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The methodology of objective assessment, which defines image quality in terms of the performance of specific
observers on specific tasks of interest, is extended to temporal sequences of images with random point spread
functions and applied to adaptive imaging in astronomy. The tasks considered include both detection and es-
timation, and the observers are the optimal linear discriminant (Hotelling observer) and the optimal linear
estimator (Wiener). A general theory of first- and second-order spatiotemporal statistics in adaptive optics is
developed. It is shown that the covariance matrix can be rigorously decomposed into three terms representing
the effect of measurement noise, random point spread function, and random nature of the astronomical scene.
Figures of merit are developed, and computational methods are discussed. © 2006 Optical Society of America
OCIS codes: 110.0110, 110.3000, 110.4280, 010.0010, 010.7350.

1. INTRODUCTION

Scientific and medical images are acquired for specific
purposes, and the quality of an imaging system is ulti-
mately determined by how well the images fulfill those
purposes. In broad terms the purpose, or task, of the im-
aging system is to learn something about the object that
produced the image. More specifically, the tasks of inter-
est can be divided generically into classification and esti-
mation. In a classification task, the goal is to label the ob-
ject, or to say to which of two or more classes it belongs.
Estimation tasks are concerned with extraction of nu-
merical information from the images.

How well the task can be performed depends not only
on the task and imaging system but also on the means by
which the task is performed, or the observer. For classifi-
cation tasks, the observer is often a human, such as a ra-
diologist or photointerpreter, and some measure of classi-
fication accuracy can be used as a figure of merit for the
combined performance of the imaging system and the ob-
server. Alternatively, images can be classified by com-
puter algorithms or mathematical models. It is possible in
many cases to construct ideal observers that achieve the
best possible performance on a given task with images
from a given imaging system; performance of an ideal ob-
server can be regarded as a figure of merit for the imaging
system alone, since it does not depend on the capabilities
of humans, ad hoc feature-extraction schemes, or other
suboptimal classification methods.

Estimation tasks can also be performed by humans, but
it is more common to use a computer algorithm to analyze
the image and report numerical values for one or more
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parameters of interest. Again, estimation algorithms that
are optimal in some statistical sense can be used to obtain
figures of merit for the imaging system itself, but as with
classification tasks, this metric will depend on the specific
estimation task chosen.

This task-based approach to image quality, often called
objective assessment, is now well established in radiologi-
cal imaging, and in fact virtually mandatory in that field,
but it is widely applicable to other areas of imaging as
well. For a comprehensive review and discussion of both
medical and nonmedical applications, see Barrett and
Myers.1

In the first paper of this series,” it was emphasized that
task performance is inherently statistical and that calcu-
lation or measurement of objective performance has to ac-
count for all sources of image randomness, including the
randomness of the objects themselves or the background
on which they are superimposed. This paper examined a
variety of estimation and classification tasks with both
optimal and suboptimal observers, and it derived rela-
tionships between the objective figures of merit for esti-
mation and classification tasks. An important conclusion
of this paper is that not only the absolute level of image
noise, but also its correlation structure, is important for
both kinds of task. Image correlations can be introduced
by the image detector or subsequent image processing or
reconstruction, but they are also inherent in the objects
being imaged.

The second paper in the series® examined Fourier
methods for quantifying task performance. Though famil-
iar Fourier techniques are rigorously applicable only for
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linear, shift-invariant imaging systems with stationary
noise, this paper considered a more general descriptor
called the Fourier crosstalk matrix, which is applicable to
any linear imaging system. The crosstalk matrix was re-
lated to the Fisher information matrix for estimation of
Fourier coefficients and used to discuss classification and
estimation tasks.

The third paper in the series looked specifically at
classification tasks with the ideal observer. It developed
the theory of the ideal observer and set the stage for prac-
tical computation of its performance in radiological
imalging,.l’5_7

The goal of the present paper is to show how the meth-
odology of objective assessment of image quality can be
applied to an important nonradiological imaging area,
namely astronomical adaptive optics (AO). It should serve
as a case study of how the various sources of randomness
in a complex imaging system can be systematically enu-
merated and analyzed and how they affect task perfor-
mance. In addition, this paper adds to the methodology of
objective assessment in two respects: It considers the ef-
fect of a random system operator, and it analyzes task
performance on sequences of correlated images.

Section 2 is a background section, containing little that
is new but introducing the viewpoint and notation used in
the remainder of the paper. In particular, the critical con-
cept of multiply stochastic images is introduced and inte-
grated into specific figures of merit for task performance.

Section 3 is a detailed statistical analysis of a generic
AO system, and Section 4 applies the results of the analy-
sis to task-based assessment of image quality. The goal of
Section 5 is to show that the resulting figures of merit can
actually be computed in practice. Section 6 summarizes
the results and conclusions of the analysis.

2. BACKGROUND

A. Descriptions of Digital Imaging Systems

A digital imaging system is one that delivers a discrete
set of data, {g,,,m=1,...,M}, or equivalently an M X1
data vector g. For a single static image, M is the number
of pixels in the image, but multiple image frames indexed
by time, wavelength, or viewing angle can also be in-
cluded in the data vector.

The object itself is not discrete, even though we often
model it as such; instead, a real-world object is a function
of some number of continuous variables. We shall write
this function as f(r) with the understanding that the vec-
tor v includes all independent variables needed to de-
scribe the object, including time if the object is not static.
In general, v has ¢ components, where ¢=2 for a two-
dimensional (2D) static object. When we do not wish to be
specific about the independent variables, we shall denote
the object as f, with the boldface indicating a vector in a
Hilbert space.1

The components of g are random variables because the
object being viewed is randomly chosen from some en-
semble of objects, because of measurement noise and pos-
sibly because the imaging system itself is random. Object
randomness is discussed in Subsection 2.B below, and
consideration of random systems is postponed to Subsec-
tion 3.B. For now, we define an average data vector g(f),
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where the overbar indicates an ensemble average over the
measurement noise for a given object and imaging sys-
tem.

A system is said to be linear if each component of g(f) is
a linear functional of f. The most general form of this lin-
ear functional is

g, = f dvh,(v)fx), m=1,...,M, (2.1)

where the index «» indicates that the integral runs over
the complete range of all ¢ variables that make up t. In
abstract operator form, Eq. (2.1) can also be written as

g(f) = Hf, (2.2)

where the linear operator H is defined by the M integrals
in Eq. (2.1). Since 'H maps a function of continuous vari-
ables to a discrete vector, it is referred to as a continuous-
to-discrete, or CD, operator.1 The kernel 4,,(v) in Eq. (2.1)
is called the sensitivity function of the linear imaging sys-
tem. It is also a point response function in the sense that
h,(rg) is the mean response of the mth measurement
when the object is a point, 8t —1t), but of course the inte-
gral in Eq. (2.1) is not a convolution.

Since the data vector has a finite dimension and the ob-
ject is a vector in an infinite-dimensional Hilbert space,
CD operators necessarily have null functions. The only
components of f that can be captured by H, even in the
absence of noise, are linear combinations of the sensitiv-
ity functions.

B. Random Objects and Doubly Stochastic Images
For a single object f, the conditional probability density
function (PDF) of the image, denoted pr(g|f), describes
the randomness of the measurement noise only. This PDF
(or probability mass function in the case of discrete ran-
dom variables) usually has a simple and well-understood
form, for example a multivariate Gaussian for electronic
readout noise or a Poisson in the case of photon-counting
statistics.

To fully characterize random objects, we would need a
PDF on f; if we had such a thing, we could write the final
PDF on the data as

pr(g) = f dfpr(glf)pr(f), (2.3)

where in principle the integral is over all parameters
needed to specify the object. An alternative notation that
means the same thing is

pr(g) = (pr(g[f))s, (2.4)

where the angle brackets denote an average over the
quantities indicated by the subscript, in this case over an
ensemble of objects.

There are many situations where the average in Eq.
(2.4) can be performed analytically or approximated nu-
merically without an explicit PDF for the object ensemble.
Numerically, Monte Carlo sampling methods make it pos-
sible to do the averaging whenever we can simulate the
objects, though the computational requirements are likely
to be severe. Analytically, multivariate normal and log-
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normal models are tractable even when the dimensional-
ity of the object description is very large, and there are
mathematical models known as lumpy and clustered
lumpy backgrounds®® that accurately represent tissue
distributions encountered in medical imaging yet remain
mathematically tractable even in the limit of an infinite-
dimensional Hilbert space for the object. Also, there is a
large literature on constructing lower-dimensional repre-
sentations that capture the essential features of interest-
ing objects by the use of wavelets'®! or independent-
components analysis.'®?

A survey of the state of the art in object statistics is
given in Barrett and Myers,1 and some examples relevant
to astronomy will be given in Section 4 and Appendix A.

The conditional mean image g(f) is defined as the av-
erage of g with respect to pr(g|f). If we also average over
random objects, the overall mean image, denoted g, is
given in component form by

§m = <gm>g,f= <<gm>g\f>f= f dff dggm Pr(g‘f)pr(f)
(2.5)

For a linear imaging system,

B = (En)= f deh, (). (2.6)

Conditional and overall covariance matrices can be de-
fined similarly. The conditional covariance matrix, which
describes the measurement noise, is given in component
form as

I:Kg‘f]mm’ = <[gm _gm:”:gm, _gm']>g\f (27)
or in outer-product form as
Kge=([g-2][2- g]t>g\f' (2.8)

For Poisson noise, [Kgtlnm' =& Onm -
The overall covariance matrix is defined by

K, = ([g - E][g - E]t>g,f= <<[g B E][g - §‘:|t>g\f>f'

(2.9)
Now add and subtract g in each factor:
K;=(([g-g+E-8]le-E2+E-E]),),
=(([e-2lle-2]),),+ (2-E][z-E]):
(2.10)

Note that the cross term has vanished identically, since
(([e-2llz-2])), = ((e-2D,dB-E]),
=([z-2]e-&])=0.

(2.11)

Thus, with no assumptions about independence of g and
f, we can write
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K, =K} + K2V, (2.12)

where the first term describes the measurement noise
and the second term arises from object variability. For
most kinds of noise, including Poisson noise in photon-
counting detectors and electronic readout noise in detec-
tor arrays, I_(g"ise is diagonal.

The second term in Eq. (2.12) is not diagonal. Recall
that the object is a random process f(r) and hence de-
scribed by an autocovariance function:

Ede,e) =([fo -Fo][fe)-Fen]). (@13

The autocovariance function can be regarded as the ker-
nel of an integral operator IC¢, and for a linear imaging
system, the second term in the decomposition can be writ-
ten formally as

K3 = HKCH, (2.14)

where HT is the adjoint1 of the operator H.

C. Tasks and Observers

This subsection provides a brief survey of key concepts
from statistical decision theory. A more complete discus-
sion can be found in many sources.” ™

1. Classification Tasks

In a classification task, the goal is to assign the object
that produced an image to one of two or more classes. If
the hypothesis that f belongs to the kth class is denoted
H,, then the probability law for the data when hypothesis
H,, is true is pr(g|H). In terms of the PDFs discussed
above,

pr(glH;) = f dfpr(g|f)pr(flH},). (2.15)

When regarded as a function of H), for a fixed (observed)
g, pr(g|H,) is referred to as the likelihood of the hypoth-
esis for that data set.

A binary classification task is one where there are only
two classes or hypotheses. In a signal-detection task, for
example, the hypotheses are signal-absent and signal-
present. If we assume that each image must be assigned
without equivocation either to hypothesis H, (e.g., signal-
absent) or to H,, the decision on a binary task can be
made in complete generality by computing some scalar
test statistic #(g) from the data; the observer then decides
on H; if the test statistic is greater than a decision
threshold and decides on H| otherwise. The value of the
threshold controls the trade-off between true positive de-
cisions (correctly choosing H;) and false positive decisions
(choosing H; when Hj is true). In signal-detection prob-
lems, the true-positive fraction (TPF) is called the prob-
ability of detection, and the false-positive fraction (FPF)
is called the false-alarm rate.

A plot of TPF versus FPF as the threshold is varied is
called a receiver operating characteristic (ROC) curve.
Meaningful figures of merit for binary classification in-
clude the TPF at a specified FPF (the Neyman—Pearson
criterion), the area under the ROC curve (AUC), and cer-
tain detectability indices derived from the ROC curve.
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The probability of detection alone is not a meaningful
metric since it can always be made large, even unity, sim-
ply by choosing a low threshold.

Another common figure of merit for binary classifica-
tion tasks is the signal-to-noise ratio (SNR) on the test
statistic. Not to be confused with the more common pixel
SNR, the SNR for a specific test statistic #(g) is defined as

[ - t@H) T
5 Var{t(g)|H,} + ; Var{t(g)|Ho}’

2
t

(2.16)

where (t(g)|H,) is the expected value of the test statistic
when hypothesis H}, is true and Var{¢(g)|H,} is the corre-
sponding variance. If the test statistic is normally distrib-
uted under both hypotheses, the AUC is uniquely deter-
mined by SNR,.

2. Optimal Observers for Binary Classification

The ideal observer on a binary task is defined variously as
one that maximizes the AUC, maximizes the TPF at all
specified FPFs, or minimizes a cost function defined in
terms of TPF and FPF. By any of these criteria, the test
statistic used by the ideal observer is the likelihood ratio
A(g)=pr(g|H;)/pr(g|Hy), so the ideal observer for a bi-
nary problem is one that calculates either the likelihood
ratio or its logarithm \(g)=In A(g). There are several ex-
amples where this computation is feasible,” 61" but in
many problems A(g) and A(g) are complicated nonlinear
functions of the data for which no closed form is possible,
and in any case their computation requires knowledge of
the data PDF under both hypotheses.

