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JWST in a nutshell

 6.5-m primary mirror; 25 m?
in 18 segments
— T~40K, bkg. limited
Sunshield

e A<1-28 um
o zodi-limited to 10um

Optical Telescope ~ OTE Primary Mirror
Element (OTE)
Secondary Mirror

* Instruments:
— NIRCam 0.7 — 5 um
— NIRSpec 0.7 — 5 um
— MIRI 5 - 28 um
— NIRISS/FGS .7-5(2.3) um
¥ - 2018 launch
— Arianne V to L2
— 5 yrreq life
— 10 yr goal
— No cryogens

"~ Sunshield
Containment
Fields



The MIRI instrument will characterize circumstellar debris disks, extra-
solar planets, and the evolutionary state of high redshift galaxies
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Developea' by consortium of 10/
*Operating wavelength: 5 - 28 microns
*Spectral resolution: 5, 70, 2000
*Broad-band imagery: 1.9 x 1.4 arc minutes FOV
«Coronagraphic imagery
*Spectroscopy:
« R~ 70 long slit spectroscopy 5 x 0.2 arc sec

« R~ 2000+ spectroscopy: 3.5 x 3.5and 7 x 7 arc sec FOV integral field units
*Detector type: Si:As, 1024 x 1024 pixel format, 3 detectors, 7 K cryo-cooler
*Reflective optics, Aluminum structure and optics
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MIRI Fields of View (Requirement v Capability)
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MIRI - Spectral Coverage

e Imager/Coronagraph e Medium Resolution Spectrometer

Name | Wavelength | Bandwidth Wavelength| Spectral Resolving Pi)gels per
(um) (um) Sub- Coverage Power resolution element
[um]
E::ga 33 ;Z band (R =NAA) Spectral Spatial
- ' Rqmt | Capability |(Rgmt>2)
Fio00w 10.0 2.0 1A | 49-58 5180-6430 | 0.9-1.1| 1.1-1.7
F1130W 11.3 0.7 1B | 56-6.7 4800-6600 | 0.9-1.2[1.2-16
F1280W | 128 = 1C | 65-7.7 |>2400[4770-6480 | 0.9-1.3[12-15
F1500W 15.0 3.0 oA | 75-88 2040-5590 | 1.1-31[1.2-17
F1800W 18.0 3.0 2B | 8.6-10.2 1770-5310 | 1.1-3.7[1.3-1.9
F2100W 21.0 5.0 2C | 10.0-11.8 1600-5000 | 1.2-4.1[ 1.5-2.2
F2550W 25.5 4.0 3A | 11.5-13.6 | > 1600 | 3070-5900 | 1.0-2.1| 1.6-2.0
F2550WR | 25.5 4.0 3B | 18.3-15.7 2390-5510 | 1.1-2.2| 1.9-2.3
F1065C | 10.65 959 3C | 15.3-18.1 2150-5040 | 1.2-2.5| 2.2-26
F1140C 11.4 0.57 4A | 17.6-21.0 | 800 [2190-2510 | 1.7-2.1[22-27
F1550C 15.5 0.78 4B | 20.5-24.5 1950-2210 | 1.9-2.4| 2.6-4.0
F2300C 23.0 e 4C | 23.9-28.6 1860-1950 | 2.2-2.7| 3.1 -3.7

Waivers approved by MIRI Science Team (MIRI-RW-00009-ATC)
“..the spectrometer is capable of doing the expected science
programs with no significant compromise..”

= ¢O
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e Low Resn. Spectrometer
5t0 10 um, R =100 at 7.5 um

MIRI Optical System CDR, 6t & 7" December 2006

This document contains proprietary information as stated on the cover page

MIRI European
Consortium
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MIRI was delivered to ISIM I&T during May 2012
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MIRI Imager / LRS Subarrays

(1,1024)

.

