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Outline 

•  NIRISS overview 
•  Transit spectroscopy capability 
•  Simulations 
•  Performance limitations 
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FGS/NIRISS overview 

•  Two instruments in one box provided by CSA 
•  FGS (Fine Guidance Sensor)  

•  Provides fine guiding to the observatory  
•  0.6-5 µm IR camera. No filters, single optical train with two 

redundant detectors each with a FOV of 2.3’x2.3’ 
• Noise equivalent angle (one axis): 3.5 milliarcsec 
• 95% sky coverage down to JAB=19.5 

•  NIRISS (Near-Infrared Imager and Slitless Spectrograph) 
•  0.7-5 µm IR camera. 
•  Four observing modes  
•  Main science drivers 

•  First Light: high-z galaxies 
•  Exoplanet detection and characterization 
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NIRISS SOSS (Single-Object Slitless 
Spectroscopy) mode  

•  Specifically optimized for transit spectroscopy 
•  Unique features  

•  Broad simultaneous wavelength range: 0.7-2.5 um 
•  Built-in weak lens to increase dynamic range and minimize 

systematic ‘’red noise’’ due to undersampling and flatfield errors. 
•  Key component is a directly ruled ZnSe grism (manufactured by 

Bach) combined with a ZnS prism, all AR coated except the ruled 
surface on the ZnSe grism. 

•  Two spares were manufactured by LLNL and received October 
2012 (after instrument delivery in July 2012)  
•  Groove quality much better/sharper compared to the flight grism. 

Measurements and model suggested improved efficiency  
    by > 2x. 
•  Plan is to swap grism after CV2. 
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20 pixels!

Monochromatic PSF measured in the lab!

λ!

SOSS mode implementation 
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Blaze function – Flight vs Spare 
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~2x!

~4x!
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Total throughput – NIRISS vs NIRSpec 
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Total throughput – NIRISS vs NIRSpec 
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Saturatiom limits – NIRISS & NIRSPec  
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Saturation limit vs wavelength 
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NIRISS First Light  
with the GR700 grism 
(GSFC, October 2013) 
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MIRI & FGS into ISIM    
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Real data vs simulation 

Excellent correlation between data and simulations.!

Simulation!

CV1RR (October 2013)!
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GR700XD Monochromatic PSFs 
0.64 um!
order 1!

0.64 um!
order 2!

0.64 um!
order 3!

1.06 um!
order 1!

1.06 um!
order 2!
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NIRISS grism is designed to have a 
PSF slanted by ~2° to mitigate 
undersampling problems.!
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NIRISS Transit Spectroscopy 
Simulations 

(photon-noise limited) 
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GJ1214b 

Charbonneau et al 2009, Nature, 462, 17 !

What’s the nature of GJ1214b?"
o   An ice giant (a mini Neptune) ? !
o   A water world ?!

GJ1214b Earth Neptune 

Mass  6.5 1.0 17 

Radius 2.7 1.0 4.0 

Temperature 
   (Kelvin) 400-600 300 55 

Density 
(g/cm3) 1.9 5.5 1.7 
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Current observations of GJ1214b 
HST/WFC3"

At R=50"
σ=230 ppm in 10 hr"

Limited by aperture, platform stability, detector and instrument systematics and atmosphere 

Ground & space 
combined"

Berta et al. 2012!
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Credit: D. Lafrenière !
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An Earth analog around an M dwarf (R~100) 
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JWST/NIRISS, ROSS238 (M5.5V), 3.2 pc!
J=6.9 138 hrs (50 transits) !

A more challenging observation… 

Feature Strength 
(ppm) 

H20 5-15  

CH4 ~10 

CO2 5-30 

O2 <5 

O3 ~30 

Broad ozone 
feature !

Model from Kaltenegger et al. 2009!



 ExoPAG 9      4 Jan 2014!

An Earth analog around an M dwarf (R~100) 
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JWST/NIRISS, ROSS238 (M5.5V), 3.2 pc!
J=6.9 138 hrs (50 transits) !
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Performance limitations 

5 ppm is about the noise level needed for minimal 
characterization of super-Earths. What will prevent 
reaching the photon-noise limit at this level? 

  Instrumental « red noise »  
  Already well-known from SPITZER and HST experience  
  Detector-related issues 

  Undersampling + jitter (may be okay with NIRISS) 
  Persistence 
  Long term stability (thermal instability) 

  Could probably be mitigated if noise is well characterized 
  Detailed simulations needed along with  flight-like simulator 

testbed investigations. 

 Astrophysical « red noise »  
  Intrinsic variability (e.g. spots on M dwarfs)  
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The NIRISS Optical Simulator concept  
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Astrophysical noise associated 
with star spots  
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•  If GJ1214 is spotted over 5% of its surface and GJ1214b happens to transit 
a spot-free area … !

•  Out-of-transit spectrum : 95% star, 5% spots!
•  In-transit spectrum: 93.6% star, 5% spots!
•  Spot spectra, 500 K cooler than photosphere, has significantly deeper 

water bands and a redder overall SED.!
•  In-transit/out-of-transit spectrum will contain significant spectral structures 

at a level comparable to that induced by an exoplanet’s atmosphere!
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Star spot-induced transit 
spectrum fits data better than 
any planet atmosphere model!!

GJ1214b: are we seeing star spots?  

Artigau et al, in prep.!

28  



 ExoPAG 9      4 Jan 2014!

0.6 0.7 0.8 0.9 1.0
Wavelength (µm)

0.995

1.000

1.005

N
o
rm

a
liz

e
d
 R

p

Correlation :  −7%
Water−world
Starspots

1.2 1.4 1.6 1.8 2.0 2.2 2.4
Wavelength (µm)

0.995

1.000

1.005

N
or

m
al

iz
ed

 R
p

Correlation :  84%
Water−world
Starspots

•  TiO, NaI, FeH dominate the star spot-
induced spectrum.!

•  Water absorption dominates the 
planetary features.!

•  Good spectral resolution needed to 
detect some features (e.g. NaI, KI)!

•  In near-IR domain, both star spots and 
exoplanets induce very similar signals, 
both dominated by deep water features. 
Slight difference in the shape spectra arise 
from the important difference in 
temperature (2500 K versus 500 K).!

H2O!

H2O!

TiO!
TiO!

NaI!

Spectrum blueward of 1 µm may be key for discriminating 
between star spots and water vapor from the exoplanet. 
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Summary 

•  NIRISS will be a powerful capability for high-precision transit spectroscopy work 
•  Pros 

•  Broad simultaneous wavelength coverage (0.7-2.5 µm) 
•  Medium resolving power (~700). Unique capability < 1 µm. 
•  Bright saturation limit (J<5) 
•  Most of HZ transiting super-Earths from TESS should be observable. 
•  Grism designed to mitigate undersampling problems. 

•  Cons 
•  Lower throughput compared to NIRSpec. May favor NIRSpec for deep 

observations provided NIRSPec’s noise floor is lower than NIRISS.  
•  Detailed simulations and flight-like detector testbed activities needed to 

investigate and characterize systematic noise.  
•  Astrophysical noise (spots in particular) may be an issue for H2O detection on 

super-Earths. Broad wavelength coverage will key for discriminating between 
genuine  atmospheric  H2O from residual stellar spot.   

•  Let’s not give up too quickly on achieving photon-limited performance with JWST, 
especially with NIRISS ! 
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