generate L sample

SFs pl
�j��rd ,r�, l=1, . . . ,L, each of which is then dis-

retized by some approximation to Eq. (3.5) to generate a
ample kernel hlm

�j� �rn� and a noise-free sample image.
ow, however, the sample image is denoted ḡll�m

�j� instead
f g�lm

�j� as in Eq. (5.3) because only the measurement noise
as been averaged out and the result still depends on the
articular object l�. The PSF term is then estimated by
pproximating Eq. (3.36) as

�K̄ˆ Ḡ
PSF


mm�

�j,j��

=
apix

2

L� �
l�=1

L� � 1

L − 1�
l=1

L

�ḡll�m
�j�

�ḡll�m�
�j�� 
 ,

�ḡll�m
�j� � ḡll�m

�j� −
1

L� �
l�=1

L�

ḡll�m
�j� , �5.7�

here apix is the area of the pixel used in the simulation
f the object (preferably much smaller than the pixel in
he science camera).

A similar procedure can be used if P and F are not in-
ependent. In that case the simulated object must be used
s input to the simulation code for the PSF, and a more
omplicated average consistent with Eq. (3.35) must be
sed.
As a final comment on the PSF term, note that it de-

ends on the atmospheric statistics as specified by the
ried parameter r0; to be realistic, the value used should
e specific to the observing conditions. In fact, if the co-
ariances are to be used actually to perform the task in-
tead of just for objective assessment of image quality, a
easured value of r0 for the particular data being ana-

yzed could be used. Moreover, if r0 is monitored as a func-
ion of time during the data run, it can be used to con-
truct a temporally nonstationary covariance, which can
hen be used with a Hotelling observer or Wiener estima-
or; this observer would have knowledge of seeing as a
unction of frame index j and would, by definition, use
hat information in a statistically optimal way.

. Noise Covariance
nless we want to consider detectors with a built-in gain
echanism, such as intensified CCDs, the noise term in

he covariance is easy to evaluate. We see from Eq. (3.34)
hat the noise term is diagonal and that the diagonal el-
ments are determined by the electronic noise variance

m
2 and the triple-bar average image.
The electronic noise variance is a characteristic of the

cience camera and can be determined as a function of
ixel index m by analyzing dark frames. We frequently
ssumed above for simplicity that the result was indepen-
ent of m; this assumption may be adequate for assess-
ent of image quality but should be avoided for actual

ata analysis. Moreover, if any flat-fielding corrections
re to be used with real data, they should be applied be-
ore �m

2 is measured; uniform average response does not
uarantee uniform noise.

The contribution of Poisson noise to Eq. (3.34) is deter-
ined by the overall (triple-bar) mean image; the formal-

sm tells us that there is no need to know the Poisson
oise in an individual image. The requisite overall mean
an be determined by the same simulation methods men-
ioned above. An important point that will be used below
s that the resulting estimate of the noise term is full rank
ven if the number of samples is far less than M.

For analysis of real data, the Poisson contribution must
lso be modified to account for flat-fielding corrections.
or example, if the output of pixel m is multiplied by an
xperimental factor �m, then the Poisson part of the noise
erm becomes

	K�G
Pois


mm�

�j,j��
= �m

2 g�m
�j��mm��jj�. �5.8�

. Computing Figures of Merit
e turn next to the problem of evaluating or estimating

bjective figures of merit that involve inverses of very
arge covariance matrices. The possible approaches in-
lude (1) iterative computation of the Hotelling template,
2) Neumann-series matrix inversion, (3) use of the Wood-
ury matrix-inversion lemma, and (4) reduction of the di-
ensionality of the problem by various methods, includ-

ng channels and principal-components analysis (PCA).
ll of these methods make use of the decomposition of the
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ovariance matrix and the fact that the noise term is full
ank and usually diagonal, therefore easy to invert. The
ethods have all have been used extensively in medical

pplications, and all of them are described in detail in
hap. 14 of Barrett and Myers1 for purely spatial data;
ere we provide only a short summary and a discussion of
ays of extending the methods to spatiotemporal data.

