SAG 11: Preparing for the WFIRST Microlensing Survey

Jennifer Yee (CfA)

SAG 11 members

Michael Albrow **Richard Barry** David Bennett Geoff Bryden Sun-Ju Chung Scott Gaudi Neil Gehrels Andy Gould

Matthew T. Penny **Nicholas Rattenbury** Yoon-Hyun Ryu Jan Skowron **Rachel Street** Takahiro Sumi Jennifer C. Yee

Charter

- 1. Identify both mission critical and mission enhancing programs,
- 2. Identify immediate science to come out of each program, as well as the program's direct impact on the WFIRST mission,
- 3. For each proposed program, quantify the improved scientific return for the WFIRST mission,
- 4. Emphasize programs that can be executed using existing (NASA) resources.

Three Key Areas for *WFIRST* Microlensing Science:

- WFIRST Planet Masses
- Field Selection
- Microlensing Techniques

Major Observational Programs

- 1. Directly support WFIRST science and reduce its scientific risk
- 2. Develop techniques for measuring planet masses
- 3. Development of WFIRST analysis pipelines

1. Directly support WFIRST science and reduce its scientific risk

- Early, optical, HST imaging of the WFIRST field
- A preparatory, ground-based, microlensing survey in the near-IR

Optical HST Imaging

An immediate, optical HST survey of the WFIRST fields will allow proper motion measurements for 22% of WFIRST stars → Direct verification of WFIRST microlens astrometry.

Reliable microlens astrometry measurements are vital to measuring planet masses with WFIRST.

Optical HST Imaging

Colors of stars in WFIRST field \rightarrow temperature, extinction, metallicity

WFIRST relative astrometry + GAIA absolute astrometry + HST colors → Detailed structure of the galaxy

Ground-Based, Near-IR, Microlensing Survey

Ground-Based, Near-IR, Microlensing Survey

Ground-Based, Near-IR, Microlensing Survey

- 1. Direct measurement of the near-IR event rate
- 2. Characterization of the source star population
- 3. Discovery of giant planets
- 4. Complementary to optical, ground-based microlensing
 - Near-IR source flux measurements
 - Check for chromatic (non-microlensing) effects

2. Develop techniques for measuring planet masses

- Satellite parallax observations using Spitzer, Kepler, and TESS
- HST or AO flux measurements of lenses in ground-based microlensing events
- Measurements of microlens astrometry for black holes

Satellite Parallaxes

- 1. Mass measurements for ground-based microlensing planets.
- Measured distances can be used to probe the relative frequency of planets in the bulge and the disk → WFIRST field selection

Gould 1994 ApJL, 421, 75

Flux Measurements

High-resolution imaging of known microlensing events can directly measure the lens flux (and mass).

If these observations are made with HST (rather than AO), it is possible to resolve the source and lens and measure their relative proper motion.

Alcock et al. 2001 Nature, 414, 617

Microlens Astrometry of Black Holes

The astrometric microlensing effect for stellar mass black holes is large enough to measure with current capabilities.

3. Development of WFIRST analysis pipelines

- Multi-epoch HST/WFC3/IR observations of the bulge
- An open competition in microlensing analysis

Multi-Epoch, IR, HST

A multi-epoch, HST/WFC3/IR survey of a few fields in the bulge is necessary for developing the WFIRST astrometry/photometry pipeline and understanding how well a random dither pattern will characterize the WFIRST detector.

Multi-Epoch, IR, HST

A multi-epoch, HST/WFC3/IR

survey bulge develo astror pipelin how v

pattern will characterize the WFIRST detector.

4. Synergies with Euclid

Simultaneous observations from Euclid and WFIRST can directly measure masses for 15% of 10 M_{Earth} free-floating planets.

WFIRST

SAG 11 Timeline

Dec 15, 2013	Announcement of the SAG
Jan 4-5, 2014	Overview of the SAG at ExoPAG 9
Jan 22, 2014	First meeting of the SAG
Feb 24, 2014	Second meeting of the SAG
Mar 19, 2014	1 st draft of the report
Apr 25, 2014	2 nd draft of the report
May 29, 2014	3 rd draft of the report
Jun 6 <i>,</i> 2014	Status update at ExoPAG 10
???	Final Draft

Major Observational Programs

- **Directly support** WFIRST science and reduce its scientific risk:
 - Early, optical, HST imaging of the WFIRST field
 - A preparatory, ground-based, microlensing survey in the near-IR
- Develop techniques for measuring planet masses:
 - Satellite parallax observations using Spitzer, Kepler, and TESS
 - HST or AO flux measurements of lenses in ground-based microlensing events
 - Measurements of microlens astrometry for black holes
- Development of WFIRST analysis pipelines:
 - Multi-epoch HST/WFC3/IR observations of the bulge
 - An open competition in microlensing analysis