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* My point of view and main thrust of my talk is from the past 5
years of science, which is giant planets down to sub-Neptunes

* There are lessons for the future and for smaller planets

My Main Points

* In observations, we should focus on repeatability, high S/N, and
broad wavelength coverage, over getting 1-2 data points for an
ever increasing numbers of planets

* We should have continued comparison of reduction methods by
different groups on public data

« Comparison between modeling efforts: not enough has been
done



Realities

Getting information on the light emitted, transmitted, or scattered by
transiting planet atmospheres is hard to do

There is no getting away from the problem of small signals (104 to
10-3) of the stellar flux

All things being equal, weighting towards having more data for a
smaller number of systems is better than having data on more
planets, but having less of it per planet. This helps in validating our
tools.



The Planets We are Attempting to Characterize
Appear Badly Behaved, Which is Very Interesting
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The context for understanding
mid-infrared photometry of
brown dwarfs ONLY comes
from near-IR spectra

More 2-band Spitzer detections
may not be helpful. Even if we
get a very large number and
can cut it many ways, it likely
won'’t be clear why any such
relations (if found) exist.
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We Are Attempting to Classify with Small Amounts of Data
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HD 189733b: The Lone
Well-Characterized Hot

Jupiter?
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Spectroscopy Is nice because you
can’t hide anything like you can with
photometry
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Dayside emission spectrum of HD 189733b
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Things Like This Are Frustrating
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Some Perspective on Modeling Planetary Atmospheres

Molecules, Clouds, and Hazes in Atmospheres:
 There are the knowns

 There are the known unknowns

 There are the unknown unknowns




The Knowns: Molecules we're “guaranteed” to see
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 We'd like to know the abundances of these molecules within a factor of ~3
* Would allow connection to planet formation



The Known Unknowns: Molecules we expect to see
depending on the effects of photochemistry and C/O ratio
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The Unknown Unknowns: Our imperfect understanding
of these atmospheres, in the absence of spectral data

Phosphorus compounds?
Sulfur compounds?

| don’t know (that's why
they're called unknown
unknowns)

For smaller planets, the
number of unknowns goes
up, due to uncertain initial
conditions and
surface/interior/atmosphere
Interactions, and impacts of
biology




We Are Attempting to Classify with Small Amounts of Data
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How the known unknowns and
unknown unknowns effect the results

Because one fits a 1D atmosphere to a 3D reality, we could be led astray
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The Only Hot Jupiter Model Comparison that | Know Of
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Clear and dramatic differences between Fortney et al. and Tinetti

et al. transmission spectra

To my knowledge no one else has pursued this in the literature
Not a particularly fun and rewarding area of study
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GJ 1214b Data: A “Flat” Transmission Spectrum
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* High MMW atmosphere (which
dramatically shrinks scale
height) or high obscuring
clouds have been suggested

« With current data, solutions are
degenerate

« With more planets, it is
possible this degeneracy can
be lifted
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5000 Planets from Population Synthesis
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* Low mass planets from 5-15 M., may have quite high Z
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Perhaps we should expect higher MMW extremely ice-rich
atmospheres to be the rule, for these low-mass planets
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“Realistic” MMW shrinks atmospheric scale height
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Conclusions

* Focus on repeatability, high S/N, and broad wavelength coverage
« That is necessary to get broad agreement on where we are
and what we can all agree we have learned

* | think that we’ll be in a lot better position after the results of HST
Cycle 18 (Deming et al.) and Cycle 19 (Sing et al.). We should think
about which planets should be observed again for higher S/N.

* GJ 1214b and similar planets may be difficult to characterize

 Continued comparison of reduction methods by different groups on
public data

« Comparison between modeling efforts
« Straight 1D vs. 1D comparisons
 Inversions of 3D atmospheres with known molecular
abundances to determine how well these are recovered in 1D



Some Perspective on Modeling Planetary Atmospheres

lbn Yamin, Persian poet, 13" century

There are four types of men:

*One who knows and knows that he knows... His horse of wisdom will
reach the skies. [One day we’'ll get there]

*One who knows, but doesn't know that he knows... He is fast asleep, so
you should wake him up! [Not an issue]

*One who doesn't know, but knows that he doesn't know... His limping
mule will eventually get him home. [Our best case right now]

*One who doesn't know and doesn't know that he doesn't know... He will
be eternally lost in his hopeless oblivion! [A potential problem]



Quantifying the Role of Clouds Seen in T and Y Brown Dwarfs
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Quantifying the Role of Clouds Seen in T and Y Brown Dwarfs
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