A more tractable alternative to the ideal observer is the
ideal linear observer, often called the Hotelling
observer®!819 in the literature on objective assessment
of image quality. Linear observers compute linear dis-
criminants, so the test statistic has the form ¢(g)=w'g,
where w is an M X 1 vector called the template, and w'g
denotes its scalar product with the M X 1 data vector. The
Hotelling discriminant uses a template that maximizes a
certain class separability measure,”’ and if the classes are
equally probable it also maximizes the SNR defined in Eq.
(2.16). Linear test statistics are usually normally distrib-
uted by virtue of the central limit theorem, and in this
case maximizing this SNR is equivalent to maximizing
the AUC among linear observers. It can also be shown
that the Hotelling test statistic is equal to the log-
likelihood ratio if the raw data are normally distributed
with the same covariance under both hypotheses, so the
Hotelling observer is identical to the ideal observer in this
case and thus maximizes the AUC among all observers,
not just linear ones.

Computation of the Hotelling test statistic requires
only the overall mean vectors and the covariance matrices
of the data under the two hypotheses. The test statistic is
given by

tol(8) = W'g = [§1 - Eo]tK;\}g, K., = % [Kg\H1 + Kg\H0]~
(2.17)

The inverse of the average covariance matrix is related to
the familiar signal-processing operation of prewhitening,
and for this reason, the Hotelling observer is sometimes
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called a prewhitening matched filter; unless the noise is
stationary, however, the prewhitening and matched filter-
ing cannot be carried out in the Fourier domain.

The Hotelling discriminant (2.17) should not be con-
fused with the Fisher discriminant. Basically the differ-
ence is that the Hotelling discriminant uses ensemble
means and covariances and the Fisher discriminant uses
sample means and covariances. In fact, the Fisher dis-
criminant is almost never applicable to raw pixel values
in images, since the dimension of the covariance matrix is
M XM, where M is the number of pixels, and a sample co-
variance of this size would be invertible only if the num-
ber of sample images were greater than M -1, which is
very difficult to achieve. As we shall see in detail in Sec-
tion 5, however, it is indeed possible to estimate and in-
vert the ensemble covariance used by the Hotelling ob-
server.

A figure of merit for the Hotelling observer is the Ho-
telling SNR, sometimes called the Hotelling trace; it is
given by

SNR%IO!: = [§'1 - EO]tK;[El - Eo]

= tr{K;&[El -8][81- 8] (2.18)
where tr{-} denotes the trace (sum of the diagonal ele-
ments) of the matrix.

Often the Hotelling observer is applied not to the raw
data but to a data set of reduced dimensionality obtained
by passing g through a set of linear filters; in this case it
is referred to as the channelized Hotelling observer
(CHO). The channels can be chosen to preserve the class
separability or to construct an observer that accurately
predicts the performance of human observers as mea-
sured by psychophysical studies. For a thorough review of
the CHO and its many successful applications in medical
imaging, see Barrett and Myers.!

3. Detection of Signals at Random Locations

When the signal location is random, the ideal decision
strategy in Gaussian measurement noise is to subtract
the mean background contribution at each pixel (assumed
known), perform a prewhitening matched filter operation
for each possible signal location, and exponentiate.m’22
The output of these operations is averaged over all pos-
sible locations of the signal to determine the ideal observ-
er’s decision variable. A comparison with a threshold is
then done to render a decision as to whether or not the
signal is present in the scene. No location information is
provided by this observer when the decision is made.

The Hotelling formalism allows signals to be random
but runs into difficulty when the signal can be at a ran-
dom location. If all locations in the field of view are
equally probable, the mean difference image g;-g is a
constant and the linear test statistic (2.17) conveys little
information. In fact, no linear observer will perform well
in this situation. Nevertheless, as we shall see, the Hotell-
ing framework can still be quite useful in the presence of
signal-location uncertainty.

If the only randomness in the signal is its location, it is
natural to consider a linear detection strategy that ap-
plies a prewhitening matched filter to each of the possible
signal locations. Typically, the location that gives the larg-
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est Hotelling test statistic is chosen as the tentative loca-
tion of a signal, and that test statistic is compared with a
threshold to decide between signal-present and signal-
absent at that location. The operation of finding the maxi-
mum is nonlinear, so the overall operation is nonlinear.

If the inverse covariance is the same for each signal lo-
cation, it can be precomputed and used for each location.
Moreover, if the signal is large relative to a pixel, so that
its image is approximately shift-invariant, there is no
need to recompute the mean data vector for each possible
location either. Then, for a signal with uniform location
uncertainty, the ideal linear approach becomes one of
scanning the prewhitening matched filter over the field of
view, and the observer is referred to as a scanning Hotell-
ing observer.?3

When the image of the signal is location-dependent, the
Hotelling framework can be further generalized to incor-
porate this information into the observer’s template at
each signal location under test. This will be the case, for
example, when the pixel size is large relative to the sig-
nal. Samson et al.'® investigated the problem of point-
target detection when the image is comparable in size
with a pixel and randomly located with respect to the
pixel. Of course, other forms of signal randomness can be
incorporated into the Hotelling formalism by the requisite
adjustment in the expected data at each location.

There are several advantages to the Hotelling formal-
ism over computation of the ideal observer’s test statistic
in the location-uncertain task. The addition of a scanning
mechanism to the Hotelling formalism yields a test sta-
tistic that is easily computed. Moreover, it was shown by
Nolte and Jaarsma?' that the scanning Hotelling ob-
server achieves a performance level that is nearly ideal in
certain regimes, specifically ones in which the signal is
equally likely at all locations and the noise variance is
small. In addition, the scanning operation results in a de-
termination of the signal’s location along with a test sta-
tistic for the detection task.

A useful way to characterize the performance on the
joint detection—localization problem is with a localization
ROC (LROC) curve,?* which is a plot of the probability of
detection and correct localization versus the false-alarm
rate; the figure of merit for this task is the area under the
LROC curve. If only the probability of detection is of in-
terest, area under the conventional ROC curve (AUC) can
be used, even with the scanning strategy. In many cases
the area under the LROC correlates well with the AUC
for a signal at a fixed location as various system param-
eters are varied.?> For a discussion of observer strategies
that maximize the area under the LROC curve, see Khurd
and Gindi.?®

4. Estimation Tasks

In a pure estimation task, an object of interest is known
to be present, but we wish to determine numerical values
for parameters that describe the object. We assemble
these parameters into a vector @(f), and the relevant like-
lihood is denoted pr(g|#). An estimate of @ is denoted 6.
The bias and variance of 6, often combined into a mean

square error (MSE), are conventional figures of merit for
the estimation task.
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There is a well-known lower bound, called the Cramér—
Rao bound, on the variance of any estimator.'*!® An un-
biased estimator that achieves the bound is said to be ef-
ficient. An efficient estimator can be regarded as the ideal
observer for an estimation problem, but in many prob-
lems no efficient estimator exists. A practical alternative
is the maximum-likelihood (ML) estimator, which chooses
the value of #(f) that maximizes pr(g| ) for the observed
g. An ML estimator is efficient if an efficient estimator ex-
ists, and it is asymptotically efficient as more or better
data are acquired.

Another alternative is an ideal linear estimator, which
computes a linear (or affine) functional of the data. A lin-
ear estimator is ideal if the bias is zero and the variance
is as small as possible. Different forms of the ideal linear
estimator use different degrees of prior information and
different ways of computing the variance, but a useful one
to highlight for this discussion is the generalized Wiener
estimator. This estimator is unbiased in a global sense
(the average of @ over all data g and over a prior distribu-
tion of @ is equal to the prior mean #), and it minimizes
the ensemble mean square error (EMSE) defined in the

same global sense, For doubly stochastic data, this esti-
mator is given by

0=0+K, K. '[g-E]. (2.19)
where K, is the overall (doubly stochastic) covariance ma-
trix of g and Ky is the cross-covariance of # and the data.
The optimal EMSE that results from this estimator is
given by

EMSE = tr K, - tr K, K;'Kj .. (2.20)

The generalized Wiener estimator is the counterpart of
the Hotelling observer in two respects: Both use prior
knowledge of an ensemble of objects, and both form their
output by a linear operation on prewhitened data [cf. Egs.
(2.17) and (2.19)]. For both, it is necessary to determine
the overall data covariance and to be able to invert it.

3. STATISTICAL ANALYSIS OF ADAPTIVE
OPTICS SYSTEMS

A generic AO system viewing an astronomical scene
through a turbulent atmosphere is shown in Fig. 1. The
astronomical scene consists of the object being studied
(the science object), a reference object, which may consist
of one or more natural or laser guide stars, and a back-
ground, defined as everything else in the field of view of
the science camera. In some cases the reference object
may be part of the science object, as when the task is to
detect a faint companion around a known star, which then
also functions as the guide star.

Light passing through the telescope is reflected from a
deformable mirror before being relayed to the science
camera, which records the final image (or images) of the
scene. Part of the light emerging from the deformable
mirror is diverted by a beam splitter to a wavefront sen-
sor in order to acquire information about the distorted
wavefront. An estimator converts the output of the wave-
front sensor to estimates of wavefront parameters, and a
control system converts these estimates into control sig-
nals to be applied to the deformable mirror. Ideally, the
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Fig. 1. Tllustration of an adaptive optics system.

control signals would produce a mirror deformation equal
and opposite to the wavefront distortions produced by the
atmosphere, and an uncorrupted image would be passed
on to the science camera.

The wavefront sensor and estimator are often treated
as a single element in the literature; a wavefront sensor
in that view is a subsystem that delivers estimates of pa-
rameters such as local wavefront tilts. We shall find it
convenient, however, to separate these two boxes as in
Fig. 1. The wavefront sensor box might, for example, in-
clude a lenslet array and an image detector in a Shack—
Hartmann configuration, and the estimator box could in-
clude computation of image centroids to get the tilts for
each lenslet aperture. One reason for showing the estima-
tor box separately is that sophisticated ML methods can
also be used for going from the detector output in the sen-
sor to estimates of wavefront parameters.z8 These meth-
ods are based on accurate statistical models, and they
permit estimation of parameters other than simple tilts.

The control system uses the estimated wavefront pa-
rameters, sometimes for several consecutive frames of
data, to derive the signals to be applied to the actuators in
the deformable mirror. The control system is often re-
ferred to as a wavefront reconstructor since it is concep-
tualized as a two-step process, first reconstructing (esti-
mating) the entire wavefront from tilts or other sensor
data, then deriving the control signals from the recon-
struction. As a black box, however, it just transforms the
wavefront parameter estimates to control signals. Usu-
ally the transformation is implemented as a matrix mul-
tiplication.
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Various random processes affect the statistics of the
data from the science camera. The most obvious source of
randomness is the photon or electronic noise associated
with detection of the image by the science camera. The at-
mosphere would not be a source of randomness if the AO
system were perfect, but it is not for several reasons.
First, a deformable mirror with a finite number of actua-
tors cannot exactly match a continuous wavefront even if
the latter is known perfectly; second, the wavefront sen-
sor itself measures only a finite number of parameters of
the wavefront; and third, this measurement is degraded
by photon or electronic noise in the sensor. Finally, there
is always a temporal delay between measuring the wave-
front and applying the correction. For all of these reasons,
the corrected wavefront is imperfect and noisy, and the
point spread function (PSF) in the main imaging path be-
tween the astronomical scene and the science camera is
random.

Moreover, as discussed in Section 2, objects being im-
aged are themselves random. The astronomical scene will
usually include some unknown background that has to be
treated as a random process, and a laser guide star is ran-
dom because of laser fluctuations and variable character-
istics of the atmospheric layer from which the laser light
is scattered. Even the science object can have random pa-
rameters; a faint companion, for example, can be at an
unknown location and have unknown brightness.

The goal of this section is to analyze the statistical
properties of this AO system without saying much about
specific implementations and without making very many
restrictive assumptions. Emphasis will be on determining
the covariance properties of the images, since, as we saw
in Subsections 2.C and 2.D, several important figures of
merit for task performance can be computed from covari-
ance matrices without knowledge of the full PDF. The re-
sults from this section will be related to task performance
in Section 4.

A. Notation and Assumptions

1. Science Data

Because our goal is to characterize the statistics of the
data from the science camera, we begin by establishing
the notation for those data. Suppose that a sequence of J
discrete frames of data is acquired, and each frame con-
sists of the outputs of M detector pixels. An individual
measurement (one pixel in one frame) can be denoted gﬁ,’f,
where j=1,...,J and m=1,...,M. The set {gm(j),
m=1, M} for fixed j is the M X 1 vector g, and the set
{g"), j=1,...,J} is the complete data set from the science
camera, denoted G.

The object being imaged is denoted as f(r,t), where r is
a 2D vector of x—y coordinates in the telescope focal
plane; angular coordinates of the astronomical object are
found by dividing x and y by the focal length of the tele-
scope.

The relation between object and mean image is as-
sumed to be linear as in Eq. (2.1). With the extra index for
frame number and with v=(x,y,¢) and r=(x,y), Eq. (2.1)
becomes
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g,@:fd?rf At e, t)f(e,t), m=1,....M,j=1,...,J,

(3.1)

where the overbar in this case denotes an average with
respect to the conditional PDF pr[gﬁ’ﬂhﬁff(r,t),f(r,t)].
Note that linearity in this sense holds even if the PSF is
derived from the object, since the average implied by the
overbar is conditional on a specified PSF.

