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Exoplanet Spectroscopy Status
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Some Outstanding Issues

What spectral features are really present?

Are observed strengths of spectral features due to intrinsic
abundances or temperature profiles?

—  Distinguish temperatures, T profiles, compositions

—  Are ice giants overabundant in carbon / metals like Neptune?

How is energy absorbed and transported in highly irradiated
planets?

— Measure & determine causes of temperature inversions

—  Study transport via day / night side differences

— Is there non-equilibrium chemistry?

« Hydrocarbons like CH, (acetylene), C H, (ethane) indicate photo-
chemical production

What is the composition of mini-Neptune atmospheres?
Can Kepler Earth candidates (1 Me, 1AU) be confirmed?

Can we detect any features in Super/Earth atmospheres? =



How Can JWST Help?

JWST has 6.5 m aperture vs. 2.4 mfor HST and 0.85 m for
Spitzer

—  Photon noise-limited SNR goes as aperture size, so JWST should be
capable of SNR ~ 3 — 8 times present values

JWST has great spectroscopic capabilities, particularly:

—  A=0.7-5pum, R ~ 100 mode with NIRSpec prism

— A=0.7-2.5pum, R ~ 700 mode with NIRISS grism+prism (slitless)

—  A=2.5-5pum, R~ 1700 mode with NIRCam grisms (slitless)

—  A=5-12+ ym, R ~ 70 mode with MIRI LRS prisms (slitless)
JWST is being designed and will be operated to maximize
exoplanet spectroscopy SNR

—  Wide NIRSpec slit (1400 mas) and slitless mid-IR spectroscopy

—  Testing spectrophotometric precision and simulating operations

—  Systematic noise due to pixel size and observatory parameters are
being modeled (P. Deroo PASP submitted), mitigation possible



What are the optimum JWST targets?

|deally we need planets transiting / eclipsing IR bright
nearby but small stars

—  SNR ~ sqgrt(star signal), planet emitting / absorbing area, & R

— M stars are ideal if stable
— Kepler planets are too faint / distant for spectroscopy

Large planet atmospheric scale heights H = kKT/(ug) will
have relatively high SNR transit spectra: A_~ 2m R 5H

— (Gas giants, ice giants, mini-Neptunes will be good
Do harder (smaller / cooler) planets with JWST

Impossible to characterize true Earth / Sun analog via transit
spectroscopy



JWST Simulations

Transmission and emission models from J. Fortney group
Semi-realistic model of telescope and instrument
wavelength-dependent resolution and throughput

— Includes reflections, grating functions, filters

—  Use actual instrument models or guesstimates

Photon noise and systematic noise added

Systematic noise is difficult to predict but starting to
model it

— Different for each instrument and mode

— May have large wavelength dependencies (Deroo sub. PASP)

Compare simulations of model variants to determine what
science issues can be addressed with JWST data



JWST Systematic Noise Estimates

Variable PSF and image jitter will induce
spectrophotometric errors due to non-uniform intra-pixel
detector response and residual flat field errors

These effects were noted in the Spitzer IRAC InSb
detectors and calibrated out to about 1E-4 precision

Use of slitless spectrographs and JWST NIRSpec wide slit
(1600 mas) will eliminate any systematlc n0|se due to jitter-
Induced slit losses
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Deming et al. 2009 PASP
FiG. 8.—Intrapixel sensitivity vanation for a representative NIRSpec detector j gk i
pixel, from engineering measurements of the fhight detector. The upper traces z |

show the average variation in the dispersion direction (solid line), and the spatial
direction (dashed line). The lower traces divide the pixel into 10 strips parallel
to the spectral dispersion, and they show the difference from a parabolic fit of
response vs. distance from pixel center. The differences have been amplified by a
factor of 4, and offset by 0.3, for clanty of presentation.
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Systematic Noise Estimate Models

* Focus and pointing drifts are likely the biggest impact for JWST
NIRSpec due to its undersampled PSF. Most critical below 2.5 or 3
microns.

* NIRISS GR700XD, NIRCam grism, and MIRI LWS all minimal impact
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HD 189733b Gas Giant
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. Only 1 transit (top) or eclipse (bottom) plus time on star for each (1 NIRSpec + 1 MIRI)

. Multiple features of several molecules separate compositions, temperature, and
distributions (J. Fortney group models + JWST simulation code)



% Absorption

% Absorption
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* Simulated single transit model absorption spectra distinguish between
equilibrium 30X solar (black), reduced CH4 & H20O (blue, red) or non-
equilibrium chemistries where H20 and CH4 are absent in favor of
higher order hydrocarbons HCN, C2H2, and other molecules (purple,
cyan and green curves). 1 transit each: 30 min star + 30 min in-transit
integration time. Noise has been added (Shabram et al. 2011).
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Next Steps: Better noise models & retrieval

Will update systematic noise estimates with info from
iInstrument tests

Need to assess what information can be extracted from
simulated spectra:

—  What features are present at what strengths and significance?
—  What is uncertainty in derived atmospheric parameters?

I'll probably start with simple ¥ retrieval methods

| welcome your comments / advice / participation

12



Are Earth transmission spectra possible?

Transit of Venus visible photo
5.6.2012 (H. Chapman)
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Earth transit facts of life

Earth disk area is ~ 1E-4 of a G2V
star or 1E-3 of M3V (GJ 581)

Absorbing area of Earth atmosphere
isA~2mRSH, H=KkT/ug~8km, so

Aa T/up and A/Ae ~ 0.01
Therefore a completely absorbing

spectral line would have a signal
(Area) of ~1E-5 relative to M3V star

Detecting this signal at SNR=3
requires precision of 3E-6 (3 ppm)

Venus Solar transit 5.6.2012

Would require co-addition of ~100
transits to get 1E11 photons per
spectral element, but systematic The disk of Venus against the Sun is about the

: S size of Earth transiting an M3-5 dwarf. The red
noise must be > 20x lower than HST annulus is much larger than the absorbing limb

Super-Earths? Remember A a T/up gm‘t% Esrlt—lh egr'g%srﬁgﬁre' Notice the star spots.

Area is independent of radius R
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How to progress beyond individual planets?

Need a dedicated, smaller mission to conduct a statistical
survey to advance exoplanet atmosphere science:

— How are exoplanet atmosphere compositions related to host
stars, and what does this tell us about their formation?

— What equilibrium and non-equilibrium chemistry is present,
and what internal / external processes drive this?

— How is stellar energy absorbed and transported in planets;
what causes inflated radii?

Measure & determine causes of temperature inversions
Study transport via day / night side differences

— How does the solar system and its formation compare with
nearby planetary systems?

Transit spectrocopy performance is not a strong function of
aperture (SNR goes as D, not D*2) and is improved by
simultaneous wavelength coverage and low systematic noise



Some Conclusions

Expect exquisite JWST spectra of gas and ice giants

—  Determine abundances, temperature profiles, and energy transport in
hot Jupiters with little degeneracy using transit & eclipse spectra over
0.7 — 10+ microns.

Easily constrain compositions of mini-Neptunes like GJ
1214b (down to 2 R e and smaller)

Possibly detect CO, absorption in Super-Earths, but Earth-
like planets are difficult otherwise
There is plenty of exoplanet spectroscopy to do:

—  Cool, dense planets with JWST

—  Statistical survey of giant planet atmospheres with FINESSE or EChO

—  Stability and low systematics are as important as aperture
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