. Iterative Computation of the Hotelling Template
rom Eq. (4.1), the spatiotemporal Hotelling template for
weak, nonrandom signal can be expressed symbolically

s

W = K−1S�, S� � G
�

1 − G
�

0, �5.9�

ith another overbar to be added to S for random signals.
n iterative algorithm that solves for the template in the
urely spatial case has been used in medical imaging,1,19

nd its spatiotemporal generalization is

Ŵn+1 = Ŵn + �	K�G
noise
−1	S� − KGŴn
 . �5.10�

here Ŵn is the estimate of the template at the nth itera-
ion and � is a constant that controls the convergence
ate. Note that if convergence is achieved, the steady-
tate solution satisfies Eq. (5.9).

After N iterations, the estimated template is ŴN, and
he corresponding estimate of the Hotelling detectability
s just the scalar product:

SNR̂Hot
2 = S�tŴN. �5.11�

lternatively, the template can be applied to two sets of
imulated image sequences, with and without the signal
f interest, to generate two corresponding sets of test sta-
istics from which an ROC curve can be constructed. In
ither case, the errors in the final detectability estimates
eed to be assessed; methods of doing so are described in
arrett and Myers.1

. Neumann Series
he Neumann series is the matrix counterpart of the fa-
iliar rule for summing a geometric series. From the
eumann formula we can write

	D + B
−1 = 	I + D−1B
−1D−1 = ��
j=0

�

	− D−1B
j
D−1

= D−1 − D−1BD−1 + D−1BD−1BD−1 + ¯ ,

�5.12�

rovided that D−1 exists and the series converges uni-
ormly. If D−1 is known analytically, the inverse of
D+B
 can thus be written as a sum of matrix products
ith no inversion at all required.
To apply Eq. (5.12) to the problems considered in this

aper, we take D as the noise term in the data covariance
nd B as the sum of the object and PSF terms. Thus,
rom. Eq. (3.34),
	D−1

mm�

�j,j�� =
1

�m
2 + g�m

�j�
�mm��jj�, �5.13�

nd formulas for the Hotelling template, the Hotelling de-
ectability, and the EMSE of the Wiener estimator follow
eadily. For example, the detectability for a weak time-
ependent signal is

SNRHot
2 = �

m=1

M

�
j=1

J �s�m
�j��2

�m
2 + g�m

�j�

− �
m=1

M

�
m�=1

M

�
j=1

J

�
j�=1

J s�m
�j�	K̄Ḡ

PSF + KG�
obj


mm�

�j,j��
s�m�

�j��

��m
2 + g�m

�j����m�
2 + g�m�

�j���
+ ¯ .

�5.14�

he first term is just what we would get for detection on a
onrandom background [cf. Eq. (4.12)], and the second
erm is a first-order estimate of the decrease in detectabil-
ty (note the minus sign) arising from the spatiotemporal
ovariance of the object and PSF. Higher-order terms, not
hown, refine the estimate of object and PSF effects, and
he series will converge quickly if these effects are weak.
hus the Neumann approach is most applicable in the

ow-light situations often encountered in astronomy.
In spite of the quadruple sum, the second term of Eq.

5.14) might be relatively easy to compute. The sums over
ixel indices m and m� need to cover only those pixels
here the signal to be detected is nonzero, an area deter-
ined by the width of the uncorrected PSF. For example,

f the task is detection of a point object and the science
amera has 1000�1000 pixels, then M=106 and the
ouble sum in principle contains 1012 terms, but if an un-
orrected PSF covers only 1000 pixels, then there are only
06 nonzero terms in the double sum, a million-fold reduc-
ion in computation. Moreover, the double sum over j and
� reduces to a single sum if the signal, PSF, and back-
round are all temporally stationary random processes.

. Matrix-Inversion Lemma
he Woodbury matrix-inversion lemma states that

	A − UBV
−1 = A−1 + A−1UB	I − VA−1UB
−1VA−1

= A−1 + A−1U	I − BVA−1U
−1BVA−1.