Both the object f(r,#) and the kernel h%)(r,t) are spa-
tiotemporal random processes. The kernel is related to
the incoherent PSF of the main imaging path (atmo-
sphere, telescope, deformable mirror, science camera) by
~ti-3

} f d*rgdp(re)p(re,r,t),

(3.2)

. t
h,%)(r,t) = rect[

where the jth frame extends from time ¢; to ¢;+7, d,,(r)
describes the response of the mth detector pixel, and
p(ry,r,t) is the time-dependent incoherent PSF of the
main path, with the variable r; denoting position in the
detector plane. Note that the PSF is not assumed to be
shift-invariant (isoplanatic).

With Eq. (3.2), the linear imaging relation in Eq. (3.1)
can be written in detail as

ti+T
gy = f d%r4d,,(ry) f de f A%rp(rq,r,Of(r,t).
¢

(3.3)

In words, the noiseless incoherent image of a particular
object through a particular PSF is integrated over the
frame time and the pixel area to get g,ﬂ’j.

We shall assume that the object is a slowly varying
function of time, essentially constant over one frame of
the science camera, in which case Eq. (3.3) becomes

g,?):Jd%hg}(r)fV)(r), m=1,....M,j=1,....J,

(3.4)
where f(i)(r)zf(r,tj),
hY)(x) = J d’rqd,,(r)p¥(ry,r), (3.5)
tJ+T
pP(ryr) = f dtp(rg,r,t). (3.6)

J

A useful abstract notation analogous to Eq. (2.2) is
G="H,F, (3.7)

where H, is a linear operator mapping the object se-
quence F, which is the set of all /7(r), to a sequence of
digital images, with the jth image in the sequence deter-
mined by the kernel h,@(r). The operator H, is random,
since the PSF p(r;,r,#) and hence the kernel hg:(r) is ran-
dom.
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To summarize the notation for the main imaging path,
the science camera produces an image sequence G, where

G (the average of G over only the measurement noise in
the science camera) is related to the object F by a random
operator H,, the properties of which are determined by
the set P of random incoherent PSFs, each of which has
been temporally averaged over a frame.

2. Control Loop

The control loop comprises the wavefront sensor, estima-
tor, control system, and deformable mirror. The detector
on the wavefront sensor consists of L pixels, and it ob-
serves the wavefront for a time 7", not necessarily the
same as the frame time for the science camera. After the
kth frame, the detector on the wavefront sensor produces
a set of signals, {v}k), l=1,...,L}, or equivalently an L X 1
data vector v#); the whole set of {v%®), k=1,... K} is de-
noted V. The total time duration for wavefront sensing is
the same as for data acquisition with the science camera,
so KT'=JT.

The estimator uses the vector of sensor signals for one
frame, v\®), and produces estimates of wavefront param-
eters for that frame, #%, which might, for example, be
tilts over the subapertures in a Shack—Hartmann sensor.
The control system takes estimates of wavefront param-
eters for previous frames, #*#~1, #4-2) " and computes
drive voltages to apply to the NV actuators of the deform-
able mirror on the current frame; for reasons that will be-
come clear, we denote these signals as &;k)
N X1 vector a'®).

We assume that the control system is linear and that it
makes use of the output of the estimator for the K frames
preceding the current one. Thus its input—output relation
can be written in matrix—vector form as

or as the

Ky
a® = E M) zkk") (3.8)
k'=1

where M*") is the control matrix for a lag of &' frames.
This matrix might be derived by considering some algo-
rithm for wavefront reconstruction and then estimating
&® from the reconstruction, but if these steps are linear,
their effect can be included in the control matrix.

3. Mirror and Atmosphere

The wavefront perturbation produced by the deformable
mirror is assumed to be a linear combination of influence
functions {(r), n=1,...,N}, where N is the number of
actuators. If the deformable mirror is in a plane conjugate
to the telescope pupil and the voltage &flk) is applied to the
nth actuator during frame % of the control loop, then the

effect of the mirror on the wavefront is represented as
N
Whh(r) = > &), (3.9)
n=1

where r’ denotes a point in the pupil.

To use the same representation for the mirror and the
atmosphere, we expand the atmospheric wavefront as a
sum of influence functions plus a residual. For a mono-
chromatic point source that would image to point rg in the
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image plane in the absence of aberrations, we express the
actual wavefront in the pupil as

N
W@, 8520) = X e (£500) (1) + AW, (x',£51)

n=1

(3.10)

where the sum is the least-squares fit of Wy (v’ ,t;1() by
the set of influence functions, and the residual
AW im(x',8;10) is the portion of the wavefront that cannot
be corrected by the deformable mirror.

The corrected wavefront emerging from the mirror is
thus given by

W(r', ;1) = Wy (r',£510) - W(k) w(r’)

N
= 2 [nlt;re) = &l | (x') + AW,en(r' t510),
n=1

RT =t <(k+1)T'. (3.11)

If a,(t;ry) is approximately constant over the frame pe-
riod and well approximated by &;k), then the wavefront is
compensated as closely as it can be with the given mirror;
hence the notation &;k) for the mirror drive voltages. Note,
however, that the actual «,(¢;r() is a function of the con-
tinuous time variable while a(k) is a constant during one
frame of the control loop.

4. Random Point Spread Functions

The relation of the PSF to the pupil function of the imag-
ing system is well-known. For quasimonochromatic light
of wavelength \ and a point object at r, (in image-plane
coordinates), we can define an effective pupil function by

2m
apup(r,,t;rO) = aap(r/)exp{iTW(r’at;rO)} ’ (312)

where again r’ specifies location in the pupil, a,y(r’) is a
binary (0-1) function describing the clear aperture of the
pupil, and (27/N)W(r’,¢;1) is the phase distortion for an
object at r( (in image-plane coordinates).

The anisoplanatic coherent PSF is a scaled Fourier
transform of the pupil function, given by

2
pcoh(rd,l‘o,t)“f d2r’aap(r’)eXp[iTW(r’,t;ro)}

2
Xexp|i—(@ry-1y) - ' |,
P )\f( 4= To)

where f'is the back focal length of the science camera. The
incoherent PSF is proportional to the squared modulus of
the coherent one, and the effective PSF for the jth frame
is given from Eq. (3.6) as

pV(rgro) = C’f

tj

(3.13)

tj+T

de lpcoh(rd’ro,t)F? (314)

where the constant C and the units of f(ry) are chosen so
that g _(’) is the mean number of photons detected by pixel

m durmg frame j. If the atmosphere and deformable mir-
ror could be modeled jointly as a thin phase screen in the
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pupil, W(r’,¢;r) would be independent of the object coor-
dinate ry and the system would be isoplanatic.

For simplicity we drop the subscript on r; in what fol-
lows. Moreover, the PSF pY(r;,r) will be denoted as p"
for short, and the set of all p¥) for j=1,...,J will be de-
noted by P.

5. Speckle

We can usually assume that the control loop works well
enough that the corrected phase excursions are small, so
that relation (3.13) can be approximated as

Peon(Xa, 1) f A% agy(x ) [ 1+ig(r’ t;r) - 342’ ;1) |

%

27 ,
Xexp 1)\—f(rd—r) -r' |,

where ¢(r',t;r)=2a/N)W(r',t;r). The form in relation
(3.15) is general enough to describe weak atmospheric
scintillation if ¢(r’,#;r) is allowed to be complex.

The Fourier integral in relation (3.15) can be written as

(3.15)

f d2r’aap(r’)[l+i¢(r’,t;r)— %¢2(r’,t;r)]exp(2ﬂ-ip -r')

%

=Au(p) +i[Agy + P](p)~ 5[Agp+ = @](p),  (3.16)
where p=(ry—r)/\f is a 2D spatial frequency (measured
in cycles per unit length in the focal plane of the science
camera), A,,(p) and ®(p,t;r) are, respectively, the 2D
Fourier transforms of a,,(r’) and ¢(r’,¢;r) with respect to
the pupil coordinate r’, and the asterisk denotes convolu-
tion.

From Eq. (3.14), the effective incoherent PSF for the jth
frame is given to second order in ®(p,z;r) by

tj+T

p(i)(rd’r) = Cf
t:

J

T
= CJ dt{|Aap|2 + |[Aap * CI)]|2
t

J

de lpcoh(rd,r, t) ‘2

—Re[A},(A,, = ® = )]

-2 Im[A;p(Aap * q))]}p:(rd—r)/)\ﬁ (317)
where the arguments in the integrand have been omitted
for clarity.

The randomness in this PSF stems from the three ran-
dom processes evident in Eq. (3.11), namely the atmo-
spheric coefficients «,(t;r), the control signals a(k) and
the uncorrectable part of the atmospheric turbulence,
AW i (x' ,t;r). The resulting PSF can be regarded as a
speckle pattern produced by the weak residual phase
variations across the pupil. The last two terms in Eq.
(3.17) show that this speckle pattern is modulated or
“pinned” by the Airy rings of the ideal PSF (proportional
to A,p). Pinned speckle in AO has been studied by several
authors 29-32 jut usually in the context of univariate sta-
tistics such as variance and PDF at a single point. In Sec-
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tion 5 we shall see how to obtain the covariance proper-
ties needed for objective assessment of image quality with
linear observers.

6. Random Objects
We have already denoted the temporal sequence of astro-
nomical scenes as F, and it will also be useful to decom-
pose an astronomical scene into science object, guide star,
and background (everything else), so that
F=F;+Fy+Fy,. (3.18)
The three components are random for different reasons
and require different stochastic descriptions. If the task is
detection of a faint star, the science object can be modeled
as a point source of unknown location and brightness, so
it is described fully by a three-dimensional PDF on these
parameters. A natural guide star is at a known location
and its brightness can be measured independently, so it is
not random at all. A laser guide star is random because of
variations in laser intensity and fluctuations in the distri-
bution of atmospheric molecules being excited.

The background term could describe a complicated star
field, modeled as a random point process,! or it could refer
to the thermal sky background in the far infrared, which
bears a striking similarity to the lumpy backgrounds used
to model medical images. Even if the background is spa-
tially uniform, it has to be treated as a random process
since the background brightness is unknown and possibly
time-varying.

B. Triply Stochastic Averaging

In this subsection we generalize the doubly stochastic av-
eraging process introduced in Subsection 2.B in two ways:
We add a third source of randomness (the random PSF),
and we consider a sequence of correlated images. We be-
gin by developing a general formalism of nested averages
over the three main sources of randomness, and then we
apply it to calculation of the mean vectors and covariance
matrices of the science-camera data. As we know from
Section 2, these quantities are important determinants of
image quality for both classification and estimation tasks.

1. Nested Probability Density Functions

Let T(G) denote an arbitrary (possibly vector-valued)
function of the image sequence G. An overall average of
this function is given formally by

T(G) = <<<T(G)>G|P,F>PF>F

=JdedPJdG T(G)pr(G|P,F)pr(P|F)pr(F).

(3.19)

Consider first the inner average, over G given P and F.
Since the PSF and the object are fixed by the conditional
PDF, the only remaining randomness in this average is
the measurement noise of the science camera. Since dif-
ferent photons are detected in different frames and the
frame time is far larger than any electronic correlation
time, we can write
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J
pr(G|P,f) = [ | pr(g?[p",£).

J=1

(3.20)

Moreover, the measurement noise components in differ-
ent detector pixels in the same frame are usually statisti-
cally independent (an exception sometimes occurs in de-
tectors with built-in gain%), in which case

M
pr(g?p?,£) = [ ] pr(g?|p?,£).

m=1

(3.21)

Finally, for pure electronic noise (but not for Poisson
noise), we can assume that pr(g,%p(f),f(")):pr(ggz), inde-
pendent of the random PSF and the object. For Poisson
noise, the statistics are determined by the mean, so
pr(gV)|p,f9)=prlg! g% (p,£)].

With the object decomposition (3.18), the second aver-
age, over the random PSF's P given the object sequence F,
really involves pr(P|Fy;,Fy,Fy); different circum-
stances will permit different assumptions about this den-
sity. The greatest simplification is when the background
and science object make a negligible contribution to the
output of the wavefront sensor and when the guide star is
nonrandom; in that case, pr(P|F)=pr(P). An intermedi-
ate case is that where the randomness of the guide star
cannot be neglected, and then pr(P|F)=pr(P|F,,). Fi-
nally, if the wavefront data are derived from the science
object itself, we have to use pr(P|F) without simplifica-
tion. We shall carry along the two extremes, a general
pr(P|F) and an independent model, pr(P|F)=pr(P), in
what follows.

Even if we assume that P is independent of F, however,
it is generally not correct to assume that the PSFs for dif-

ferent science-camera frames, p¥ and pU") with j#’, are
independent; temporal correlations are present because of
the atmospheric correlation time and because the control
system uses outputs of the wavefront sensor for multiple
previous sensor frames to determine the drive signals to
the mirror on the current sensor frame.

The final average in Eq. (3.19) is over the object vari-
ability, and in principle it requires a huge-dimensional
PDF pr(F), or even several such PDFs for different hy-
potheses if we consider a classification task. In practice,
however, the decomposition (3.18) suggests several sim-
pler stochastic descriptions. It will often be valid, for ex-
ample, to assume that the science object, background, and
guide star are statistically independent, so pr(F)
=pr(Fy;)pr(Fyg)pr(Fy), and further assumptions can be
applied to each factor. If the science object is independent
of time, for example, pr(F;) reduces to pr(f,;), where f
denotes a single object rather than a sequence. Moreover,
as discussed at the end of Subsection 3.B, pr(f,.;) might be
a low-dimensional PDF on a few parameters of scientific
interest. The background PDF pr(Fy,) is more difficult in
general, but the figures of merit discussed here require
only the mean object and a spatiotemporal autocovari-
ance function. The guide-star PDF pr(Fy) is trivial for a
nonrandom natural guide star but more complicated for a
laser guide star.
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2. Means

To see how triply stochastic averaging works in a rela-
tively simple case, let T(G) be a single datum ggl), the out-
put of one detector pixel for one frame of data from the
science camera. The statistics of gg? depend on the inco-
herent PSF p% and noise realization for frame j, and the
noise can depend on the object for that frame in the case
of Poisson noise. The PSF for frame j can, however, de-
pend on the object (especially the guide star) for previous
frames. The overall (triple-bar) average of this datum can
thus be written most generally as

S0 — ()
2= ({9 ) . (3.22)
<< gﬁp”””)>pr>F

If we average over detector noise alone, then the single-
bar average is given in component form directly from our
assumption of conditional linearity, Eq. (3.7), by

g9 =gV pY ) = f a2 k@) (r), (3.23)

where the PSF and object for frames other than the jth
are irrelevant for this conditional average, conditioned on
PSF and object.

