So you found an exoplanet orbiting an M dwarf...

A flow chart and priorities for determining stellar parameters.

Philip S. Muirhead Boston University

Inspired by the "Baseball Rooting Interest Flow Chart"

Inspired by the "Baseball Rooting Interest Flow Chart"

Brief reminder why stellar parameters are important to the ExEP

- For transit observations: $R_P \alpha R_{Star}$
- For RV observations: $M_P \sin i \alpha (M_{star})^{1/3}$

•
$$T_{Eq} \alpha (L_{Star})^{1/4} \alpha (R_{Star})^{1/2} T_{eff}$$

• Want Stellar Mass, Radius and Luminosity for best JWST targets.

A Hard Truth

- Nearly all stellar parameter measurements rely on a **stellar model** at some point.
 - E.g. Metallicity, log(g), and assumed limbdarkening coefficients are usually based on atmospheric models.
- Therefore, stellar parameters will almost always be subject to some **systematic error**.

A Hard Truth

• Nearly all stellar parameter measurements rely on a **stellar model** at some point.

Power of a Parallax: D/G Discrimination

- Put a star on an HR (or Color-Magnitude) Diagram.
- Trivial dwarf/giant discrimination

Power of a Parallax: Mass-Luminosity Relationships for Dwarfs

Power of a Parallax: Mass-Luminosity Relationships for **FG Dwarfs**

Power of a Parallax: Mass-Luminosity Relationships for **KM Dwarfs**

Proper Motion: A Cheap Parallax

Without *L*, need *T*_{*Eff*} and [Fe/H]

.03

Muirhead, Mann et al. (2015)

Caveats

Muirhead, Hall, Veyette (2014)

- [Fe/H] and [α/Fe] independently affect inferred stellar radius.
- Currently no accurate method to measure $[\alpha/Fe]$ in M dwarfs.
- But see Veyette, Muirhead & Mann poster 138.11 on Monday for a roadmap to [α/Fe].

Be Careful with Color-Color Plots

Muirhead, Mann et al. (2015)

Be Careful with Color-Color Plots

Muirhead, Mann et al. (2015)

Be Careful with Color-Color Plots

Much Better!

Muirhead, Mann et al. (2015)

My thoughts on ExEP priorities

- Parallaxes for all stars searched (~10% M/R/L).
 Gaia for g < 20.
- Develop best possible mass-luminosity calibrations.
- Ground-based spectroscopy for metallicities/ gravities where needed (<10% M/R/L)
 - NASA Keck Share
- Support atmospheric/evolutionary modeling efforts.
 - Nearly all stellar measurements depend on models at some point.

Backup Slides

How about T_{Eff}?

How about T_{Eff}?

Parallax is not enough for Evolved Stars

 Metallicity is typically required to get better than 50% on stellar mass.

- Metallicity measurements depend on accurate models of cool, subgiant atmospheres.
 - Potential for systematic errors

Lloyd (2011)