�5.15�

his lemma is most useful when the perturbation term
BV has low rank, and we shall see two examples below
here this is the case. For other forms of the lemma and
good discussion, see Tylavsky and Sohie.56

One application of the matrix-inversion lemma is to the
roblem of detection of a known signal on a spatially uni-
orm background of random, time-varying level. The co-
ariance matrix for this problem, given in Eq. (4.8), is
J�MJ (where M is the number of detector pixels and
is the number of frames). To find its inverse, we use the

emma with U chosen as an M�1 array of blocks, each
lock being a J�J unit matrix (hence U is MJ�J), and
=Ut. Thus, for any J�J matrix T, UTV is an

J�MJ matrix with elements 	UTV
�j,j�� =T�j,j��. Note
mm�



a
t
(

w
m
f
a
t
s
d

l
a
v
a
t
W
l
w
(

w

F

�

T
n
t
w
t
d
a
c
m
F

4
A
i
t
c
c
t
c

d
t
t
a
i
A
t
t
m

n
t
d
fi
o
o
p
i
a
t
m
c
c
e
f
p
t
c
m

v
f
a
i
M
s

w
d
a
o
u
t
N

s
v
c
c
s
r
s
t
t
m

Barrett et al. Vol. 23, No. 12 /December 2006 /J. Opt. Soc. Am. A 3101
lso that VU=MIJ, where IJ is the J�J unit matrix. It
hen follows from Eq. (4.8) and the second form of Eq.
5.15) that

	KG
−1


mm�

�j,j�� = ��2 + �C̄�−1�mm��jj� −
�2

��2 + �C̄�2

���IJ +
M�2

�2 + �C̄
KJ�−1

KJ
�j,j��

� ��2 + �C̄�−1�mm��jj� − Q�j,j��, �5.16�

here KJ is a J�J matrix with elements KC�tj , tj��. The
atrix to be inverted in Eq. (5.16) is only J�J, so it is

easible to perform the inverse with standard linear-
lgebra packages. One might be tempted to assume sta-
ionarity and use a DFT for the inversion, but even with
tationarity KJ is Toeplitz and not circulant, so the DFT
oes not exactly diagonalize the matrix.
Another important application of the matrix-inversion

emma arises when we have approximated the PSF term
nd/or the object term in the covariance with sample co-
ariance matrices as in Eqs. (5.5)–(5.7). To illustrate the
pproach, consider the faint-companion problem where
he PSF term is estimated from L samples as in Eq. (5.5).
e also assume for simplicity that the object term is neg-

igible. Then, in a method suggested by Brandon Gallas,1

e can write the sample estimate of the PSF term, Eq.
5.5), as

K̄ˆ Ḡ
PSF = RRt, �5.17�

here R is an MJ�L matrix with elements

Rlm
�j� =

A�

�L − 1
�hlm

�j� �r��. �5.18�

rom the matrix-inversion lemma,

K�G
noise + RRt
−1

= 	K�G
noise
−1

− 	K�G
noise
−1

�R	IL + Rt	K�G
noise
−1

R
−1
Rt	K�G

noise
−1
. �5.19�

he advantage of this form is that only an L�L matrix
eeds to be inverted, where L is a few hundred or a few
housand in practice, rather than an MJ�MJ matrix,
here M may be 106. This inverse can then be used to es-

imate the Hotelling discriminant or the corresponding
etectability. Even though we are using sample covari-
nce matrices here, we are not reducing the Hotelling dis-
riminant to a Fisher discriminant; instead we are esti-
ating the Hotelling discriminant in a problem where the
isher discriminant does not exist.