The next average is over the random PSFs P given F.
Since averaging is a linear operation that can be inter-
changed with integration under broad conditions (loosely
speaking, so long as all integrals converge), it follows that

g0 =gV = f RO (r), (3.24)

where the average kernel is related to the average inco-
herent PSF by [cf. Eq. (3.5)]

R9r) = f &, (r )5 er).  (3.25)

If we assume that the PSF is temporally stationary and
ergodic, the index j on pY(r;,r) and hence on ﬁf,’?(r) can
be omitted. On the other hand, though the notation does
not show it, p%)(r;,r) can depend on the object sequence F
and in particular on the guide star over multiple frames.
The final average, over the object variability, yields

V= f a2 (R (@)f9(x))g = f a?rrY) ) (r),
(3.26)

where the second form holds if p' is independent of F.

Each of these component averages is the mth compo-
nent of a corresponding M X1 average vector; for ex-
ample, §§Q is the mth component of g). We shall also use
overbars on the whole set G in a similar fashion. For ex-
ample, G can be regarded as an MJ X 1 vector with the
(m, j)th component given by §£’n)

3. Covariance Matrices
By analogy to Eq. (2.9), the overall covariance matrix of a
triply stochastic image sequence is defined as
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k= ([o-af[e-a])
((fe-ae-aare)y,), 02

To be explicit, Kg is an MJ X MJ matrix with components
given by [cf. Eq. (2.7)]

el {{ (-2, 00, )

(3.28)

Now, as in Eq. (2.10), add and subtract terms in each
factor of Eq. (3.27):

(3.29)

Even without any assumptions of independence, the cross

covariance <<<[G—G][G—§]t>>> vanishes identically, just
as it did in Eq. (2.10). A similar argument shows that

(<<[G—§][E—(E}]t>>) also vanishes, and we can write

KG Knmse + K obj

2, (3.30)

where

Roise <<<[G -G|lc- (}]t>GP7F>PF> . (3.31)

F

Kg' =({[6-G][G-G])pp).. (3.32)

sofo-aladll,  wm

Thus the overall covariance matrix for a triply stochastic
image sequence can be rigorously decomposed into three
terms representing, respectively, the contributions from
measurement noise, from the random PSF, and from ran-
domness in the object being imaged.

The first term, Iziréoise, comes from readout and Poisson
noise, with at least the Poisson component averaged over
P and F. With the noise modeled as in Eq. (3.21), we can
write

I:anise](id) [0',2n+

mm'’

) (3.34)

The second term, I_(gSF, is the contribution from the
random PSF, averaged over the object class. If the AO sys-
tem worked perfectly, this term would vanish since the
PSF would not be random. Also, if the integration time of
the science camera goes to infinity and the atmospheric
statistics are ergodic, so that infinite time averages are
the same as ensemble averages, then again the PSF term
vanishes. With a real system and a finite integration
time, this term describes the residual speckle pattern
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from the uncorrected part of the random atmospheric
phase. In the most general case, it is given in component
form by

(&)= f @z f a2 ({0 e[ ge) - R ]

(RS ") - 1Y) (3.35)

P|F>F.

If P is independent of F, we obtain

(K] = f ar j @ (0 ) [ ) - BY0)]
x[nS) @) -~ R)n]).,- (3.36)

One way to interpret Eq. (3.36) is to move the average
over F outside the integral. The integral then represents
the covariance of the sensitivity function as manifest in
the data for a particular spatiotemporal object, and the
result is averaged over objects.

The final term, K%}bj , is the contribution from object ran-
domness. In the general case, it is given by

(w2 = [ [ (R - (o),
< [ ) - (R ), ])
(3.37)

If P is independent of F, we get

(2] = f d2r J a2’ RYe)RS) e[ 0r) - Fr) |
<[99 -7 ])p

= f dzr f A% R )R ) e K (r,r),
(3.38)

where K(f’ J ’)(r,r’) is the spatiotemporal autocovariance
function of the object, sampled at discrete time points:

Ktvl] )(r’r’) = Kf(r’r,9t’t’)‘t:tj,t’=tjy

=([#@ - ][ 7)),
(3.39)

The interpretation of Eq. (3.38) is that K%bj is the object
autocovariance function mapped through the ensemble-
average CD imaging system to the final image sequence
from the science camera. Some useful analytic forms for
the autocovariance function are given in Appendix A.

When P is independent of F, the object and PSF terms
can usefully be combined. Adding Eqgs. (3.36) and (3.38)
and doing some algebra, we get
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— o'(]",) 15 Aj Vi ! i’ !
e R R

+ RO (e)RY ) @K (e, v

+[Kn ]2 e ) K (), (3.40)
where
(K] e,y = ([0 =BG ) [[ %)) = RS ]) -
(3.41)

Now the PSF and object enter symmetrically into the
overall covariance, reflecting the fact that we can do the
averages over P and F in either order if they are indepen-
dent. Note, however, that the autocovariance of the dis-
cretized PSF is more complicated than the object autoco-
variance since h,on)(r) depends on a pixel index m in
addition to the spatial variable r and the discretized time
index j.

Various special cases of Egs. (3.36), (3.38), and (3.40)
can be given. If the object is independent of time, as it of-
ten is in astronomy, the superscripts j and j' can be
omitted on f(-) everywhere and on K. On the other hand,

if the object is temporally stationary, then KyJ,)(r,r’)

=K(fj_j /)(r,r’). Similarly, if the atmospheric statistics are
temporally stationary, we can omit the superscript on
h,,(r) and regard the average over P in Eq. (3.36) as a
function of j—j'. To combine these cases, if the atmo-
spheric statistics are temporally stationary and the object
is either nonrandom, time-independent (but spatially ran-
dom), or temporally stationary, then both the object and
PSF terms depend on j—j'.

An important practical situation is that when the im-
age detector in the science camera does not introduce
pixel-to-pixel correlations, the object is independent of
time, the atmospheric statistics are temporally station-
ary, and the PSF is independent of the object; if all of
these conditions are satisfied, the overall covariance can
be written in component form as

[KG]me)’ = [0_2m +§m] O Sjjr + [I_{ESF](H,) + [K%Jj]mml.

mm'

(3.42)

4. TASK PERFORMANCE IN
ASTRONOMICAL ADAPTIVE OPTICS

In this section we consider three important tasks that
arise in astronomical imaging: detection of point objects
on a random background, detection of faint companions
such as exoplanets, and photometry. For each task, we
briefly discuss how it is performed in current practice,
and then we discuss statistically optimal approaches that
make use of the formalism developed above. For each
task, two distinct outcomes are obtained: expressions for
task-based figures of merit for assessment of image qual-
ity and methods that might be useful for actually per-
forming the tasks. Computational aspects are treated in
Section 5.
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A. Detection of Point Objects on a Random Background
The detection of point sources is an essential task in ob-
servational astronomy.®® Increasing sensitivity to point
sources permits detection of fainter objects up to a given
distance or the detection of objects of a given luminosity
at larger distances. Applications inside the solar system
include the early detection of near-earth asteroids, as well
as Kuiper-belt and other trans-Neptunian objects. In stel-
lar astronomy, it is of interest to detect free-floating
brown dwarfs and planets, which may make up a sub-
stantial fraction of the missing dark matter. Point-source
detection is also relevant to the detection of extragalactic
objects such as quasars or active galactic nuclei, which
are unresolved even with the largest available apertures.

Point-source detection is strongly influenced by the
background. A spatially uniform diffuse background cre-
ates Poisson noise that interferes with the ability of any
observer to perform the detection, and spatial inhomoge-
neities as in galactic cirrus or dense unresolved star fields
can cause spurious peaks that lead to false alarms in the
detection task. Even isolated nearby stars can cause false
alarms if their PSF's overlap the site of a potential detec-
tion; the effect of the PSF is random because the luminos-
ity and precise location of the interfering star are random
(or at least unknown to the observer) and the PSF itself is
random because of noise in the wavefront sensor and un-
corrected atmospheric effects.

1. Current Practice

The standard imaging practice in observational as-
tronomy consists of obtaining one or several images of the
object of interest, together with other images that are
needed for the image processing. These include dark im-
ages, which are obtained with the shutter closed, and flat
fields, which are obtained with uniform illumination on
the sky or of a screen inside the telescope dome. The dark
images reveal structure in the detector readout noise and
are subtracted from the object frames. The flat fields are
used to determine the detection sensitivity across the
field of view. The dark image is subtracted from the flat
field, and the object images are divided by the result. Me-
dian filters may be applied to sequences of dark images
and flat fields to obtain smoother estimates.

The mean and variance of the sky background are usu-
ally estimated before source detection is attempted. This
information may be obtained either from an image or se-
quence of images of a source-free field or by median filter-
ing the actual image of the object. Variations of the sky
background over the image may be estimated by dividing
the image into regions called tiles and estimating the sky
background in each tile by median filtering.

For observation at near-infrared wavelengths (as is the
case for most current AO systems), the sky background is
strong and variable. For broadband observations at wave-
lengths shorter than 2 um, an important component of
the background is dominated by emission from hydroxyl
radicals in the ionosphere, which vary due to the passage
of gravity waves.?* Longward of 2 um, the background is
dominated by thermal emission from the sky and tele-
scope. In the far infrared, background due to thermal
emission from galactic dust clouds has a fractal-like spa-
tial structure.®
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The thermal background from the telescope and sky is
usually removed by chopping and nodding; chopping re-
fers to rapidly interchanging the field of view on and off
the object, usually by rocking the telescope secondary
mirror at several hertz. However, the telescope back-
ground estimated from the off-object measurements will
not be identical to the background at the object, so the
telescope is moved periodically (nodded) so that the new
off-object position corresponds to the previous on-object
position. This process will introduce artifacts if there are
objects present in the regions of interest or if the object is
larger than the chop throw. Bertero et al.?® describe a
Fourier-based algorithm to restore nodded and chopped
images that can remove these artifacts.

After the noise in the image is estimated, objects are
usually detected by searching for pixels that are higher
than the background by some amount, say three standard
deviations. Extended objects are then detected by finding
connected pixels that are significantly higher than the
noise.>” A more sophisticated approach involving wavelet
transforms has been proposed38 but does not seem to be
standard practice.

2. Spatiotemporal Hotelling Observer

Though the current practice in astronomy certainly recog-
nizes the importance of background in point-source detec-
tion, little attention has been given to optimal detection
algorithms that incorporate information about the spatial
and temporal correlations of the background or knowl-
edge of the statistics of the random PSF. The Hotelling ob-
server provides a rigorous framework for doing so.

In contrast to the purely spatial Hotelling observer de-
scribed in Subsection 2.C, however, the Hotelling observer
for astronomy should be spatiotemporal. The raw data in
most astronomical observations are a sequence of frames
from a CCD camera or other electronic detector, but these
frames are almost always summed, after various correc-
tions as described above, to get a single image that is used
for the science task. There is no reason in principle to be-
lieve that this summation preserves the information con-
tent of the data, defined in terms of ability of an ideal ob-
server to perform the task. If the task will be performed
by a human observer, however, a long sequence of indi-
vidual frames is of little use, so some form of summation
is required. In what follows we discuss the optimal spa-
tiotemporal Hotelling observer applied to an image se-
quence and show how it can be used to provide a single
summed image for direct observation, without loss of in-
formation. Suboptimal summation methods are also dis-
cussed for comparison.

By analogy to Eq. (2.17), the Hotelling test statistic for
a triply stochastic image sequence is

- =T
tot(G) = W'G = [G1 - Go] K,G,

I{aV = %[KG‘HI + KG‘HO]' (41)

Note that the template W is itself an image sequence.
An important special case is where the signal is weak,
so that the spatiotemporal covariance matrix is the same
under both hypotheses (signal-present and signal-absent)
and given in general by Eq. (3.30). Since the noise term in
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the covariance matrix is diagonal, as shown by Eq. (3.34),
the inverse needed to compute #1,(G) exists. Practical
ways of finding (or avoiding) the inverse are discussed in
Section 5; for now, we simply proceed as if the inverse
were known.

The Hotelling test statistic for a weak spatiotemporal
signal is

M M J J -
trot(G) = >, 2 > 2 UK gl),  @2)
m=1 p,1_1 :1 r=1

where s ) is the mean signal at pixel m in frame j. The
averaging implied by the double overbar here is over mea-
surement noise and an ensemble of PSFs. Often we will
want to consider the signal that we want to detect as ran-
dom, and in those cases a third overbar can be added to
accord with Eq. (4.1).

