

Exoplanet Direct Imaging SAGs

Charley Noecker

Jet Propulsion Laboratory, California Institute of Technology

Tom Greene NASA Ames Research Center

ExoPAG 6 – Reno, NV Oct 13-14, 2012

Nearby Earth in 1 zodi disk near $2\lambda/D$ (Guyon et al. 2009)

© 2012. All rights reserved.

Overview

- SAG 5 is devoted to requirements for a flagship-class direct imaging mission
- A new focus on smaller missions is warranted
 - Diminished expectations for technology and mission funding
 - Exploring a new 2.4m opportunity (AFTA)
- We are planning to form a new SAG to do the same for "moderate" direct imaging mission concepts
 - Probe class (\$1B) and 2.4 m options will be prominent
- The proposed SAG 9 for moderate direct imaging will draw heavily from the work done in SAG 5
- Participation in SAG 9 again will be by self-nomination (volunteering)

SAG 5 Membership

- Tom Greene and I are co-chairs. Marie Levine (JPL) is Facilitator.
- ~ 60 scientists, technologists, engineers
- Communicating via <u>http://tech.groups.yahoo.com/group/exopag_flagship/</u>

L name	F name	email	Institution	Interests / Expertise	SAG Task area
Apai	Daniel	apai@as.arizona.edu	UA	Ground-based imaging searches / characterization	
Augereau	Jean-Charles	augereau@obs.ujf-grenoble.fr	IPAG Grenoble	debris disks and exozodiacal dust disks, SPICES concept	dust, planet imaging
Belikov	Rus	ruslan.belikov-1@nasa.gov	NASA ARC	coronagraph technology	
Booth	Jeff	jeffrey.t.booth@jpl.nasa.gov	JPL	Mission architectures	
Breckinridge	Jim	jbreckin@caltech.edu	CIT (adjunct)	Planet imaging telescopes and technologies	
Cahoy	Kerri	kerri.cahoy@gmail.com	MIT / NASA GSI	Planetary atmospheres, mission design, DRMs	Science, DRM, mission trades
Cash	Webster	wcash@origins.colorado.edu	Univ Colorado	Science measurements, DRMs, occulters, technology	occulter
Chakrabarti	Supriya	supc@bu.edu	Boston Universit	Technology	
Clampin	Mark	mark.clampin-1@nasa.gov	NASA GSFC	coronagraph science and technology (VNC)	coronagraph
Defrere	Denis	ddefrere@mpifr-bonn.mpg.de	MPIfR Bonn	Imaging exozodiacal disk structures in Hzs and impact on planet imaging	Science
Glassman	Tiffany	Tiffany.Glassman@ngc.com	Northrop Grumn	Starshades / science requirements	occulter
Greene	Tom	tom.greene@nasa.gov	NASA ARC	observations, technology, DRM	editor and co-chair
Guyon	Olivier	guyon@naoj.org	UA / Subaru	coronagraph science and technology (PIAA)	coronagraph
Kaltenegger	Lisa	lkaltene@cfa.harvard.edu	CfA /MPIA	Earth-like atmospheric spectra	Science
Kasdin	Jeremy	ikasdin@Princeton.EDU	Princeton	coronagraphs, occulters, system engineering	occulter and coronagraph
Krist	John	iohn.krist@ipl.nasa.gov	JPL	coronagraph design & modelling, debris disk imaging	wodeling requirements, post-
Levine	Marie	marie.b.levine-west@jpl.nasa.gov	JPL	Technology, observatory system design, requirements & analysis	system engineering
Lilly	Chuck	chuck.lillie@nac.com	Northrop Grumn	Architecture issues, technology	Occulter & coronagraph
Lisman	Doug	n d lisman@inl nasa gov	IPI	coronagraphs, occulters, system engineering	occulter and coronagraph
Lisse	Carey	Carey Lisse@ibuanl.edu	JHU APL	exosystem spectroscopy / materials characterization	Science
	Amy S	Amy Lo@ngc.com	NGAS	Science measurements, DRivis, occulters, performance modeling, technology	≯occulter
Lvon	Rick	richard o lyon@nasa.gov	GSEC	Flow of requirements into architectures	requirements to architectures
Mandell	Avi	Avi.Mandell@nasa.gov	NASA GSFC	IR spectral characterization of exoplanets	Science
Marley	Joe	joseph.h.catanzarite@jpl.nasa.gov	JPL	Science measurements, astrometry	Science
Marley	Mark	mark.s.marley@nasa.gov	NASA ARC	Planetary atmospheres and giant planet spectra	Science
McElwain	Michael	michael.w.mcelwain@nasa.gov	NASA GSFC	coronagraphy, wavefront control, and IFU spectroscopy and science policy	Science and technology
Noecker	Charley	mcnoecke@ball.com	Ball ATC	Science measurements, DRMs, coronagraphs, occulters, control systems, performance modeling, technology, ground testing	editor and co-chair, occulter and coronagraph, system engineering
Petit	Pascal	petit@ast.obs-mip.fr	Observatoire Mi	stellar magnetic activity via spectroscopy and spectropolarimetry	Science
Pitman	loe	ice nitman@exsci org	ExSci	space telescopes. SE modeling & simulation, I&T verification	Strawman concepts and requirements
Postman	Marc	postman@stsci.edu	STScl	Large LIV/O mission synergy	Large LIV/O mission synergy
Redding	Dave	david c redding@inl nasa gov	IPI	integrated modeling	system engineering
Roberge	Aki	aki roberge-1@nasa gov	NASA GSEC	Exozodi	Exozodi SAG lead
Serabyn	Gene	eserabyn@inl.nasa.gov	IPI	Science coronagraphs interferometers	ultimate contrast wavelengths IWA
Shaklan	Stuart	stuart h shaklan@inl nasa.gov	IPI	architecture issues	occulter and coronagraph
Shao	Mike	michael shao@inl nasa gov	IPI	Planet / dust / speckle discrimination_astrometry_coronagraph (VNC)	Science and coronagraph
Smith	Erin C.	erin c smith@nasa.gov	NASAARC	(Occulters)	occulter
Solmaz	Arif	arif solmaz@gmail.com	Turkey (student)	Transits exonlanets	oodalloi
Soummer	Rémi	soummer@stsci.edu	STScl	Science measurements, coronagraphs, occulters	occulter and coronagraph
Sparks	Bill	sparks@stsci.edu	STScl	Biosignatures circ Polarization	Science instrument concepts
Stapelfeldt	Karl	krs@exonlanet in nasa dov	IPI	Science performance modeling, targets, dust	Science
Tanner	Angelle	angelle tanner@gmail.com	Georgia State	target selection, astrometry, high contrast imaging	Science / targets
Tenerelli	Domenick	domenick tenerelli@lmco.com	LMMSC	coronagraph and occulter missions and technologies	occulter and coronagraph
Trauger	John	John.Trauger@jpl.nasa.gov	JPL	coronagraph and wavefront control technologies	Mission design and performance simulations
Tsvetanov	Zlatan	zlatan@pha.ihu.edu	JHU	observations, science requirements, figures of merit	Science
Turnbull	Maggie	turnbull.maggie@gmail.com	Global Science	Target star characteristics, background objects	Science
Vanderbei	Robert	rvdb@Princeton.EDU	Princeton	Coronagraphs and Occulters	
Vosteen	Amir	amir.vosteen@tno.nl	TNO	nulling interferometry, systems engineering,	
Williams	Darren	dmw145@psu.edu	PSU	Earth-like moons of giant exoplanets	Science
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	