. Dimensionality Reduction
common way of dealing with large covariance matrices

n automated signal detection and pattern recognition is
o combine the original measurements (MJ of them in our
ontext) into some much smaller set of numbers, often
alled features. If the features are linear combinations of
he data, then the feature extractor is a linear operator
alled a channel.
If N features are used, the Hotelling test statistic and
etectability can be computed by inverting an N�N ma-
rix. Though this method is very valuable in many prac-
ical settings, it is not recommended for assessment of im-
ge quality since there is no way of knowing how much
nformation has been lost in the dimensionality reduction.
t best, the resulting detectability is a figure of merit for

he combination of the feature-selection algorithm and
he imaging system, while the interest in objective assess-
ent is only in the latter.
Sometimes, however, it is possible to construct chan-

els such that the Hotelling detectability calculated for
he linear features is essentially the same as for the raw
ata; in this case the channels are said to be efficient. Ef-
cient channels for use in image-quality assessment can
ften be constructed by using strong prior knowledge that
ne would not necessarily have in actual signal-detection
roblems. For example, if we consider the task of detect-
ng a rotationally symmetric signal at a known location in

spatially isotropic random background, the templates
hat define the channels can be taken as rotationally sym-
etric functions. Moreover, if we know a priori that the

orrelation length of the background is relatively long, the
hannel functions can be broad and smooth. Such consid-
rations led to the use of a small set of Laguerre–Gauss
unctions as potentially efficient channels57 in medical
roblems, and a detailed simulation study58 showed that
hey could indeed be efficient. Alternatively, inefficient
hannels that accurately predict the performance of hu-
an observers can be used.59–61

Another way of reducing the dimensionality of a co-
ariance matrix is PCA. In essence, PCA amounts to per-
orming an eigenanalysis of a sample covariance matrix
nd discarding all eigenvectors except those correspond-
ng to the N largest eigenvalues. Thus, if we consider an

��M� sample covariance matrix K̂ formed from L
amples, it has an approximate spectral representation of

K̂ � �
n=1

N

�n
n
n
t � ���t �N 	 L − 1�, �5.20�

here, in the first form, K̂
n=�n
n, the �n are ordered by
ecreasing values, and the eigenvectors �
n ,n=1, . . . ,N�
re orthonormal and have dimension M��1. In the sec-
nd form, � is an M��N matrix with 
n as its nth col-
mn and � is an N�N matrix with the values of �n along
he diagonal. In practice PCA is most useful if we can take
�L−1.

To apply PCA to AO, we interpret K̂ as the sum of
ample estimates of the object and PSF terms in the co-
ariance decomposition and hence take M�=MJ. As dis-
ussed in Subsection 5.A, these sample estimates can be
omputed by noise-free simulation, and we can let the
imulation code run long enough to get the desired accu-
acy in the estimate. Then, for some L that is large but
till �MJ, we can use standard algorithms to solve for
he N eigenvectors with largest eigenvalues and use them
o simplify any of our formulas for objective figures of
erit.
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. SUMMARY AND CONCLUSIONS
ne goal of this paper was to show in detail how the prin-

iples of objective or task-based assessment of image
uality could be applied to the important practical prob-
em of adaptive optics (AO), especially in astronomy. A
econd goal was to use this application to extend the
ethodology of objective assessment itself by considering

patiotemporal systems with random point spread func-
ions (PSFs).

A continuous-to-discrete (CD) model of the imaging sys-
em was used throughout. In CD models, the object to be
maged is treated as a function of continuous variables,
ut the image is a discrete set of numbers or a finite-
imensional vector. The objects considered here were
patiotemporal functions of two spatial variables and the
ime, and the data were indexed by a pixel index m and a
rame number j. An immediate consequence is that a data
ector is huge, with MJ elements, where M is the number
f pixels in the image detectors ��106� and J is the num-
er of frames (often thousands in astronomy).
Since task performance must be measured in statistical

erms, the statistical properties of objects and images are
rucial. We therefore performed a general statistical
nalysis of a generic AO system. Though formal expres-
ions for the full multivariate probability density function
f the data were given, they were used mainly to compute
he mean vectors and covariance matrices needed to com-
ute performance on detection and estimation tasks with
inear observers. In particular, it was shown that the