We see from Eq. (4.2) that the ideal linear detection
strategy is to do a spatiotemporal prewhitening operation
followed by a matched filter with the mean signal. The
corresponding Hotelling detectability is given by [cf. Eq.
(2.18)]

M J J
SN, = 3 PPN S
'=1J=1 j’=1

m=1

If we assume that the object to be detected is indepen-
dent of time and that the PSF statistics are temporally
stationary, the mean difference signal is independent of j,
and we can write its value at the mth pixel simply as s,,.
The interpretation is that 5,, is the image of the signal ob-
ject blurred by the long-term average of the partially cor-
rected PSF and with measurement noise averaged out.
Note that this signal can be random, so long as its en-
semble mean is independent of time. In that case, we can
rewrite Eq. (4.2) as

M
> 5,80,

m=1

tHot(G) =

M J J

m'=1J=1j'=1

The set {gﬁgw)} or the vector g'PV) represents a single frame
of prewhitened data; after the spatiotemporal prewhiten-
ing, it is easy to form the Hotelling test statistic for many
different signals that one might seek to detect. In fact, the
single image g®") can also be presented to a human ob-
server as an optimally preprocessed summary of the raw
image sequence.

An alternative strategy, routinely used in astronomy, is
simply to sum the frames without the prewhitening step.
The test statistic for such a nonprewhitening (NPW) ob-
server is given by

tnPW(G) = E Smggsz)’ (an) E gm (45)

The Hotelling and NPW observers are equivalent (their
test statistics differ by an irrelevant constant factor) if
and only if the data are independent and identically dis-
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tributed both spatially and temporally. Correlations in ei-
ther the pixel index m or the frame index j necessarily re-
duce the detection performance of the NPW observer
relative to that of the Hotelling observer; such correla-
tions can arise from either the PSF term or the object
term in the data covariance.

3. Signal-Known-Exactly Detection on a Uniform
Background

To illustrate the spatiotemporal Hotelling observer, con-
sider the detection of a nonrandom point object on a sky
background that is spatially constant over the field of
view but can vary randomly with time over the duration
of the observation. The autocovariance function for the
object in this case is discussed in Appendix A.

The PSF term in the covariance can usually be ne-
glected in this problem. To see this point, we assume that
the background is spatially constant at the random time-
varying value C(¢) and rewrite Eq. (3.36) as

[T [e2+Rett) [ e [ar([nsor -]

x[n) @ - R3)en]),

= I:éz + KC(tj7tJ')]< |:f dzrhgl)(r) - f d2rl_z,(fl)(r):|
x{ f a'hY )’ - f d%’ﬁg’?(r')D . (4.6)
P

We note from Eq. (3.5), however, that [ dzrh,(ﬁl)(r) is a non-
random constant so long as [d%rpY(r;,r) is a constant,
which it is whenever the underlying continuous PSF is
isoplanatic. Thus, if the atmosphere can be modeled as a
thin phase plate in the pupil, the PSF term in the data
covariance for a spatially constant background vanishes.
If there is substantial anisoplanatism, the PSF term is
not identically zero, but it should be small since the image
of a constant background should be nearly constant in
any practical case.

The mean PSF is still important, however, since it de-
termines the signal to be detected. For a time-
independent point object of known luminosity at a known
location [the so-called signal-known-exactly (SKE) task],
the signal part of the object distribution is f(r)
=A,8(r-r,). In general the corresponding mean signal in
the data will depend on j through ﬁgg (r), but if the atmo-
sphere is temporally stationary, the mean signal at the
mth detector pixel is

S =Agh,(ry). (4.7)

We also assume that all detector elements are identi-
cal, so that the variances of the electronic noise and the
Poisson noise from the uniform background are indepen-
dent of m. With Eqs. (3.42), (A10), and (3.38), the overall
covariance matrix is

[K ](/J ) _ (02 + 770) . JJ, + 772KC( tj’)’ (48)

where 7= [d2rh,,(r), which can be interpreted as the flat-
field image; 7 is independent of m if the system is
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isoplanatic and the detector elements are identical.
It is shown in Subsection 5.B that the inverse covari-
ance has the form

[K-l](iw (0®+ 70)1s,,, 8y Q(u) (4.9)

where QU7 is defined by Eq. (5.16). With Eqs. (4.2), (4.7),
and (4.9), the Hotelling test statistic can be written as

o G) = hn(r,)[ g9 - 7CY], (4.10)
m 1,/=1
where
M
7CY = (0 + 7C) 2, E QU/"gV) (4.11)
m'=1j'=1

The interpretation of Eq. (4.10) is that the data are first

preprocessed by subtracting the estimate 7CY) of the
background in each frame and then passed through a
matched filter. The background estimate is found, accord-
ing to Eq. (4.11), by summing over all pixels in each frame
and also doing a weighted sum over correlated frames,
with the weighting specified by @U7"). The resulting test
statistic is optimal in terms of task performance; for de-
tection of a nonrandom point object on a time-varying but
spatially uniform background by a linear observer, the
test statistic defined in Eq. (4.10) gives the largest Hotell-
ing detectability and, to a good approximation, the largest
area under the ROC curve.

From Eqs. (4.3), (4.7), and (4.9), the Hotelling detect-
ability for this task is given by

M M J J

SNRf =423, X 2 ) b r)[Ke ] By

m=1 1]1.]’1

JA? M 2
= hm s
02“,621[ )]

2J J

—A{ > hm<rs>] > E QUY.

=1

(4.12)

The last line represents the reduction in detectability
from having to estimate the background, even when that
estimation is done optimally. It can be shown, however,
that this term varies asymptotically as M1, where M is
the number of pixels in a frame and hence, in this prob-
lem, the number of pixels that can be averaged to get an
estimate of the background. Thus

2 M
SNRZy = ——— > [Anr)|" (M large), (4.13)
0'2+ ﬂCm:l

which is exactly the expression that would be obtained if
the background were nonrandom and known to the ob-
server.

Several important conclusions can be drawn from rela-
tion (4.13). Obvious ones are that the detectability is
larger for stronger sources, more frames, and less elec-
tronic noise. We see also that the detectability is propor-
tional to the sum of the squares of the discretized mean
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PSF values; since this sum increases with the Strehl ratio
of the system, it can be used to quantify the effect of un-
corrected atmospheric blur on the flat-background SKE
detectability.

Another consequence of the sum over m is that the de-
tectability can be high even if no single pixel exceeds the
noise level; detection by a Hotelling observer is deter-
mined by the noise in the test statistic ¢y,(G), and it is
only the SNR of that quantity that matters, not the pixel
SNR. The Hotelling SNR can be much better than the
pixel SNR because of the optimal summation across pix-
els. Indeed, the human observer also does a very good job
of summing over pixels, a fact that was known already to
Albert Rose in 1950 and has been very well verified in the
decades since then.?”

Since data from multiple pixels are used by both hu-
man and Hotelling observers, it follows that there is no
disadvantage in detection performance to using small de-
tector pixels; if more pixels fit within the mean PSF, more
of them are used in forming the test statistic and the per-
formance cannot decrease (at least for pure Poisson
noise). This contradicts the common view*’ that oversam-
pling is bad because it decreases the SNR; it decreases
only the irrelevant single-pixel SNR. There might be en-
gineering or economic arguments for using larger pixels,
but they cannot be justified on grounds of detectability.

4. Random, Nonuniform Backgrounds

SKE detection tasks with random, spatially nonuniform
backgrounds (so-called lumpy backgrounds) have played
an important role in developing realistic task-based fig-
ures of merit in medical imaging,l’ﬁ*9 and they should
prove equally useful in astronomy. The important differ-
ence, however, is that the PSF term varies randomly with
time in astronomy; therefore, as we shall see, the correla-
tions are spatiotemporal even for a temporally constant
background.

When the PSF is independent of the object, the PSF
term in the data covariance is given by Eq. (3.36). An im-
portant special case is when the time-independent back-
ground is spatially stationary (or at least approximately

so over the field of view), so that (f(r)f(r'))=/2 +Kdr,r’).
By the same argument as that used in Eq. (4.6), the term

proportional to f2 in Eq. (3.36) vanishes identically if the
continuous PSF is isoplanatic, and it should be small in
most practical cases. If the PSF is also temporally station-
ary, Eq. (3.36) becomes

[KESF](H”)*fd2"fd’”/Kf(r_r/x[h{”(r)_Em(r)]

X[RE)(") = by (2 D (4.14)

This expression is zero if the PSF is nonrandom (perfect
AO system), and it is often small by the argument below
Eq. (4.6) if the background is spatially uniform but of ran-
dom level. More generally, spatiotemporal correlations re-
sult from an interaction of spatial background structure
and a spatiotemporal PSF.

If we combine the object term with the PSF term as in
Eq. (3.40) and use the noise term from Eq. (3.34), we get
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[Ke]"" = [ + 8] + j ar f & K-

(RO @RS ). (4.15)

We have dropped the indices on 5 to be consistent with
the assumptions of spatial and temporal stationarity, and
we have dropped the index on the electronic noise vari-
ance o on the assumption that all detectors are identical.

In most practical applications in astronomy, the spatial
correlation length of the background is large compared
with the field of view of the telescope, and any particular
realization of the background might be well described by
a constant plus a linear variation in brightness. In that
case, the integral in Eq. (4.15) can be evaluated if the
means and variances of the constant and linear terms are
known.

Once the integral is performed, the evaluation of the
Hotelling test statistic and SNR requires a matrix inver-
sion. Common practice in image analysis is to approxi-
mate covariance matrices as block-circulant matrices
when they arise from digital representations of stationary
random processes. This approximation, which is reason-
able if the correlation length of the random process is
small compared with the image size, permits diagonaliza-
tion and inversion of the covariance by use of the discrete
Fourier transform (DFT). Unfortunately the circulant ap-
proximation would rarely be applicable in the present
problem because the correlation length is usually long. In
that case the matrix in Eq. (4.15) is block-Toeplitz rather
than block-circulant, and the inverse can be performed
with the help of methods discussed in Subsection 5.B. The
method of preconditioned conjugate gradients, in which
the circulant approximation to the Toeplitz is used only in
the preconditioner, may also be useful. !

However the inverse is performed, the resulting spa-
tiotemporal prewhitening operation will, by definition,
perform an optimal linear compensation for the back-
ground nonuniformity, consistent with the statistical in-
formation built into it. No other linear operation, such as
local background estimation, can achieve better perfor-
mance.

B. Detection of Faint Companions

Over 160 extrasolar planets have been detected in the de-
cade since the detection of a planet orbiting the star 51
Peg.42 Most of these planets have been detected by spec-
troscopic monitoring of radial velocity variations of the
parent stars. Some planets have also been detected by the
observation of transits of the planet behind the parent
star®® and “anomalous” microlensing events.**

Recently, direct images of what appear to be substellar
objects have been obtained by using the adaptive optics
system on the Very Large Telescope. In both of these de-
tections, the companion object was approximately
0.7 arcsec from the central star, which was about ten
times the diffraction limit, and approximately 6 mag
fainter than the central star (in the K band). The central
star in the detection by Neuhauser et al.*® is a young T
Tauri star, and the companion mass is not tightly con-
strained [1-42 Jupiter masses (MdJup)]. This companion
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may therefore be a brown dwarf rather than an exoplanet.
The detection of Chauvin et al.*® does seem to be an ex-
oplanet, as they constrain the mass to 5+2 MdJup (the
boundary mass between brown dwarf and exoplanet is
controversial but is in the region of 12 MdJup). The central
star in this detection is itself a brown dwarf, which
greatly reduces the magnitude difference with the ex-
oplanet. Direct detection of exoplanets nearer to the dif-
fraction limit around main-sequence stars is much more
difficult, as the ratio of the intensities will be ~10° at vis-
ible wavelengths and ~10° in the near infrared.

1. Current Practice

The limitation on direct detection of faint companions is
noise from the central star, but it is speckle noise associ-
ated with the random PSF rather than photon noise that
dominates.*”*® These speckles arise from uncorrected at-
mospheric aberrations and slowly varying telescope or in-
strumental aberrations. There is a lot of work going on in
the development of techniques to suppress the speckles by
using coronography and pupil masks.*’

A promising approach to removing the speckles is si-
multaneous differential imaging (SDI). Images are ac-
quired simultaneously in at least two adjacent passbands,
in one of which the companion is expected to be dim or ab-
sent. If the images are subtracted, then the speckle struc-
ture should be practically identical and the detection of
any companions is limited by photon noise. A suitable
wavelength is 1.6 um, which corresponds to the methane
absorption band found only in cold atmospheres. A critical
issue with this technique is the minimization of non-
common-path errors between the different wavelength
channels.?

2. Covariance Terms

As the discussion above indicates, the dominant covari-
ance term limiting the detection of faint companions is
likely to be the PSF term, since it is this term that de-
scribes the speckle pattern. We know from Egs. (3.35) and
(3.36) that the PSF term involves an average over random
objects, where the object in this problem includes the com-
panion (under the signal-present hypothesis), the host
star, light from the host star scattered by a circumstellar
dust cloud, and any other background that might be
present. For the purpose of the PSF term, however, we
can assume that the host star is far brighter than any
other light source in the field of view. If we also assume
that the host star is nonrandom, with a known luminosity
and position, then no averaging over random objects is
needed to construct the PSF term. To be specific, if the
host star is described by f,(r)=A,8r-r,), with A, and r,
fixed and known to the observer, then the PSF term is
given from Eq. (3.35) as

[RET —ax([ngien - Ao [0 - R e,

=AYK, ] (r,,r.). (4.16)
mm/’

The noise term, though likely to be weak in this appli-
cation, should be included for a complete theory. The noise
is uncorrelated, as shown in Eq. (3.34), but nevertheless
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the form of the average PSF plays a role since the noise in
the mth pixel includes Poisson fluctuations from light
originating from the star and coupled into that pixel by
the average PSF. In addition, there are noise contribu-
tions arising from other background light and from elec-
tronic noise. If the electronic noise variance and the mean
number of detected background photons are independent
of m and j, we get

.