ExoPAG 6 - Imaging SAGs

Task Description

- Coronagraph and Occulter SAGs were combined into SAG 5 after ExoPAG 3 (Jan 2011)
- Develop strawman science requirements for direct imaging
 - Groundwork for Astro2010 mid-decade technology downselect
 - Structured to support making comparisons and decisions
- Start on a "flagship" direct imaging mission in 2020+ Flagship ≡ very likely to find & characterize at least one Earth-like planet in the habitable zone of its star
- 2. Then consider smaller mission(s) along that path
- Meetings with COPAG → initiated effort to define a shared space telescope for exoplanets and UV-opt astrophysics
 - COPAG's flagship definition is consistent with ours

SAG 5 Progress 2011-12

- Established a framework of Science Goals, Objectives, and Musts & Discriminators
 - See description on next page
 - Discussed via email, telecons, and at ExoPAG meetings
- Flagship class mission, COPAG partnership
 - → Emphasized terrestrial planets
 - Super-earths, giant planets, and debris disks are included in key Discriminators (ranking criteria)
- We have essentially finished this work with some caveats:
 - We will not assign scoring at this time
 - Several requirement values are TBR, pending better knowledge
 - Prevalence of Earth-like exoplanets (η_\oplus) from Kepler
 - Exozodi statistics (brightness and profile) from LBTI or elsewhere
- On track for delivering a report at ExoPAG 7 (Jan 2013)
- Move on to smaller missions (proposed SAG 9)

Unusual Framework for Requirements

We have articulated

3 overarching

science goals

11 more specific science objectives

Musts (minimum capability)

Discriminators (valuable additions)

