Design Requirements for Precision Radial Velocimetry

Phil Muirhead
Caltech Postdoctoral Scholar
(on behalf of John Johnson)
“Conduct Advanced Telescope Searches for Earth-like Planets and Habitable Environments Around Other Stars”
— A Renewed Spirit of Discovery — President George W. Bush January 2004
Radial Velocities
10 cm/s
Howard et al. (2012)

Statistics from *Kepler*
Equilibrium Temperature [K] vs. $M_{\sin(i)}$ [Earth Mass]

Equation:

$$255 * (\text{Radius of Star [Solar Radii]}^{1/2} * (\text{Mass of Star [Solar Mass]}^{1/6} * (\text{Orbital Period [Days]} / 365)^{-0.3333} * (T_{\text{eff}}[\text{Kelvin}] / 5777))$$

Exoplanets with radial velocity measurements

First Publication Date

10/13/2012
Exoplanets with radial velocity measurements

$$255 \times (\text{Radius of Star [Solar Radii]})^{(1 / 2)} \times (\text{Mass of Star [Solar Mass]})^{(-1 / 6)} \times (\text{Orbital Period [Days]} / 365)^{(-0.3333)} \times (\text{T}_{\text{eff}}[\text{Kelvin}] / 5777)$$
Precision Radial Velocity Requirements

• **Photon Noise**
 – Telescope Area * N nights per year
 – Spectrometer Resolving Power (R>50k)
 – Spectrometer simultaneous bandwidth (~100s nm)

• **Systematic Noise**
 – Stability and calibration (~1 um physical)
 – Stellar jitter. Rotating spots and p-modes
 • Stationary noise process, overcome with high *cadence*
Precision Radial Velocity Requirements

- **Photon Noise**
 - Telescope Area \times N nights per year
 - Spectrometer Resolving Power ($R > 50k$)
 - Spectrometer simultaneous bandwidth ($\sim 100s$ nm)

- **Systematic Noise**
 - Stability and calibration ($\sim 1\mu m$ physical)
 - Stellar jitter
 - Rotating spots and p-modes
 - Stationary noise process, overcome with high cadence

Optimize by **CALCULATION**

Optimize by **SIMULATION and EXPERIMENT**
• Quantitatively assess survey yield as a function of Doppler spectrometer specifications:
 – Resolution
 – Wavelength coverage
Photon Noise
(fundamental limit)
Relative Doppler precision for fixed integration time, star at 10 pc

Bottom et al. submitted
Relative integration time to detect a planet in the HZ, star at 10 pc
Relative integration time to detect a planet in the HZ, star at 10 pc
Relative integration time to detect a planet in the HZ, star at 10 pc

Bottom et al. submitted

Habitable Planet Finder (HPF)

G, K and early M Stars

mid-to-late M Stars

Iodine Gas Cell

HARPS

CH₄ NH₃ Gas Cells
RECONS 7 pc Sample

Mike calculated number of stars you can survey for 5 M\textsubscript{Earth} planets in the HZ for fixed observing time and tele size
• Mike calculated number of stars you can survey for 5 M_{Earth} planets in the HZ for fixed observing time and tele size.
Iodine-Calibrated Regime

• 500 to 620 nm best place to search for habitable-zone planets around nearby G, K & early-M dwarfs via the Doppler method.

• But so far we have only considered photon noise
Systematic Noise

(defined as a noise source we cannot isolate)
HIRES Radial Velocity Measurements of Sigma Draconis
15 years of observations
HIRES Radial Velocity Measurements of Sigma Draconis
15 years of observations

Averaging measurements does not improve RS residuals < 30 cm/s
HIRES Radial Velocity Measurements of Sigma Draconis
15 years of observations

1) Instrumental Variation?
2) Stellar Jitter?
3) Planets?

Averaging measurements does not improve RS residuals < 30 cm/s
Instrumental Profile Stability: Dominant Effect

Bottom et al. submitted 0.5 m/s floor for 10^{-3} skewness

Bottom et al. *submitted*
Instrumental Profile Stability: Stabilize with Fiber Scrambling

RV precision for Tau Ceti

Fisher, Tokovinin, Schwab, Spronck
Supported by NSF MRI, NSF and NASA
That Leaves **Jitter** and **Short-period Planets**

- Both can be overcome with *high-cadence* observations.
- An RV measurement *every night*.
- Project *Minerva*
Radial Velocities
10 cm/s

- IP Stability
 - Iodine + Fiber
- High Cadence
 - Dedicated instrument and telescope

“Conduct Advanced Telescope Searches for Earth-like Planets and Habitable Environments Around Other Stars”
— A Renewed Spirit of Discovery — President George W. Bush January 2004
Future of Radial Velocities

- High TRL barge is headed towards big dedicated spectrographs, big telescopes, laser combs...

- ...but low TRL speed boats are fun
New Low TRL Project: LAEDI

- Lock-in Amplified Externally Dispersed Interferometer
- 2012 JPL DRDF award winner!
- P. Muirhead, G. Vasisht (Co-Pis), K. Wallace, R. Jensen-Clem, M. Bottom, J. Johnson
New Project: LAEDI

- Uses a zero-readnoise detector
- Single-mode fiber feed for high coherence
- Frequency locked-laser for mm/s OPD calibration.
New Project: LAEDI

Spectrograph first light on FRIDAY!
Thanks to students Rebecca Jensen-Clem and Michael Bottom
\[255 \times (\text{Radius of Star [Solar Radii]})^{(1 / 2)} \times (\text{Mass of Star [Solar Mass]})^{(-1 / 6)} \times (\text{Orbital Period [Days]} / 365)^{(-0.3333)} \times (T_{\text{eff}}[\text{Kelvin}]/5777) \]

- IP Stability
 - Iodine + Fiber
- High Cadence
 - Dedicated instrument and telescope
- Low TRL experiments

Exoplanets with radial velocity measurements