Exoplanet Transit and Eclipse spectra with JWST: potentials and limitations

> Tom Greene (NASA Ames) ExoPAG #6 (Reno, NV) Oct 13, 2012

Exoplanet Spectroscopy Status

Some Outstanding Issues

- What spectral features are really present?
- Are observed strengths of spectral features due to intrinsic abundances or temperature profiles?
 - Distinguish temperatures, T profiles, compositions
 - Are ice giants overabundant in carbon / metals like Neptune?
- How is energy absorbed and transported in highly irradiated planets?
 - Measure & determine causes of temperature inversions
 - Study transport via day / night side differences
 - Is there non-equilibrium chemistry?
 - Hydrocarbons like C₂H₂ (acetylene), C₂H₆ (ethane) indicate photochemical production
- What is the composition of mini-Neptune atmospheres?
- Can Kepler Earth candidates (1 Me, 1AU) be confirmed?
- Can we detect any features in Super/Earth atmospheres? 3

How Can JWST Help?

- JWST has 6.5 m aperture vs. 2.4 m for HST and 0.85 m for Spitzer
 - Photon noise-limited SNR goes as aperture size, so JWST should be capable of SNR ~ 3 – 8 times present values
- JWST has great spectroscopic capabilities, particularly:
 - $\lambda = 0.7 5 \mu m$, R ~ 100 mode with NIRSpec prism
 - $\lambda = 0.7 2.5 \mu m$, R ~ 700 mode with NIRISS grism+prism (slitless)
 - $\lambda = 2.5 5 \mu m$, R ~ 1700 mode with NIRCam grisms (slitless)
 - $\lambda = 5 12 + \mu m$, R ~ 70 mode with MIRI LRS prisms (slitless)
- JWST is being designed and will be operated to maximize exoplanet spectroscopy SNR
 - Wide NIRSpec slit (1400 mas) and slitless mid-IR spectroscopy
 - Testing spectrophotometric precision and simulating operations
 - Systematic noise due to pixel size and observatory parameters are being modeled (P. Deroo PASP submitted), mitigation possible

What are the optimum JWST targets?

- Ideally we need planets transiting / eclipsing IR bright nearby but small stars
 - SNR ~ sqrt(star signal), planet emitting / absorbing area, & R_{\cdot}^{2}
 - M stars are ideal if stable
 - Kepler planets are too faint / distant for spectroscopy
- Large planet atmospheric scale heights $H = kT/(\mu g)$ will have relatively high SNR transit spectra: $A_{am} \sim 2\pi R_{am} 5H$
 - Gas giants, ice giants, mini-Neptunes will be good
- Do harder (smaller / cooler) planets with JWST
- Impossible to characterize true Earth / Sun analog via transit spectroscopy

JWST Simulations

- Transmission and emission models from J. Fortney group
- Semi-realistic model of telescope and instrument wavelength-dependent resolution and throughput
 - Includes reflections, grating functions, filters
 - Use actual instrument models or guesstimates
- Photon noise and systematic noise added
- Systematic noise is difficult to predict but starting to model it
 - Different for each instrument and mode
 - May have large wavelength dependencies (Deroo sub. PASP)
- Compare simulations of model variants to determine what science issues can be addressed with JWST data

JWST Systematic Noise Estimates

- Variable PSF and image jitter will induce spectrophotometric errors due to non-uniform intra-pixel detector response and residual flat field errors
- These effects were noted in the Spitzer IRAC InSb detectors and calibrated out to about 1E-4 precision
- Use of slitless spectrographs and JWST NIRSpec wide slit (1600 mas) will eliminate any systematic noise due to jitterinduced slit losses

Deming et al. 2009 PASP

FIG. 8.—Intrapixel sensitivity variation for a representative NIRSpec detector pixel, from engineering measurements of the flight detector. The upper traces show the average variation in the dispersion direction (*solid line*), and the spatial direction (*dashed line*). The lower traces divide the pixel into 10 strips parallel to the spectral dispersion, and they show the difference from a parabolic fit of response vs. distance from pixel center. The differences have been amplified by a factor of 4, and offset by 0.3, for clarity of presentation.