J�MJ covariance matrix could be written rigorously as
sum of three terms, referred to as the noise, PSF, and

bject terms. The noise term was so called since it would
anish if there were no Poisson or readout noise in the
ata. Similarly, the PSF term would vanish if the PSF
ere nonrandom, as with a perfect AO system, and the
bject term would vanish if there were no random spatial
r temporal structure in the astronomical scene. In spite
f these designations, all three terms were affected by all
hree sources of randomness, especially in the case where
he guide star or other reference source for the AO system
as considered to be random and part of the object. For-
ulas were derived for each of the three terms in the co-

ariance expansion.
To illustrate various aspects of the theory, three specific

asks of astronomical interest were analyzed: detection of
weak pointlike object on a random background, detec-

ion of a faint companion, and photometry. The primary
bserver considered for the two detection tasks was the
deal linear discriminant, known in the objective-
ssessment literature as the Hotelling observer. The ob-
erver considered for the photometric estimation task was
he Wiener estimator, which is ideal in the sense that it
inimizes the ensemble mean square error among all lin-

ar and globally unbiased estimators. Like the Hotelling
iscriminant, the Wiener estimator requires knowledge of
he ensemble covariance matrix and the ability to invert
t.

Several methods were presented for estimating each of
he three terms in the covariance matrix. The noise term
s the easiest to handle since in almost all practical cir-
umstances the noise is uncorrelated from pixel to pixel or
rame to frame. Thus the noise covariance is at least di-
gonal and often simply a multiple of the MJ�MJ iden-
ity matrix. The random object and PSF, on the other
and, introduce complicated spatiotemporal correlations.
ome cases where the object term could be expressed ana-

ytically were discussed, and sample methods for approxi-
ating that term in other cases were presented. At the

resent state of our understanding of AO systems, no ana-
ytic model for the PSF term in the covariance is avail-
ble, but sample methods are straightforward.
Because of the presence of the diagonal noise term, the

verall covariance is invertible in principle, even when
ample methods are used for the object and PSF terms.
everal practical algorithms for dealing with the inverse
nd computing figures of merit for task performance were
resented. Since the viability of all of these algorithms
as been established with purely spatial data in the
edical-imaging literature, there is little doubt of their

racticality for spatiotemporal data from AO systems.
The main conclusion of this paper, therefore, is that a

igorous statistical, task-based assessment of image qual-
ty in AO is possible and that the time is ripe for its ap-
lication.

PPENDIX A: ANALYTIC
UTOCOVARIANCE FUNCTIONS FOR
ANDOM OBJECTS
s we saw in Eq. (3.38), the object term in the spatiotem-
oral covariance matrix can be interpreted as a transfor-
ation of the autocovariance function of the object ran-

om process through the ensemble-average imaging
ystem. In this appendix we provide analytic expressions
or the object autocovariance function for three situations
f practical interest in astronomy.

. Star Fields
onsider a collection of time-independent point objects
escribed by

f�r� = �
n=1

N

An��r − xn�, �A1�

hich is a random process specified by 2N+1 random
uantities: the N amplitudes An, the N position vectors
n, and N itself. We assume that the positions are drawn

ndependently from some known PDF prx�xn�, that the
umber of points in some finite region of space is statisti-
ally independent of the number in any nonoverlapping
egion, and that the probability of two or more points ly-
ng in some small area �a goes to zero as �a→0; these
ssumptions would make f�r� a Poisson random process
ere it not for the random amplitudes An. We assume

hat the amplitudes are drawn independently from
rA�An� and that An is independent of xn.
The ensemble mean object is given by

f̄�r� =���
n=1

N

An��r − xn��
�An�,�xn��N

�
N

, �A2�

here the inner expectation is over the sets �An ,n
1, . . . ,N� and �x ,n=1, . . . ,N�, while the outer expecta-
n
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ion is over N. With the independence assumptions stated
bove,

f̄�r� =�N�
0

�

dAnprA�An�An�
�

d2xnprx�xn���r − xn��
N

= N̄�An�prx�r� = �An�b�r�, �A3�

here N̄��N� and b�r�, defined by

b�r� � N̄prx�r�, �A4�

an be interpreted as the mean number of point objects
er unit area at location r. For example, in a globular
luster it is common to assume that b�r�� �r−r0�−� for
ome positive number � and some range of distances from
he cluster center r0.

