

#### **Team Members**

Chryssa Kouveliotou, Chair Brad Peterson, APS Chair Joan Centrella, APS Exec. Sec.

Eric Agol
Natalie Batalha
Jacob Bean
Misty Bentz
Neil Cornish
Alan Dressler
Scott Gaudi
Olivier Guyon

Dieter Hartmann
Enectali Figueroa-Feliciano
Jason Kalirai
Mike Niemack
Feryal Ozel
Chris Reynolds
Aki Roberge

Kartik Sheth
Jonas Smuidzinas
Amber Straughn
David Weinberg

## Roadmap charter

- Enduring Quests
  Daring Visions
  NASA Autrophysics in the Next Three Decades
- Roadmap is ... a compelling, science-based
   30+ year vision, with notional missions
  - Starts from the Astro2010 Decadal
  - Considers cross-cutting opportunities & larger context of ground-based and international astrophysics
  - Considers technology needed to achieve science goals
- Roadmap is not ....
  - A mini-decadal survey with recommendations & priorities
  - An implementation plan
- Ignores budgetary concerns

# Centered around three enduring science questions



#### Divided into three eras

|                        | Near-Term          | Formative                   | Visionary                 |
|------------------------|--------------------|-----------------------------|---------------------------|
| Gravitational<br>Waves |                    | <b>②</b>                    |                           |
| Cosmic rays            | JEM-EUSO           | Gravitational Wave Surveyor | Gravitational Wave Mapper |
| Radio                  |                    |                             | Cosmic Dawn Mapper        |
| Microwaves             |                    |                             | Cosmic David Mapper       |
| Infrared               | JWST               | CMB Polarization Surveyor   |                           |
|                        | WFIRST-AFTA Euclid | Far IR Surveyor             |                           |
| Optical                | TESS Gaia          | LUVOIR Surveyor             | ExoEarth Mapper           |
| Ultraviolet            |                    |                             |                           |
| X-rays                 | NICER Astro-H      | Xray Surveyor               | Black Hole Mapper         |
| Gamma rays             |                    |                             | ***                       |

Near-Term Era now to 2020

**Formative Era 2020 – 2030** 

Visionary Era 2030+

#### Are we alone?



# Three exoplanets quests

- 1. The exoplanet zoo
- 2. What are exoplanets like?
- 3. The search for life

# Quest 1 – The exoplanet zoo





WFIRST-AFTA (Planned) Wide Field Infrared Survey Telescope – Astrophysics Focused Telescope Assets



## Quest 2 – What are exoplanets like?

**Near Term Present Visionary Formative** exoplanet Complete the statistical census of exoplanets dmap Characterize giant planet atmospheres Study the atmospheres of a broad range of exoplanets Science Measure the frequency of potentially habitable planets Search for signs of habitable environments **Obtain resolved maps &** spectra of exoEarths **ExoEarth** LUVOIR Kepler **TESS** Missions Surveyor Mapper James Webb Hubble **Space Telescope** Spitzer **WFIRST-AFTA** 

### Spectroscopy

# Support from ground-based RV











Credit: NASA / ESA/ STScI

#### **Near Future:** Hot to warm Neptunes & super-Earths







### Formative era: Pale blue dots



Direct UV / optical / NIR spectroscopy of terrestrial planets



Credit: VPL / A. Roberge

## Why direct UVOIR observations?

- Unlikely to obtain many spectra of Earth-like planets around Sun-like stars with transits
  - Few planets transit due to geometry
  - Small atmospheric cross-section relative to star
  - Sensitivity to cloud layers
- UVOIR offers access to valuable diagnostic
   gases: H<sub>2</sub>O, O<sub>2</sub>, O<sub>3</sub>, CO<sub>2</sub>, CH<sub>4</sub>, ...
  - Technology for mid-IR direct observations viewed as immature (ref. previous ExoPAG discussions)

# Large UV / Optical / IR Surveyor



Support from ground-based RV



 Direct spectroscopy of habitable zone terrestrial planets around Sun-like stars



 Direct & transit spectroscopy of planets with wide range of sizes and temperatures



Broad range of general astrophysics



## Visionary era: Mapping exoEarths



**ExoEarth** 

Mapper

Progression from unresolved to resolved observations (oceans, continents, weather, seasons, vegetation)

# Technology

- LUVOIR Surveyor
  - Larger apertures (8+ meters desired)
     "The telescope should therefore be as large as technologically realistic within the Formative Era."
  - Starlight suppression (coronagraphs and/or starshades)
  - Low (or zero) noise detectors
- ExoEarth Mapper
  - Space-based interferometry
  - Few hundred km baselines, ~ 500 m² collecting area