Systematic Noise Estimate Models

- Focus and pointing drifts are likely the biggest impact for JWST NIRSpec due to its undersampled PSF. Most critical below 2.5 or 3 microns.
- NIRISS GR700XD, NIRCam grism, and MIRI LWS all minimal impact

HD 189733b Gas Giant

- Only 1 transit (top) or eclipse (bottom) plus time on star for each (1 NIRSpec + 1 MIRI)
- Multiple features of several molecules separate compositions, temperature, and distributions (J. Fortney group models + JWST simulation code)

GJ 436b (warm Neptune) transmission spectra simulations

 Simulated single transit model absorption spectra distinguish between equilibrium 30X solar (black), reduced CH4 & H2O (blue, red) or nonequilibrium chemistries where H2O and CH4 are absent in favor of higher order hydrocarbons HCN, C2H2, and other molecules (purple, cyan and green curves). 1 transit each: 30 min star + 30 min in-transit integration time. Noise has been added (*Shabram et al. 2011*).

Next Steps: Better noise models & retrieval

- Will update systematic noise estimates with info from instrument tests
- Need to assess what information can be extracted from simulated spectra:
 - What features are present at what strengths and significance?
 - What is uncertainty in derived atmospheric parameters?
- I'll probably start with simple χ^2 retrieval methods
- I welcome your comments / advice / participation

Are Earth transmission spectra possible?

Earth transit facts of life

- Earth disk area is ~ 1E-4 of a G2V star or 1E-3 of M3V (GJ 581)
- Absorbing area of Earth atmosphere is A ~ 2πR⁵H, H = kT[/]μg ~ 8 km, so A α T[/]μρ and A/Ae ~ 0.01
- Therefore a completely absorbing spectral line would have a signal (Area) of ~1E-5 relative to M3V star
- Detecting this signal at SNR=3 requires precision of 3E-6 (3 ppm)
- Would require co-addition of ~100 transits to get 1E11 photons per spectral element, but systematic noise must be > 20x lower than HST
- Super-Earths? Remember A α T/μρ Area is independent of radius R

The disk of Venus against the Sun is about the size of Earth transiting an M3-5 dwarf. The red annulus is much larger than the absorbing limb of the Earth atmosphere. Notice the star spots. Photo by H. Chapman.

How to progress beyond individual planets?

- Need a dedicated, smaller mission to conduct a statistical survey to advance exoplanet atmosphere science:
 - How are exoplanet atmosphere compositions related to host stars, and what does this tell us about their formation?
 - What equilibrium and non-equilibrium chemistry is present, and what internal / external processes drive this?
 - How is stellar energy absorbed and transported in planets; what causes inflated radii?
 - Measure & determine causes of temperature inversions
 - Study transport via day / night side differences
 - How does the solar system and its formation compare with nearby planetary systems?
- Transit spectrocopy performance is not a strong function of aperture (SNR goes as D, not D^2) and is improved by simultaneous wavelength coverage and low systematic noise

Some Conclusions

- Expect exquisite JWST spectra of gas and ice giants
 - Determine abundances, temperature profiles, and energy transport in hot Jupiters with little degeneracy using transit & eclipse spectra over 0.7 – 10+ microns.
- Easily constrain compositions of mini-Neptunes like GJ 1214b (down to 2 R_E and smaller)
- Possibly detect CO₂ absorption in Super-Earths, but Earthlike planets are difficult otherwise
- There is plenty of exoplanet spectroscopy to do:
 - Cool, dense planets with JWST
 - Statistical survey of giant planet atmospheres with FINESSE or EChO
 - Stability and low systematics are as important as aperture