The autocorrelation function of f�r� is defined by

f�r�f�r���

=���
n=1

N

�
n�=1

N

AnAn���r − xn���r − xn���
�An��xn��N

�
N

.

�A5�

n the double sum, there are N terms for which n=n� and
2−N terms for which n�n�. With the independence as-

umptions we find that

�f�r�f�r��� = �N2 − N��An�2prx�r�prx�r��

+ �N��An
2� � d2xnprx�xn���r − xn���r� − xn�

= ��N
2 + N̄2 − N̄��An�2prx�r�prx�r��

+ N̄�An
2�prx�r���r − r��, �A6�

here �N
2 is the variance of N. In spite of the random am-

litudes, the independence assumptions imply that N is
oisson,1 so �N

2 =N̄.
The final autocovariance function is given by

Kf�r,r�� � �f�r�f�r��� − f̄�r�f̄�r�� = �An
2�b�r���r − r��.

�A7�

hus f�r� is uncorrelated with f�r�� for r�r�; the data pro-
uced by an imaging system will, however, be correlated,
ith the correlation length determined by the system

esolution. Neither the object nor the image data will be
patially stationary unless the point density b�r� is a con-
tant.

This analysis can be extended to the case where b�r� is
tself a random process,1 representing for example an en-
emble of globular clusters.

. Spatially Stationary Background Models
he autocovariance of the object can often be expressed
nalytically for a diffuse sky background with some ran-
om spatial structure. An example would be the light
cattered from galactic dust distributions, often referred
o as galactic cirrus.
If the random diffuse background is a wide-sense sta-
ionary random process, or at least approximately so over
he field of view in some astronomical study, it can be
pecified by its power spectral density Sf���, where � is a
D spatial-frequency vector (in image-plane coordinates).
f a functional form for Sf��� is known or can be estimated
rom observations, then the needed autocovariance func-
ion is readily obtained by a 2D Fourier transform
Wiener–Khinchin theorem). In the special case where the
ackground is isotropic, Sf��� depends only on the magni-
ude of �, denoted �, and the autocovariance is obtained
y a Hankel transform.
As an example, it is found35 that galactic cirrus in the

ar infrared has a power spectrum given approximately
y Sf�����−� over about a two-decade range in �; the ex-
erimental value found for � is about 3. This power-law
pectral density indicates a scale-invariant or fractal
tructure, but the experimental power spectra seem to ap-
roach a constant value rather than diverging as �→0. If
e avoid the divergence by taking Sf���� ��+�0�−�, the au-

ocovariance function needed in Eq. (3.39) is purely spa-
ial and given by

Kf�r,r�,t,t�� � 2��
0

�

�d� �� + �0�−�J0�2���r − r���,

�A8�

here J0�·� is the zero-order Bessel function of the first
ind. The parameters � and �0 can be estimated from ac-
ual data, and the integral can be performed numerically.

. Random Background Level
bove we considered a diffuse background with spatial
tructure but no time dependence; the opposite
ituation—no spatial variation but a time-dependent
ackground level—also occurs frequently in astronomy.
The background model in this case is simply

f�r,t� = C�t�, �A9�

here C�t� is a temporal random process specifying the
uctuating background level. The spatiotemporal autoco-
ariance function of f�r , t� is the same as the temporal au-
ocovariance of C�t�, denoted KC�t , t��. If C�t� is stationary,
ts ensemble mean �C�t�� is independent of time and can
e denoted C̄, and the autocovariance is a function only of
he time difference, so that KC�t , t��=KC�t− t��.

Two limits are of interest. If C�t� is stationary and suf-
ciently slowly varying that it is constant over one frame
f the science camera, Eq. (3.39) becomes

Kf
�j,j���r,r�� = KC�tj − tj��, �A10�

nd if it varies so slowly that it is constant over the entire
tudy, then

Kf
�j,j���r,r�� = �C

2 , �A11�

here �C
2 is the variance of C. Even though this latter au-

ocovariance function is independent of both spatial and
emporal variables, it can have an important impact on
ask performance (see Subsections 4.A and 4.C).
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