Measuring the Free-Floating Planet Mass Function with K2 & DECam

Sagan Fellow, Ohio State University penny@astronomy.ohio-state.edu

Matthew Penny

Takeaway message

- K2's campaign 9 offers a unique opportunity to measure the masses of free-floating planets that is likely *not to be repeated*
- Free-floating planet masses can only be measured if there is a *simultaneous highcadence 2+ color* survey over the same area
- The only instrument that can do this and measure a sample of free-floating planet masses is DECam

Outline

• How to detect free-floating planets and measure their masses

• K2 Campaign 9

• Why we need DECam

Free-Floating Planets

- Planets without host stars
- Probably form in low numbers as failed stars

Free-Floating Planets

- Planets without host stars
- Probably form in low numbers as failed stars
- More probably formed through ejections of planets after protoplanetary disk dissipation

Source

Lens – the free-floating planet

There is one physical observable

Timescale = Einstein Radius / Rel. Proper Motion

There is one physical observable

Timescale = Einstein Radius / Rel. Proper Motion

Timescale is a function of

- Lens mass
- Lens and source distances
- Lens-source relative proper motion

$$t_{\rm E} = \frac{\theta_{\rm E}}{\mu_{\rm geo}} \qquad \begin{array}{l} \theta_{\rm E}^2 = \kappa M \pi_{\rm rel} \\ \kappa \equiv \frac{4G}{c^2 \, {\rm AU}} \simeq 8.1 \ \frac{{\rm mas}}{M_\odot} \end{array}$$

Einstein radius

Typical proper motion ~ 5 mas / yr Typical relative parallax ~ 1/24 mas

Typical timescales1 Msun40 days0.3 Msun20 daysJupiter1 days10 M_{earth}6 hoursEarth2 hours

Finding Free-Floating Planets

- Must match cadence to timescale
 - Aim for >3 points per timescale
- Additionally, rate scales as \sqrt{M}
 - Lower masses require more sky coverage and/or deeper exposures

K2 Campaign – more later

- ~ 80 days (0.22 years)
- Up to ~6 sq. degrees
- Much deeper exposures and continuous coverage, but extreme blending overall a win

K2 Campaign – more later

- ~ 80 days (0.22 years)
- Up to ~6 sq. degrees
- Much deeper exposures and continuous coverage, but extreme blending overall a win

Expect ~10s of free-floating planet detections by K2

OK, we've detected free-floating planets – how do we measure their mass?

OK, we've detected free-floating planets – how do we measure their mass?

We need more physical observables

OK, we've detected free-floating planets – how do we measure their mass?

We need more physical observables

I. Parallax II. Finite Source Effects

Parallax

- Microlensing requires precise alignment
- Change observer position and you change the event
- Observe from 2 positions and you have a ruler to measure a projection of the Einstein radius

Parallax

Parallax

Parallax is a 2D effect

Getting to Two Observables Two Unknowns

Parallax & Angular Einstien Radius

time [day]

Finite Source Effects

time [day]

Surface Brightness-Color Relations

Measuring the color and extinction gives you the angular diameter of the source

But you must isolate the source

This requires measuring the color of the source *while it is magnified*

Current Source Color Measurements

For Free-Floating Planets There Is No Follow-up

Color in Free-Floating Planet Events

- Color cadence needs to be almost as frequent as the main survey observations
- Can we achieve this from the ground?

Typical timescalesJupiter ($300 M_{earth}$)1 days $10 M_{Earth}$ 6 hoursEarth2 hours

Current options - Dedicated

OGLE

- Chile
- 1.4 deg^2, 1.3 m
- Excellent site

MOA

- New Zealand
- 2.2 deg^2, 1.8 m
- Bad weather/seeing KMTNet
- Chile, S. Africa, NZ
- 4.0 deg^2, 1.6 m
- Not yet operational

Can OGLE do it?

Operations concept

- Requires all but K2 fields abandoned
- Min 4 fields, prob 6
- texp=100s *I*, 200s *V*
- 20s overheads
- 2 / exp, 1 V exp
- Color cadence:
 30-46 minutes

Maybe...

Current options – Shared Time

DECam

- Chile
- 3 deg^2, 4 m
- Excellent site

VST @ Paranal

- 1 deg^2, 2.6 m
 Skymapper @ SSO
- 5.2 deg², 1.3 m
 HyperSuprimeCam
- 1.77 deg^2, 8 m
- Hawaii
- No fast filter changes

DECam for Microlensing

DECam vs OGLE

- ~10x Collecting Area
- >2x Field of View
- Same overheads

DECam an order of magnitude better than OGLE

 ℓ (degrees)

DECam Operations Concept

 $b \; (degrees)$

- Min 2 fields, up to 4
- texp=20s z', 20s r', 100s g'
- 20s overheads
- Alternate z', r'
- Color cadence:
 - r-z 2.5--5 minutes
 - g 15--30 minutes
- Could replace r with wide VR filter

DECam – Public Data

- Data will be made public on a timescale similar to the Kepler K2 date release (raw images).
 Enabling:
 - The development of a larger US microlensing community
 - Deep KBO searches (gets colors + orbits)
 - Asteroseismology of bulge blue stragglers
 - Transiting planets (maybe, colors)
 - Color limb-darkening coefficients in binaries
 - What else can you think of ...?

So How Do They Measure Up?

- Need simulations...
- What will Kepler find?
- How many events can be seen from both Kepler and the ground?
- How deep do we need to go?

MaBuLS simulations

- Simulates images
- Generates Microlensing events
- Detection criteria
- Fisher Matrix parameter estimation

So How Do They Measure Up?

Saturn Mass (100 Earth) Free Floating Planet 6.9 Kpc away

piE

DECam errors:		
piE	4%	
ThetaE (g-z)	1%	(0.3 mag)
ThetaE (r-z)	2%	(0.07 mag)

OGLE errors: 23% ThetaE (V-I) 10% (0.45 mag)

Saturn Mass (100 Earth) Free Floating Planet 6.9 Kpc away

10 Earth-mass Free Floating Planet 8 Kpc away

Number of Free Floating Planet Detections

- Assumes 1 per star per mass, 5 sq degrees
- $\Delta X^2 > 500$ for each observatory
- Very rough numbers (sims. not yet complete)

Mass (M _E)	K2	K2+OGLE	K2+DECam
1000	~35	~17	~21
300 Jupiter	~14	~5	~8
100 Saturn	~7	~1.8	~3.4
10	~1	~0.2	~0.3

Number of Free Floating Planet Detections

- Assumes 1 per star per mass, 5 sq degrees
- $\Delta X^2 > 500$ for each observatory
- Very rough numbers (sims. not yet complete)

Mass (M _E)	K2	K2+OGLE	K2+DECam
1000	Not	~17	~21
300 Jupiter		S Mean	~8
100 Saturn	~7	asuren	nenta 3.4
10	~1	~0.2	Yet

Conclusions

- K2 campaign 9, in combination with ground-based observations, will enable *for the first (and maybe only) time* definitive measurements of free-floating planet masses
- However, these mass measurements require high-cadence color measurements, which are difficult to achieve using the dedicated microlensing survey telescopes
- DECam on the Blanco is the best microlensing machine in the world – we must use it for this never to be repeated oppotunity

Takeaway message

- K2's campaign 9 offers a unique opportunity to measure the masses of free-floating planets that is likely *not to be repeated*
- Free-floating planet masses can only be measured if there is a *simultaneous highcadence 2+ color* survey over the same area
- The only instrument that can do this and measure a sample of free-floating planet masses is DECam