- Musts correspond to traditional <u>minimum</u> science requirements, but can include technical or programmatic constraints
- Discriminators are criteria for scoring/ranking a new way to handle <u>Baseline</u> and <u>Goal/Stretch</u> requirements
 - Phrased to be independent of mission architecture
- Allows fair comparison of different mission concepts with very different strengths and weaknesses
- Worked with SAG 4 (exoplanet characterization) and SAG 1 (exozodi requirements) in developing these lists
- COPAG has agreed to formulate their requirements in this framework
 Selection of one mission concept based on the union of both sets of criteria

Science Goals (Top Level)

- <u>Goal1</u>: Determine the overall architectures of a sample of nearby planetary systems. This includes determining the numbers, brightnesses, locations, and orbits of terrestrial to giant planets and characterizing exozodiacal dust structures in regions from habitable zones to ice lines and beyond. This information will also provide clues to the formation and evolution of these planetary systems.
- <u>Goal 2</u>: Determine or constrain the atmospheric compositions of discovered planets, from giants down to terrestrial planets. Assess habitability of some terrestrial planets, including searching for spectral signatures of molecules and chemical disequilibrium consistent with the presence of life. Determining or constraining surface compositions of terrestrial planets is desirable but is not strictly required.
- <u>Goal 3:</u> Determining or constraining planetary radii and masses are stretch goals of this mission. These are not strictly required. However, measuring radii and masses would provide a better understanding of detected planets, significantly increasing the scientific impact of this mission.

Vector from SAG 5 to proposed SAG 9

 How would we modify those goals for a smaller mission?

• Let's look at some examples...

Science Goals A. Minor relaxation

- <u>Goal1</u>: Determine the overall architectures of a sample of nearby planetary systems. This includes determining the numbers, brightnesses, locations, and orbits of terrestrial to giant planets and characterizing exozodiacal dust structures in regions from habitable zones to ice lines and beyond. This information will also provide clues to the formation and evolution of these planetary systems.
- <u>Goal 2</u>: Determine or constrain the atmospheric compositions of discovered planets, from giants down to terrestrial planets. Assess habitability of some terrestrial planets, including searching forspectral signatures of molecules and chemical disequilibriumconsistent with the presence of life. Determining or constraining surface compositions of terrestrial planets is desirable but is not strictly required.
- <u>Goal 3:</u> Determining or constraining planetary radii and masses are stretch goals of this mission. These are not strictly required. However, measuring radii and masses would provide a better understanding of detected planets, significantly increasing the scientific impact of this mission.

Science Goals B. Leave unchanged

- <u>Goal1</u>: Determine the overall archite planetary systems. This includes dete brightnesses, locations, and orbits of characterizing exozodiacal dust struct zones to ice lines and beyond. This in clues to the formation and evolution o
- <u>Goal 2</u>: Determine or constrain the discovered planets, from giants down habitability of some terrestrial planets spectral signatures of molecules and

Several of these goals are likely too difficult for small missions, but there's no need to constrain ambition at the beginning

consistent with the presence of life. Determining or constraining surface compositions of terrestrial planets is desirable but is not strictly required.

 <u>Goal 3:</u> Determining or constraining planetary radii and masses are stretch goals of this mission. These are not strictly required. However, measuring radii and masses would provide a better understanding of detected planets, significantly increasing the scientific impact of this mission.

Science Objectives (condensed)

- 1. Detect terrestrial planets
- 2. Measure orbital parameters
- 3. Obtain multi-band photometry
- 4. Confirm planets and distinguish among them (motions & colors)
- 5. Determine or constrain planet masses if possible
- 6. Spectroscopic characterization of terrestrial planets
- 7. Detect giant planets
- 8. Spectroscopic characterization of giant planets
- 9. Measure location and extent of dust disks
- 10. Detect and measure substructures in dusty disks to infer planets
- 11. Understand the evolution of circumstellar disks: pre-planetary to debris

Detailed language

Science Objectives A. Minor relaxation

- 1. Detect terrestrial planets
- 2. Measure orbital parameters
- 3. Obtain multi-band photometry
- 4. Confirm planets and distinguish among them (motions & colors)
- 5. Determine or constrain planet masses if possible
- 6. Spectroscopic characterization of terrestrial planets
- 7. Detect giant planets

Redundant

- 8. Spectroscopic characterization of giant planets-
- 9. Measure location and extent of dust disks
- 10. Detect and measure substructures in dusty disks to infer planets
- 11. Understand the evolution of circumstellar disks: pre-planetary to debris

Detailed language

Musts and Discriminators

- SAG 5's are too detailed to cover here
- Summarized vaguely in <u>backup slides</u>
- Described in detail in draft report (available on request)
- Musts and Discriminators are where we'll make the most extensive changes between SAG 5 and SAG 9

We welcome your comments

Please join us

Science Objectives (full text, 1/4)

- Directly detect terrestrial planets that exist within the habitable zones around nearby stars or, alternatively, observe a large enough sample of nearby systems to show with high confidence that terrestrial planets are not present.
- 2. Measure or constrain orbital parameters (semi-major axis and eccentricity) for as many discovered planets as possible, especially those that show evidence of habitability.
- 3. Obtain absolute photometry in at least three broad spectral bands for the majority of detected planets. This information can eventually be used, in conjunction with orbital distance and planet radius, to constrain planetary albedos.