(1032,1024)

I’"

Table S Current and Proposed MIRI Imager Subarray Locations and Sizes'

Subarray Size Start FAST | Max Flux Max Flux
Columns | Pos Frame | F560W F2550W°
by Rows Time [mJy] [mly]

FULL 1024 (1,1) 2.775 17 360

BRIGHTSKY 864x512 | (1,1) 1.183 38 870

SUB256 608x256 | (1,1) 0.453 100 2400

SUB128 132x128 | (1,897) | 0.100 440 10000

SUB64 68x64 (1,897) | 0.065 680 16000

SLITLESSPRISM | 68x512 | (1,348) | 0.164 2900 using P750L at 7.5 um

i ]
(1.1)“(5';1) (1028,1) ':163"2,1)

Note: Fastest readouts will have low (~50%) efficiencies
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NIRCam: 0.7-5 um imaging + 3-5 um spectroscopy
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NIRCam filters and modes
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On-sky layout (right);

Coronagraphic masks (right)
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NIRCam 2.5 — 5 um slitless grisms

Grisms are in the LW

pupil wheel and are used
In series with a LW filter

R=1700

Good spatial sampling:

4950 nm
4700 nm
3950 nm
3700 nm
3200 nm

— Nyquist sampled at 4 um 2950 nm

Some grism filter combinations

Filter Al A2 | # pixels
F27TW | 2.42 | 3.12 696
F322W2 | 2.42 | 4.03 1600
F356W | 3.12 | 4.01 885
F410M | 3.90 | 4.31 408
F444W | 3.89 | 5.00 1104

-

36.7 mm

LW FPA size 36.7 X 36.7 mm

Center Field Dispersion by Grism

- 2 grisms per module in
perpendicular orientations
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Preliminary NIRCam subarrays / bright limits

 Point source imaging subarrays of 64 x 64, 160 x 160, and
400 x 400 pixels LW & SW

— Bright limit K~ 9 mag (G2 V) with wide filter in 64 x 64
subarray depending on wavelength

—8 wave weak lens gives K ~ 4 mag saturation limit for
SW photometry with 160 x 160 pixel subarray

« 2048 x 64 grism subarray allows K ~ 3 - 5 mag bright limit
for G2V star at A ~ 3 um (depending on spectral
orientation: 1 or 4 outputs used)

« 1024 x 32 grism subarray also possible for up to 1.5 mag
brighter objects: complete spectrum except for W2 filters
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JWST Observational Constraints

JWST instantaneous field of regard is limited

Sun angles between 85 and 135 degrees (35% of sky; CVZ > 5d)
Two 50-day visibility windows per year near ecliptic

Absolute pointing (7 mas 1 sigma requirement) limits
spectrophotometric precision of multiple visits, particularly with
HgCdTe detectors (NIRCam, NIRISS, NIRSpec)

Pointing jitter (7 mas 1 sigma requirement) limits
spectrophotometric precision of a single observation / visit.

JWST has a 1E4 second exposure limit due to required moves of
the high gain antenna.

« Currently planning to allow observations through this limit, but
expect pointing jump of 100 mas for 1 minute duration.

Must observe a single field at a fixed roll angle for up to 10 days
continuously BUT:

« Maximum visit duration is 1 day for momentum dump: need new
guide star acq; BAD for phase curves!
15



Systematic Noise Limits

» Expect a systematic noise floor to emerge when photon
SNR is high

* NIRCam (+ NIRISS + NIRSpec) detectors are similar to
HST WFC3; expect similar ~35 ppm noise floor

— Validated by independent modeling

* MIRI cryogenic (7K) CMOS detectors are less stable;
more like Spitzer IRAC band 3 and 4

— Still working on optimal noise reduction strategy, hoping
for ~50 ppm noise floor in single / few visits
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Systematic Noise Estimate Models

» Focus and pointing drifts are likely the biggest impact for JIWST when

the PSF is undersampled.
« Will impact MIRI MRS but not a serious issue for NIRCam SW or LW at A > 3 um.