[Re=]" <[ 4 B+ AR 8010 (427)

The object term in the data covariance does not include
the effects of the direct light from the host star, which is
assumed to be nonrandom and known, but it does include
light from random dust clouds and general sky back-
ground. The background considerations are the same as
those in Subsection 4.A, and dust clouds can be included
by simulation methods described in Subsection 5.A.

3. Hotelling Observer
For a specified position r, where a companion might or
might not be present, the mean signal in the Hotelling

formulas is given by Aci_Lgl)(rc), where A, is the mean
brightness of possible companions. This mean brightness
enters into the final expressions for detectability but is
just an irrelevant constant in the template.

Of course r, is not known a priori, so the Hotelling test
statistic can be evaluated for a range of possible locations
and the maximum chosen as the final test statistic to be
used for the detection decision. If other data suggest pos-
sible locations, then the search over locations can be con-
strained accordingly.

If the observations cover a sufficient time that signifi-
cant movement of the companion might be expected, a
fully spatiotemporal Hotelling observer can be con-
structed. For a particular assumed orbit, the function
r.(t) will be known and the corresponding mean signal
will be §£{3=Aci_zf,’l)[rc(tj)]. For faint companions the covari-
ance matrix is independent of the orbit chosen, so it is
straightforward to compute the Hotelling test statistic for
a set of possible orbits consistent with other data such as
radial velocity measurements.

4. Simultaneous Differential Imaging

To adapt the Hotelling theory to SDI, we need one more
index on the data to indicate the spectral band. We denote
an observation at pixel m in frame j for band b as gg’,)n,
where b=1,2 if there are just two spectral bands. The
first step in processing SDI data is to form the difference

image, with components given by
W =88, -8, (4.18)

and the problem is to detect a companion from this new
data set.

To simplify the analysis, we assume that the contribu-
tions to the data covariance from sky background, dust
clouds, and any possible companion are negligible and
that the brightness and position of the host are nonran-
dom and known to the observer. With these assumptions
the object term in the covariance is zero.
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The noise is assumed to be independent in the two
bands, so the noise variances add. With no background,
the same readout noise in all pixels of both detectors, and
temporally stationary atmospheric statistics, Eq. (4.17)
becomes

P

[I—{ggse]:;)’ — [202 +A1J_L1m(r*) +A2*}_L2m(rt)]6mm'5]j”

(4.19)

where A, (r) is the mean sensitivity function and A,, is
the brightness of the host star for band 6. One overbar on
K has been deleted, since averaging over random objects
is not needed.

The PSF term for the difference data is defined by

(KT = ([ (] [~ (o))

mm’

(4.20)

For a nonrandom point object and a wavelength-
dependent PSF,

[ - (®)e]" = Ag Y r.) - Byl ]
~AL[R ) ~ Ry ], (421)

but the usual assumption in SDI is that the PSF is inde-
pendent of wavelength. In that case, we find that

(K] = Ao - A K] rr). (422)

G |

Comparing this result with Eq. (4.16), we see that the
PSF term has the same form but is reduced in magnitude
by (A, -Ay,)%/AL.

The signal from the faint companion is also reduced. If
we denote the object function for the companion in band b
as fps(r), then

Su= [ @rhuelpm-fun]. w2

Thus the noise is doubled in forming the difference im-
age (compared with a single image with the same mean
number of photons), the PSF term in the covariance is re-
duced by a potentially large factor, and the mean signal is
also reduced. The signal and both terms in the covariance
are reduced further by the need to use narrowband filters
in SDI. The net gain or loss in detectability can be deter-
mined by comparing the Hotelling SNR? values for the
two data sets G and G and comparing both with the
SNR? for data obtained over a broader spectral range.

C. Photometry

Astronomers are interested not only in detecting objects
but also in determining the flux coming from them. By es-
timating flux, and in particular estimating the flux in dif-
ferent wavelength ranges (i.e., the color), they can deter-
mine physical properties (temperature, age, mass, etc.) of
the object in question.
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1. Current Practice

The estimation of flux from images, which is referred to
as photometry, is usually carried out in one of two ways:
aperture photometry or PSF fitting. In aperture photom-
etry the flux in an area including the object is summed,
and an estimate of the background is subtracted. The
background estimate is obtained simply by summing the
flux inside an aperture where no objects are believed to be
present. The aperture used to estimate the background is
usually an annulus around the object.

Aperture photometry will not work in crowded fields,
and in this case it is usual to employ PSF fitting. In this
approach a model of the objects in the field is fitted to the
data. This requires accurate knowledge of the PSF and is
complicated if the PSF varies over the field. Esslinger and
Edmunds® simulated crowded fields with PSFs from a
real AO system and used a standard photometry package,
DAOPHOT, to estimate stellar magnitudes by PSF fitting.
They found that even when using the correct PSF in fit-
ting, the rms error in magnitude determination was as
high as 0.1 mag for densities lower than a few stars per
square arcsecond, and they concluded that they cannot
get good photometric precision in crowded fields. They
also tested the photometry of simulated faint companions
by means of deconvolution and found that deconvolution
gave worse results than PSF fitting.

2. Spatiotemporal Wiener Estimator
Since aperture photometry makes questionable assump-
tions about the background, and PSF fitting breaks down
in crowded star fields, it is reasonable to investigate lin-
ear methods like the Wiener estimator that incorporate
statistical models of the background.

The Wiener estimator for a doubly stochastic spatial
problem was given in Eq. (2.19), and the associated en-
semble mean square error (EMSE) was given in Eq.
(2.20). For estimation of a parameter 6(F) from triply sto-
chastic spatiotemporal data, these equations generalize to

§=0+K,cKg|G-G), (4.24)

EMSE = tr K, - tr K, GK¢'Kj 6. (4.25)

Calculation of the grand mean G and the two covari-
ances Kg and K, must now include the fact that 6 is
random. Since @ is a function of F, we can write

e =(CDmio)y (4.26)

and the grand mean is

QA
I

= <<<<G>G|P,F>P‘F>FM>0 <(E3"0>a- (4.27)

We do not add a fourth overbar, since there are still fun-
damentally just three sources of randomness: measure-
ment noise, PSF, and object.

If @is an N X1 vector and G is MJ X 1, then the cross-
covariance Ky g is an N X MJ matrix given by
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o ({{(o-le- o)), ),

~([0-9]G,-G]), (4.28)

A useful form of the overall covariance Kg is obtained if

we add and subtract (E},, in definition (4.27) and then use
Eq. (4.26):

o ({{e-elle-ehns) ), ).

- e+ (G-6JG-G]),

Kgjo= <<<[G - (E}g][G - éo]t>ep,p>”>”~ (4.30)

3. Estimating the Luminosity of a Star at a Known
Location
To illustrate the use of the Wiener estimator, consider the
problem of estimating the luminosity of a star at a known
location on a time-independent random background fi,4(r).
The star of interest will be described by f.(r)=08(r-r,)
where the scalar 6 is the parameter to be estimated.

For this problem, the conditional mean in component
form is

Qll

Qll

(&) - J A% RY) ) [ Figlr) + 080 — x,) |

= J Y (@)fig(r) + 6hY(r,), (4.31)

and the grand mean is
=10 o .
[G]m = f A% hY(x)fig(r) +0RY(r,).  (4.32)

From these results and Eq. (4.28), the cross-covariance
becomes simply

[Kog]” = o5hi(x,), (4.33)

where the terms involving ?bg have canceled and the
cross-covariance has only a single pair of indices (m,))
since 6 is a scalar.

The last term in Eq. (4.29) is given by

([-&][&-a]),]” -argwinsie,
(4.34)

and the overall covariance is
(K] =[(Ra)]") + oG e RS ). (4.35)

The details of the first term depend on the background
model chosen.
If the atmospheric statistics are stationary, we can drop

the superscript on i_zgi) and write Eq. (4.24) as
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M
6=+ 03> hpr)[g™ -2V, (4.36)
m=1

where g(pw) is defined in Eq. (4.4) and, from Eq. (4.32),
Mg J

:(PW) E E E [K—I]UJ ) |:J d27‘ l_lm’(r)?bg(r)

m'=1J=1j'=1
+ 071,,1,(1'*):| ) (4.37)

Use of Eq. (4.36) requires prior knowledge of the mean
and variance of 0 as well as knowledge of the mean and
covariance of the data. If the prior variance o’%% 0, Eq.
(4.36) shows that §—6; if we have no prior uncertainty, the

best estimate is the prior mean. In more realistic cases, 0-2
controls the relative weights placed on the prior mean
and a correction term computed by a prewhitening
matched filter. One way to choose § and a% is to first esti-
mate 6 by a conventional algorithm and to assign a real-
istic error to the result.

The EMSE that results from the optimal estimator

(4.36) is

J o J
PIDIPHEN]j = W IICNS

1J=1 j'=1

M =
\ME

EMSE = o% - o
1

3
i

m

(4.38)

The second term here is very similar to the expression in
Eq. (4.12) for detection of a point object; both are qua-
dratic forms in the mean signal, and both involve the in-
verse of the overall covariance matrix Kg (though this
matrix is different in the two problems because of the ran-
domness of ). Increasing such a quadratic form increases
the SNR of the optimal linear discriminant and decreases
the EMSE of the optimal linear estimator. For more on
the connection between detection and estimation prob-
lems, see the first paper in this series.?

5. COMPUTATIONAL METHODS

In this section we discuss the practical issues involved in
applying the formalism developed above. In keeping with
the title of this paper, the primary goal is to develop meth-
ods of estimating task-based figures of merit for image
quality, but in fact the approaches used will also lead to
ways of actually performing the tasks.

The major practical difficulties for both the Hotelling
observer and the generalized Wiener estimator fall into
two categories: (1) determining various averages of the
data (G with different numbers of overbars) and the three
components in a covariance decomposition like Eq. (3.30)
or Eq. (3.42); (2) actually computing figures of merit in-
volving matrix inverses as in Eq. (4.3) or Eq. (4.38). These
two aspects are treated in Subsections 5.A and 5.B, re-
spectively.

A. Finding the Means and Covariance Components

In categorizing the possible approaches to finding the
means and covariance components for purposes of assess-
ment of image quality, we should first ask if the assess-
ment is to be carried out on a real imaging system, on a
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simulated system, or purely theoretically. A simulated
system is advantageous since there we have the luxury of
simulating the various random effects separately, and in
particular we can simulate noise-free images. Fortu-
nately, numerous highly developed simulation codes are
now available for AO,52_54 and much of the discussion be-
low will assume that such code is available.

In a sense, a real imaging system is the ultimate simu-
lation; it is more realistic and far faster than any software
approach to producing similar images. Though we cannot
“turn off” noise or atmospheric degradations, we can ac-
cumulate large numbers of images rapidly and therefore
get good statistical quality in covariance estimates. The
main drawback to using real systems, however, is that we
must build them first; often we would like to use objective
figures of merit to evaluate and optimize systems that do
not yet exist.

1. Means

Single, double, and triple averages of the data are defined
in Egs. (3.23), (3.24), and (3.26), respectively. In general,
each of these averages depends on the hypothesis for a
classification task or on the parameter value for an esti-
mation task. In a sense, only the final triple-bar average
is important in task performance, since that is the only
average that appears in the final figures of merit, but the
two others are needed to compute covariance components;

as the notation implies, I_(ESF is the average conditional
covariance of the single-bar mean data (conditional on a
fixed F and then averaged over F), while K%)J is the cova-
riance of the double-bar mean.

Key to computing both the double-bar and triple-bar

averages is the mean CD kernel }_Lyn)(r) [see Eqgs. (3.24)
and (3.26)]. As noted several times above, this mean ker-
nel is independent of j if the atmosphere is temporally
stationary, but it depends on the seeing, as specified for
example by the Fried parameter ry, and of course it de-
pends on the details of the AO system.

In principle, ﬁgl)(r) could be computed directly from the
mean continuous PSF by Eq. (3.25), and the mean PSF it-
self could be found by averaging Eq. (3.17). This would re-
quire modeling the atmosphere, the noise on the output of
the detector in the wavefront sensor, the propagation of
the noise through the estimator and control system of Fig.
1, the effect of the noisy control signals on the pupil wave-
front, and finally the nonlinear relation between wave-
front and incoherent PSF. A more practical approach is to
run one of the simulation codes mentioned above and
compute a sample average. Alternatively, for an existing
imaging system, the kernel can be obtained by imaging
an isolated bright star.

Finally, various analytical approximations to i_Lf,’l)(r) can
be found in the literature. Usually the approach is to as-
sume that the partially corrected mean PSF can be repre-
sented as a diffraction-limited core and a more or less uni-
form halo of size determined by ry;, with the relative
amount of light in each component determined by the
Strehl ratio achieved by the closed-loop AO system. Such
one-parameter descriptions risk oversimplification of a
very complex system, but they may be adequate for com-
puting the triple-bar mean signal and the object term in
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the covariance. The Strehl ratio provides almost no infor-
mation about the PSF term in the covariance (except that
it vanishes as the Strehl ratio approaches unity).

2. From Object Autocovariance Function to Data
Covariance Matrix

When the PSF is independent of the object, the object
term in the covariance can be computed in two steps:
First calculate or estimate the autocovariance function of

the object, K}j’jl)(r,r’) as defined by Eq. (3.39), then use
the average response function of the system to transfer it
to the discrete data domain as in Eq. (3.38), thereby ob-
taining the contribution of the object randomness to the
covariance matrix of the data. Note carefully the distinc-
tion between the autocovariance of the object (a function)
and the contribution of the object variability o the co-
variance of the data (a matrix). Note also that only the en-
semble average of the CD response function enters into
Eq. (3.38); we do not need knowledge of individual, ran-
dom PSFs or response functions to compute the object
term in the covariance.