2012 October 14

ExoPAG 6 - Imaging SAGs

Science Objectives (full text, 2/4)

- Distinguish among different types of planets, and between planets and other objects, through relative motion and broadband measurements of planet color.
- 5. Determining or constraining planetary masses is highly desired but not required. Determining masses would allow estimates of planetary radii to be made, thereby enabling calculation of planetary albedos (Objective 3).
- 6. Characterize at least some detected terrestrial planets spectroscopically, searching for absorption caused by O₂, O₃, H₂O, and possibly CO₂ and CH₄. Distinguish between Jupiter-like and H₂O-dominated atmospheres of any super-Earth planets. Such information may provide evidence of habitability and even of life itself. Search for Rayleigh scattering to constrain surface pressure.

2012 October 14

ExoPAG 6 - Imaging SAGs

Return

Science Objectives (full text, 3/4)

- 7. Directly detect giant planets of Neptune's size or larger and having Jupiter's albedo in systems searched for terrestrial planets. Giants should be detectable within the habitable zone and out to a radius of at least 3 times the outer habitable zone radius.
- Characterize some detected giant planets spectroscopically, searching for the absorption features of CH₄ and H₂O. Distinguish between ice and gas giants, as well as between Jupiter-like and H₂O-dominated atmospheres of any mini-Neptune planets.
- Measure the location, density, and extent of dust particles around nearby stars in order to identify planetesimal belts and understand delivery of volatiles to inner solar systems.

Science Objectives (full text, 4/4)

- In dusty systems, detect and measure substructures within dusty debris that can be used to infer the presence of unseen planets.
- Understand the time evolution of circumstellar disk properties around a wider star sample at greater distances, from early protoplanetary stages through mature main sequence debris disks.
- The Science Goals and Objectives are related as follows

	Science Objectives											
Science Goals	1	2	3	4	5	6	7	8	9	10	11	
1. Architectures	\checkmark	\checkmark		\checkmark	 ✓ 		\checkmark		\checkmark	 ✓ 	\checkmark	
2. Compositions			✓	\checkmark	(•	\checkmark		✓				
3. Masses & radii			\checkmark	\checkmark	\checkmark					\checkmark		

2012 October 14

Returr

Musts mapped to Objectives

	Science Objectives										
Musts	1	2	3	4	5	6	7	8	9	10	11
M1: detect Earth twin	\checkmark										
M2: detect Jupiter twin							\checkmark				
M3: 14 CumHZs	\checkmark						\checkmark				
M4: 3 CumIHZs	\checkmark						\checkmark				
M5: colors			\checkmark	\checkmark				\checkmark			
M6: fine spectra						\checkmark		\checkmark			
M7: orbital SMA	\checkmark	\checkmark		\checkmark							
M8: oxygen						\checkmark					
M9: water						\checkmark		\checkmark			
M10: all on 1 planet	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark					
M11: absol photometry			\checkmark								
M12: guide on faint star									\checkmark	\checkmark	\checkmark
M13: surface brightness									\checkmark	\checkmark	\checkmark

Discriminators mapped to Objectives

	Science Objectives											
Discriminators	1	2	3	4	5	6	7	8	9	10	11	
D1: # CumHZs	\checkmark						\checkmark					
D2: # CumIHZs	\checkmark						\checkmark					
D3: max δ-mag	\checkmark						\checkmark					
D4: # confirmed	\checkmark						\checkmark					
D5: # planets, 4 color			\checkmark	\checkmark				\checkmark				
D6: # planets, full spectra						\checkmark		\checkmark				
D7: # planets, part spectra						\checkmark		\checkmark				
D8: NIR and NUV						\checkmark		\checkmark				
D9: common PM	\checkmark						\checkmark					
D10: # orbit SMA	\checkmark	\checkmark		\checkmark								
D11: # astrometric mass				\checkmark	\checkmark							
D12: # absol photometry			\checkmark	\checkmark								
D13: # giants w/ TXPs							\checkmark	\checkmark			\checkmark	
D14: # KuiperB w/ TXPs									\checkmark	\checkmark	\checkmark	