« NIRCam grism, MIRI LWS (& NIRISS GR700XD) all have no slit
losses and suffer minimal impact from undersampllng

25
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JWST Spectral Simulations

Transmission and emission models from J. Fortney group
Semi-realistic model of telescope and instrument
wavelength-dependent resolution and throughput

— Includes reflections, grating functions, filters

— Use actual instrument models or guesstimates

Photon noise and systematic noise floor added in
quadrature

Systematic noise is difficult to predict but major causes
can be modeled / predicted

— Different for each instrument and mode

— May have large wavelength dependencies for some instruments
(Deroo sub. PASP)

Do retrievals on simulations to determine what science
Issues can be addressed with JWST data
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HD 189733b Gas Giant

HST G141 NIRCam grisms MIRI LRS
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Only 1 transit (top) or eclipse (bottom) plus time on star for each (1 NIRSPec + 1 MIRI)

Multiple features of several molecules separate compositions, temperature, and
distributions (J. Fortney group models + JWST simulation code)
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Retrieval from HD 189733b emission simulation
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GJ 1214b transmission spectra simulations (with noise floor)
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NIRSpec prism simulation also
covers NIRISS and NIRCam.
NIRCam grism range (red line)
is very useful for identifying
components

MIRI LRS spectrum is also
useful for identifying
components

. Simulated single transit model absorption spectra distinguish between
different low density atmosphere models for low mass planets like GJ
1214b (Fortney et al. 2013).
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What are the optimum JWST targets?

|deally we need planets transiting / eclipsing IR bright
but small stars

—  Star SNR ~ sqrt(signal) and transit depth ~ (Rpl / R*)?
Photon-limited SNR about 2.5x better than HST (just sqrt area)
— If stable, M stars are ideal hosts for transmission & emission

— Most Kepler planets are too distant for spectroscopy

Large radius planets with large atmospheric scale
heights KT/(ug) will have high SNR transmission spectra

— Nearby gas giants, ice giants, mini-Neptunes will be good
— Also good emission spectra SNR for hot Jupiters

Can characterize nearby mini-Neptunes found by TESS

JWST cannot do it all: not enough time to do all
transiting planets; not optimized for high precision so
co-adding many weak spectra may not be productive



Earth transit facts of life

Earth disk area is ~ 1E-4 of a G2V
star or 1E-3 of M3V (GJ 581)

Venus Solar transit 5.6.2012

Absorbing area of Earth atmosphere
is A~2mR_5H, H=KkT_/ug~ 8 km,
soAa T/up and A/Ae ~ 0.01

Therefore a completely absorbing
spectral line would have a signal
(Area) of ~1E-5 relative to M3V star

Detecting a 100% absorption at
SNR=3 requires precision of 3 ppm

Would require co-addition of ~100
transits to get 1E11 photons per

spectral element, but systematic The disk of Venus against the Sun is about the

noise must be > 20x lower than HST size of Earth transiting an M3-5 dwarf. The red
annulus is much larger than the absorbing limb

Super-Earths? Remember A a T /up of the Earth atmosphere. Notice the star spots.
. - ° Photo by H. Chapman.
Area is independent of radius R

Direct imaging is best for Earths! o



MIRI detection of CO, in Super-Earth emission”?
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I« JWST MIRI filters (red boxes, left)

| may detect deep CO2 absorption in
Super-Earth emission observations if
hosts ar enearby M dwarfs.

* Modeling shows that modest S/N
detections possible on super-Earth
planets around M stars |IF data co-
add well (Deming et al. 2009).
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04

0.0 W wrlinnd e Could detect CO2 feature in ~50 hr
D avetensth (miromy for ~300-400K 2 R_e planet around
“ M5 star at 10 pc: IF the data SNR
iImproves with co-additions

Deming et al. (2009) showing
Miller-Ricci (2009) Super-Earth
Emission spectrum and MIRI filters
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Some Conclusions

Expect exquisite JWST spectra of gas and ice giants

—  Determine abundances, temperature profiles, and energy transport in hot
Jupiters with little degeneracy using transit & eclipse spectra and phase

observations.

—  Good SNR transmission spectra in SINGLE TRANSITS for hot Jupiters over
0.7 — 12+ microns

Expect photon-limited SNR ~ 2.5x better than HST WF3 G141
with a similar systematic noise floor
But much better science than HST: more planets, larger wavelength range

Possibly detect CO, absorption in Super-Earths, but Earth-like
planets are otherwise too difficult

There is plenty of exoplanet spectroscopy to do:

— JWST will provide good SNR spectra of a few dozen gas giant, ice giant
and nearby mini-Neptune planetary atmospheres over its 5 year mission

—  Statistical survey of giant planet atmospheres with a dedicated mission.

Wavelength coverage & low systematic noise are as important as aperture
26