There are numerous situations where the autocovari-
ance function of the object can be stated analytically. Ap-
pendix A provides such expressions for three important
cases: a collection of independent stars or other point ob-
jects, a diffuse sky background modeled as a spatially sta-
tionary random process, and a spatially uniform sky
background that varies randomly with time. In all of
these cases, it is straightforward to transfer the object
variability through the imaging system by Eq. (3.38) and
to store the result for later use.

Similar advantages accrue if we consider either spa-
tially stationary backgrounds as in relation (A8) or tem-
porally stationary ones as in Eq. (A10). For example, if
the background is spatially stationary and time-
independent and the atmosphere is temporally stationary,
then Eq. (3.38) becomes

L f a2 J A2 T (1) (2 K = 1),
(5.1)

If the PSF is isoplanatic over the portion of the detector
needed for performing the task and all detector elements
are identical, then 4,,(r)=h(r-a,,), where the mth pixel
is centered at r=a,, and the function 4(-) is the same for
all pixels. In that case standard Fourier manipulations
yield

[K%bj:lw,) = f d2rf d%r'h(r - am)i_L(r’ —a,, ) Ker-r’)

= f d%p Se(p)|H(p)|* exp[27ip - (a,, - a,,) ],

0

(5.2)

where H(p) is the 2D Fourier transform of A(r) and, by
the Wiener—Khinchin theorem, the power spectral density
S¢(p) is the Fourier transform of K¢(r). Thus the covari-
ance matrix with these assumptions is a function of only
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the single 2D vector a,, —a,,, and it can be stored and dis-
played as an image with just M pixels.

3. Object Term: Sample Methods

Often no analytic autocovariance function will be avail-
able but good simulation code will exist for generating re-
alistic objects. For example, Refregier®® discusses efficient
ways of representing galaxies in terms of Hermite—Gauss
functions.

Suppose that L sample objects are generated, with each
object being a spatiotemporal sequence in general. Let the
Ith such object at time ¢=¢; be denoted as f}f)(r). The simu-
lated noise-free image of this object through the
ensemble-average imaging system is given in component
form by [cf. Eq. (3.24)]

g = f azr K@) (r). (5.3)

In a high-quality simulation, the integral in this expres-
sion will be approximated by sampling r on a discrete grid
with a grid spacing that is small compared with the reso-
lution of the imaging system.

After L images have been simulated, the sample cova-

. . o obj .
riance matrix, denoted K%J, is computed from

R 1 Lt
2 obj | (") =() A=(")
&) = oy S sahagl),

L

I i
A8l =&l = 7 2 Bl (5.4)
=1

Since the images used here are generated by passing
noise-free sample objects through the ensemble-average
PSF, this sample covariance is an estimate of the object
term in the ensemble covariance, with no contribution
from measurement noise or randomness in the PSF.

The sample covariance defined in Eq. (5.4) is an unbi-
ased estimate of K%)J, but it is not invertible since its rank
is at most L— 1. The ensemble matrix in general has J2M?
elements, but the sample matrix is fully specified by LM<J
pixel values; it can be stored as L separate images (or im-
age sequences), where in practice L can be a few hundred
or a few thousand. If the object is independent of time and
the atmospheric statistics are stationary, the object term
is independent of j and j’, so we can take J=1 and reduce
the storage and computation still further.

4. Point Spread Function Term in the Covariance

Given the complexity of the random mechanisms in-
volved, a full theoretical treatment of the PSF term may
not be possible. The only realistic approach may be simu-
lation, but even here theory will provide some simplifica-
tion in special cases.

Consider, for example, the problem of detecting faint
companions, where it can be argued that the object
(mainly the host star) is nonrandom and the PSF term is
given by Eq. (4.16). That expression can be estimated by a
sample covariance analogous to Eq. (5.4):
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“ ")
[KESF] = jz AR (r)ARY) (x,),
mm =1
1 L
AR ) = Rl ) = =2 hfp(r.). (5.5)
=1

The result needs to be stored only for m and m’ such that
the corresponding pixel locations are within the width of
the PSF from the host star and, if the atmosphere is tem-
porally stationary, only for a few values of j—j’, so the
storage requirements are modest.

For random objects with independent P and F, we need
the second moment of the object in order to compute the
PSF term in the data covariance by Eq. (3.36), and we
have two simulation options. First, if an analytic form for
the second moment (fV)(r)/Y")(r")) is known, it can be used
to generate Monte Carlo samples of r and r’, for example
by the rejection method.! If we generate I such coordinate

pairs, with the ith denoted (r;,r;), then
GJ") N I 1
PSF
Kg ] Ah Ah
|: mm' I E lL 12 ) (r )

(5.6)

where the normalizing constant, defined by N
= [d2r [d2r'(fD(r)fU (r')), can often be computed analyti-
cally if the second moment is known. Storage of the result
may be more onerous in this case than in Eq. (5.5), since
pixels m and m’ could be rather far apart and still
coupled by the second moment; in that case, however, the
PSF term would describe long-range, slowly varying cor-
relations, so it could be smoothed and sampled coarsely
for storage.

If we do not have an analytic expression for the second
moment but do have good object simulation code, we can
still use simulation methods to estimate the PSF term.
We can simulate L’ objects, each a discretized version of
some f}’,)(r), l'= ., L'. We can also generate L sample
PSF's p}’)(rd,r), l=1,...,L, each of which is then dis-
cretized by some approximation to Eq. (3.5) to generate a
sample kernel h}’n)l(rn) and a noise-free sample image.
Now, however, the sample image is denoted gg),m instead
of §§’n)1 as in Eq. (5.3) because only the measurement noise
has been averaged out and the result still depends on the
particular object [’. The PSF term is then estimated by
approximating Eq. (3.36) as

2 pep |9 agi <
Kg r=L’E I - 12Agllm .
A1) =Bl - —E Eims (5.7)
where a, is the area of the pixel used in the simulation

of the object (preferably much smaller than the pixel in
the science camera).

A similar procedure can be used if P and F are not in-
dependent. In that case the simulated object must be used
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as input to the simulation code for the PSF, and a more
complicated average consistent with Eq. (3.35) must be
used.

As a final comment on the PSF term, note that it de-
pends on the atmospheric statistics as specified by the
Fried parameter ry; to be realistic, the value used should
be specific to the observing conditions. In fact, if the co-
variances are to be used actually to perform the task in-
stead of just for objective assessment of image quality, a
measured value of ry for the particular data being ana-
lyzed could be used. Moreover, if rj is monitored as a func-
tion of time during the data run, it can be used to con-
struct a temporally nonstationary covariance, which can
then be used with a Hotelling observer or Wiener estima-
tor; this observer would have knowledge of seeing as a
function of frame index j and would, by definition, use
that information in a statistically optimal way.

5. Noise Covariance

Unless we want to consider detectors with a built-in gain
mechanism, such as intensified CCDs, the noise term in
the covariance is easy to evaluate. We see from Eq. (3.34)
that the noise term is diagonal and that the diagonal el-
ements are determined by the electronic noise variance
ofn and the triple-bar average image.

The electronic noise variance is a characteristic of the
science camera and can be determined as a function of
pixel index m by analyzing dark frames. We frequently
assumed above for simplicity that the result was indepen-
dent of m; this assumption may be adequate for assess-
ment of image quality but should be avoided for actual
data analysis. Moreover, if any flat-fielding corrections
are to be used with real data, they should be applied be-
fore oﬁl is measured; uniform average response does not
guarantee uniform noise.

The contribution of Poisson noise to Eq. (3.34) is deter-
mined by the overall (triple-bar) mean image; the formal-
ism tells us that there is no need to know the Poisson
noise in an individual image. The requisite overall mean
can be determined by the same simulation methods men-
tioned above. An important point that will be used below
is that the resulting estimate of the noise term is full rank
even if the number of samples is far less than M.

For analysis of real data, the Poisson contribution must
also be modified to account for flat-fielding corrections.
For example, if the output of pixel m is multiplied by an
experimental factor «,,, then the Poisson part of the noise
term becomes

=p; 10"
[KE&™] " = a2 8003y (5.8)

B. Computing Figures of Merit

We turn next to the problem of evaluating or estimating
objective figures of merit that involve inverses of very
large covariance matrices. The possible approaches in-
clude (1) iterative computation of the Hotelling template,
(2) Neumann-series matrix inversion, (3) use of the Wood-
bury matrix-inversion lemma, and (4) reduction of the di-
mensionality of the problem by various methods, includ-
ing channels and principal-components analysis (PCA).
All of these methods make use of the decomposition of the
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covariance matrix and the fact that the noise term is full
rank and usually diagonal, therefore easy to invert. The
methods have all have been used extensively in medical
applications, and all of them are described in detail in
Chap. 14 of Barrett and Myers1 for purely spatial data;
here we provide only a short summary and a discussion of
ways of extending the methods to spatiotemporal data.

1. Iterative Computation of the Hotelling Template

From Eq. (4.1), the spatiotemporal Hotelling template for
a weak, nonrandom signal can be expressed symbolically
as

WZK_1§, §E 61_60’ (59)
with another overbar to be added to S for random signals.
An iterative algorithm that solves for the template in the
purely spatial case has been used in medical imaging,l’19
and its spatiotemporal generalization is

~

W= Wn + a[ﬁxéoise:l_l[g = KGWn] . (5.10)

where Wn is the estimate of the template at the nth itera-
tion and « is a constant that controls the convergence
rate. Note that if convergence is achieved, the steady-
state solution satisfies Eq. (5.9).

After N iterations, the estimated template is WN, and
the corresponding estimate of the Hotelling detectability
is just the scalar product:

SNR%,, = S'Wy. (5.11)
Alternatively, the template can be applied to two sets of
simulated image sequences, with and without the signal
of interest, to generate two corresponding sets of test sta-
tistics from which an ROC curve can be constructed. In
either case, the errors in the final detectability estimates
need to be assessed; methods of doing so are described in
Barrett and Myers.1

2. Neumann Series

The Neumann series is the matrix counterpart of the fa-
miliar rule for summing a geometric series. From the
Neumann formula we can write

[D + B]‘1 = [I + D‘lB]‘lD‘1 = L_io [— D‘IB]"]D‘1

=D'-D'BD'+D'BD'BD '+ -,
(5.12)

provided that D! exists and the series converges uni-
formly. If D-! is known analytically, the inverse of
[D+B] can thus be written as a sum of matrix products
with no inversion at all required.

To apply Eq. (5.12) to the problems considered in this
paper, we take D as the noise term in the data covariance
and B as the sum of the object and PSF terms. Thus,
from. Eq. (3.34),
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[D_l],(:i;), = Snm Gy (5.13)

T+ 8
and formulas for the Hotelling template, the Hotelling de-
tectability, and the EMSE of the Wiener estimator follow
readily. For example, the detectability for a weak time-
dependent signal is

M J (gr(a))2

SNRf = >, > ———

m=1j=1 g2 +3gV
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(5.14)

The first term is just what we would get for detection on a
nonrandom background [cf. Eq. (4.12)], and the second
term is a first-order estimate of the decrease in detectabil-
ity (note the minus sign) arising from the spatiotemporal
covariance of the object and PSF. Higher-order terms, not
shown, refine the estimate of object and PSF effects, and
the series will converge quickly if these effects are weak.
Thus the Neumann approach is most applicable in the
low-light situations often encountered in astronomy.

In spite of the quadruple sum, the second term of Eq.
(5.14) might be relatively easy to compute. The sums over
pixel indices m and m’' need to cover only those pixels
where the signal to be detected is nonzero, an area deter-
mined by the width of the uncorrected PSF. For example,
if the task is detection of a point object and the science
camera has 1000 1000 pixels, then M=10% and the
double sum in principle contains 10'2 terms, but if an un-
corrected PSF covers only 1000 pixels, then there are only
108 nonzero terms in the double sum, a million-fold reduc-
tion in computation. Moreover, the double sum over j and
J' reduces to a single sum if the signal, PSF, and back-
ground are all temporally stationary random processes.

3. Matrix-Inversion Lemma
The Woodbury matrix-inversion lemma states that

[A-UBV]'=A"+A'UB[I-VA'UB| 'VA™!
=A"+A'U[I-BVA'U| 'BVA™.
(5.15)

This lemma is most useful when the perturbation term
UBV has low rank, and we shall see two examples below
where this is the case. For other forms of the lemma and
a good discussion, see Tylavsky and Sohie.®

One application of the matrix-inversion lemma is to the
problem of detection of a known signal on a spatially uni-
form background of random, time-varying level. The co-
variance matrix for this problem, given in Eq. (4.8), is
MJ X MJ (where M is the number of detector pixels and
J is the number of frames). To find its inverse, we use the
lemma with U chosen as an M X 1 array of blocks, each
block being a J XJ unit matrix (hence U is MJ XJ), and
V=U'. Thus, for any JXJ matrix T, UTV is an

MJ X MJ matrix with elements [UTV]E)’;‘;;?,:TW’). Note



Barrett et al.

also that VU=MI, where I; is the J XJ unit matrix. It
then follows from Eq. (4.8) and the second form of Eq.
(5.15) that

7
(o + 7C)?

M 16
><|:<IJ+O_2+776KJ) KJ:|

= (02 + né)_lamm"sjj’ - Q(]J,)a

-1704") A —
(K& = (0 nC) 8y =

(5.16)

where K is a J XJ matrix with elements Kc(t;,t;/). The
matrix to be inverted in Eq. (5.16) is only </ X/, so it is
feasible to perform the inverse with standard linear-
algebra packages. One might be tempted to assume sta-
tionarity and use a DFT for the inversion, but even with
stationarity K; is Toeplitz and not circulant, so the DFT
does not exactly diagonalize the matrix.

Another important application of the matrix-inversion
lemma arises when we have approximated the PSF term
and/or the object term in the covariance with sample co-
variance matrices as in Eqgs. (5.5)—(5.7). To illustrate the
approach, consider the faint-companion problem where
the PSF term is estimated from L samples as in Eq. (5.5).
We also assume for simplicity that the object term is neg-
ligible. Then, in a method suggested by Brandon Gallas,’
we can write the sample estimate of the PSF term, Eq.
(5.5), as

K. =RR, (5.17)
where R is an MJ X L matrix with elements
RY) = ’ﬁAth(m). (5.18)
Vi~
From the matrix-inversion lemma,
|:I={&0ise + RRt:|_1 — [Iz{aoise:l_l _ [i&oise]_l
<R[L, + R{Ky™| R] 'R{Kg™]". (5.19)

The advantage of this form is that only an L X L matrix
needs to be inverted, where L is a few hundred or a few
thousand in practice, rather than an MJ XMJ matrix,
where M may be 10%. This inverse can then be used to es-
timate the Hotelling discriminant or the corresponding
detectability. Even though we are using sample covari-
ance matrices here, we are not reducing the Hotelling dis-
criminant to a Fisher discriminant; instead we are esti-
mating the Hotelling discriminant in a problem where the
Fisher discriminant does not exist.

4. Dimensionality Reduction

A common way of dealing with large covariance matrices
in automated signal detection and pattern recognition is
to combine the original measurements (M<J of them in our
context) into some much smaller set of numbers, often
called features. If the features are linear combinations of
the data, then the feature extractor is a linear operator
called a channel.
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If N features are used, the Hotelling test statistic and
detectability can be computed by inverting an N X N ma-
trix. Though this method is very valuable in many prac-
tical settings, it is not recommended for assessment of im-
age quality since there is no way of knowing how much
information has been lost in the dimensionality reduction.
At best, the resulting detectability is a figure of merit for
the combination of the feature-selection algorithm and
the imaging system, while the interest in objective assess-
ment is only in the latter.

Sometimes, however, it is possible to construct chan-
nels such that the Hotelling detectability calculated for
the linear features is essentially the same as for the raw
data; in this case the channels are said to be efficient. Ef-
ficient channels for use in image-quality assessment can
often be constructed by using strong prior knowledge that
one would not necessarily have in actual signal-detection
problems. For example, if we consider the task of detect-
ing a rotationally symmetric signal at a known location in
a spatially isotropic random background, the templates
that define the channels can be taken as rotationally sym-
metric functions. Moreover, if we know a priori that the
correlation length of the background is relatively long, the
channel functions can be broad and smooth. Such consid-
erations led to the use of a small set of Laguerre—Gauss
functions as potentially efficient channels®” in medical
problems, and a detailed simulation study58 showed that
they could indeed be efficient. Alternatively, inefficient
channels that accurately predict the performance of hu-
man observers can be used.?® 5!

Another way of reducing the dimensionality of a co-
variance matrix is PCA. In essence, PCA amounts to per-
forming an eigenanalysis of a sample covariance matrix
and discarding all eigenvectors except those correspond-
ing to the N largest eigenvalues. Thus, if we consider an

M'XM' sample covariance matrix K formed from L
samples, it has an approximate spectral representation of

N
K=~ > \¢,dl =®PAD* (N=L-1), (5.20)
n=1

where, in the first form, IA(¢n=)\nq$n, the \,, are ordered by
decreasing values, and the eigenvectors {¢,,n=1,...,N}
are orthonormal and have dimension M’ X 1. In the sec-
ond form, ® is an M’ X N matrix with ¢, as its nth col-
umn and A is an N X N matrix with the values of \,, along
the diagonal. In practice PCA is most useful if we can take
N<«L-1.

To apply PCA to AO, we interpret K as the sum of
sample estimates of the object and PSF terms in the co-
variance decomposition and hence take M'=MJ. As dis-
cussed in Subsection 5.A, these sample estimates can be
computed by noise-free simulation, and we can let the
simulation code run long enough to get the desired accu-
racy in the estimate. Then, for some L that is large but
still «MdJ, we can use standard algorithms to solve for
the N eigenvectors with largest eigenvalues and use them
to simplify any of our formulas for objective figures of
merit.
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6. SUMMARY AND CONCLUSIONS

One goal of this paper was to show in detail how the prin-
ciples of objective or task-based assessment of image
quality could be applied to the important practical prob-
lem of adaptive optics (AO), especially in astronomy. A
second goal was to use this application to extend the
methodology of objective assessment itself by considering
spatiotemporal systems with random point spread func-
tions (PSF's).

A continuous-to-discrete (CD) model of the imaging sys-
tem was used throughout. In CD models, the object to be
imaged is treated as a function of continuous variables,
but the image is a discrete set of numbers or a finite-
dimensional vector. The objects considered here were
spatiotemporal functions of two spatial variables and the
time, and the data were indexed by a pixel index m and a
frame number j. An immediate consequence is that a data
vector is huge, with M<J elements, where M is the number
of pixels in the image detectors (~10°) and o is the num-
ber of frames (often thousands in astronomy).

Since task performance must be measured in statistical
terms, the statistical properties of objects and images are
crucial. We therefore performed a general statistical
analysis of a generic AO system. Though formal expres-
sions for the full multivariate probability density function
of the data were given, they were used mainly to compute
the mean vectors and covariance matrices needed to com-
pute performance on detection and estimation tasks with
linear observers. In particular, it was shown that the
MJ X MJ covariance matrix could be written rigorously as
a sum of three terms, referred to as the noise, PSF, and
object terms. The noise term was so called since it would
vanish if there were no Poisson or readout noise in the
data. Similarly, the PSF term would vanish if the PSF
were nonrandom, as with a perfect AO system, and the
object term would vanish if there were no random spatial
or temporal structure in the astronomical scene. In spite
of these designations, all three terms were affected by all
three sources of randomness, especially in the case where
the guide star or other reference source for the AO system
was considered to be random and part of the object. For-
mulas were derived for each of the three terms in the co-
variance expansion.

To illustrate various aspects of the theory, three specific
tasks of astronomical interest were analyzed: detection of
a weak pointlike object on a random background, detec-
tion of a faint companion, and photometry. The primary
observer considered for the two detection tasks was the
ideal linear discriminant, known in the objective-
assessment literature as the Hotelling observer. The ob-
server considered for the photometric estimation task was
the Wiener estimator, which is ideal in the sense that it
minimizes the ensemble mean square error among all lin-
ear and globally unbiased estimators. Like the Hotelling
discriminant, the Wiener estimator requires knowledge of
the ensemble covariance matrix and the ability to invert
it.

Several methods were presented for estimating each of
the three terms in the covariance matrix. The noise term
is the easiest to handle since in almost all practical cir-
cumstances the noise is uncorrelated from pixel to pixel or
frame to frame. Thus the noise covariance is at least di-
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agonal and often simply a multiple of the MJ X M<J iden-
tity matrix. The random object and PSF, on the other
hand, introduce complicated spatiotemporal correlations.
Some cases where the object term could be expressed ana-
lytically were discussed, and sample methods for approxi-
mating that term in other cases were presented. At the
present state of our understanding of AO systems, no ana-
Iytic model for the PSF term in the covariance is avail-
able, but sample methods are straightforward.

Because of the presence of the diagonal noise term, the
overall covariance is invertible in principle, even when
sample methods are used for the object and PSF terms.
Several practical algorithms for dealing with the inverse
and computing figures of merit for task performance were
presented. Since the viability of all of these algorithms
has been established with purely spatial data in the
medical-imaging literature, there is little doubt of their
practicality for spatiotemporal data from AO systems.

The main conclusion of this paper, therefore, is that a
rigorous statistical, task-based assessment of image qual-
ity in AO is possible and that the time is ripe for its ap-
plication.

APPENDIX A: ANALYTIC
AUTOCOVARIANCE FUNCTIONS FOR
RANDOM OBJECTS

As we saw in Eq. (3.38), the object term in the spatiotem-
poral covariance matrix can be interpreted as a transfor-
mation of the autocovariance function of the object ran-
dom process through the ensemble-average imaging
system. In this appendix we provide analytic expressions
for the object autocovariance function for three situations
of practical interest in astronomy.

1. Star Fields
Consider a collection of time-independent point objects
described by

N
flr)= D A, 8r-x,), (A1)
n=1

which is a random process specified by 2N+1 random
quantities: the N amplitudes A,,, the N position vectors
x,, and N itself. We assume that the positions are drawn
independently from some known PDF pry(x,), that the
number of points in some finite region of space is statisti-
cally independent of the number in any nonoverlapping
region, and that the probability of two or more points ly-
ing in some small area Aa goes to zero as Aa— 0; these
assumptions would make f(r) a Poisson random process
were it not for the random amplitudes A,. We assume
that the amplitudes are drawn independently from
pra(4,) and that A, is independent of x,,.

The ensemble mean object is given by

N
firy=( { D A,8r-x,) : (A2)
n=1

A/

where the inner expectation is over the sets {A,,n
=1,...,N} and {x,,n=1,...,N}, while the outer expecta-
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tion is over N. With the independence assumptions stated
above,

]7‘(1‘) = Nf dAnprA(An)Anf d2xnprx(xn) 5(!‘ - Xn)
0

* N
= N(A,)pry(r) = (A,)b(r), (A3)
where N=(N) and b(r), defined by
b(r) = Npry(r), (A4)

can be interpreted as the mean number of point objects
per unit area at location r. For example, in a globular
cluster it is common to assume that b(r)x|r—ry|# for
some positive number B and some range of distances from
the cluster center r.

The autocorrelation function of f(r) is defined by

{(f)f(x"))

N N
= E 2 AnAn/a(r_xn)‘s(r_xn’)
n=lal=l RN
(A5)

In the double sum, there are N terms for which n=n" and
N2-N terms for which n #n’. With the independence as-
sumptions we find that

(F)f(x")) = (N* = N)A,)*pry(r)pry(r’)
+ <N}(Ai> f d?x,pry(x,)8r - x,) 8r' - x,,)

= (0% + N? = N)(A,)?pry(r)pry(r’)
+ N(A2)pry(r)d(r - '), (A6)

where 0% is the variance of N. In spite of the random am-
plitudes, the independence assumptions imply that N is
Poisson," so o%=N.

The final autocovariance function is given by

Ki(r,x') = (fr)f(x")) - flo)f(x’) = (ADb(r) 8 - ).
(A7)

Thus f(r) is uncorrelated with f(r’) for r # r’; the data pro-
duced by an imaging system will, however, be correlated,
with the correlation length determined by the system
resolution. Neither the object nor the image data will be
spatially stationary unless the point density b(r) is a con-
stant.

This analysis can be extended to the case where b(r) is
itself a random process,’ representing for example an en-
semble of globular clusters.

2. Spatially Stationary Background Models

The autocovariance of the object can often be expressed
analytically for a diffuse sky background with some ran-
dom spatial structure. An example would be the light
scattered from galactic dust distributions, often referred
to as galactic cirrus.
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If the random diffuse background is a wide-sense sta-
tionary random process, or at least approximately so over
the field of view in some astronomical study, it can be
specified by its power spectral density S¢(p), where p is a
2D spatial-frequency vector (in image-plane coordinates).
If a functional form for S¢(p) is known or can be estimated
from observations, then the needed autocovariance func-
tion is readily obtained by a 2D Fourier transform
(Wiener—Khinchin theorem). In the special case where the
background is isotropic, S¢(p) depends only on the magni-
tude of p, denoted p, and the autocovariance is obtained
by a Hankel transform.

As an example, it is found® that galactic cirrus in the
far infrared has a power spectrum given approximately
by S¢(p) < p~” over about a two-decade range in p; the ex-
perimental value found for y is about 3. This power-law
spectral density indicates a scale-invariant or fractal
structure, but the experimental power spectra seem to ap-
proach a constant value rather than diverging as p—0. If
we avoid the divergence by taking S¢(p) < (p+pg)~?, the au-
tocovariance function needed in Eq. (3.39) is purely spa-
tial and given by

0

K(r,r' t,t') = sz pdp(p + po) " o(2mplr —x'|),
0

(A8)

where J(:) is the zero-order Bessel function of the first
kind. The parameters y and p, can be estimated from ac-
tual data, and the integral can be performed numerically.

3. Random Background Level

Above we considered a diffuse background with spatial

structure but no time dependence; the opposite

situation—no spatial variation but a time-dependent

background level—also occurs frequently in astronomy.
The background model in this case is simply

flr,5)=C(t), (A9)

where C(¢) is a temporal random process specifying the
fluctuating background level. The spatiotemporal autoco-
variance function of f(r,t) is the same as the temporal au-
tocovariance of C(¢), denoted K (t,¢'). If C(¢) is stationary,
its ensemble mean (C(¢)) is independent of time and can

be denoted C, and the autocovariance is a function only of
the time difference, so that Kq(¢,t")=Kc(t-¢').

Two limits are of interest. If C(¢) is stationary and suf-
ficiently slowly varying that it is constant over one frame
of the science camera, Eq. (3.39) becomes

K (e,e') = Koltj - t;), (A10)

and if it varies so slowly that it is constant over the entire
study, then

K{(x,x') = 02, (A11)

where o% is the variance of C. Even though this latter au-
tocovariance function is independent of both spatial and
temporal variables, it can have an important impact on
task performance (see Subsections 4.A and 4.C).
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