

Pre-proposal Workshop

March 17-18, 2015 Tucson, Arizona

NASA Insight/Oversight

Muthu Jeganathan

Outline

- Project Organization
- PM & PS roles and responsibilities
- Project reporting expectations

Instrument Concept Study (ICS) deliverables

- Requirements & Interface Review
- Instrument Concept Review
- Instrument Summary Presentation to NASA HQ
- What can the proposing team expect from the PM (or how can the PM assist the implementing team?)

EPDS Development Managed by ExEPO

EPDS Development Managed by ExEPO

Insight/Oversight Provided by PM/PS

Project Manager

- Ensures project success delivering on performance, cost and schedule
- Liaison between project at implementing institution and ExEPO, NASA, NOAO and NExScI
- Contract Technical Manager (CTM) of the subcontract from JPL to the implementing institution

Project Scientist

- Ensures the scientific integrity and overall scientific success
- Represents the Scientific Investigators to the Project, NASA, NOAO and WIYN
- Scientific spokesperson for the Project
- Approximately half-time equivalent for each

What is expected in the Step 2 proposal?

- See ROSES-2014 NRA for NASA requirements
- Team and organization
 - Experience
 - Roles & responsibilities
 - Communication, coordination and decision making
 - Work breakdown structure
- Management Process
 - Technical scope/deliverables, key metrics and margins
 - Cost and schedule management slack, descopes, significant procurements/subcontracts
 - Risks top risks & their mitigation
 - Safety & quality assurance internal reviews, documentation, configuration management

Expectation during ICS & Development

- Tag-up on status, progress & issues
- Tag-up with NASA HQ
- Schedule tag-ups
- Project Management Reviews (PMR) at implementing institution
- Major reviews during ICS
 - Requirements & Interface Review
 - Instrument Concept Review Both at implementing institution
- ICS Summary Presentation to NASA
 - PI & PM at Washington, DC

<1 hr, Weekly

30 min, biweekly

2-3 hrs, Every 6 wks

+ written report

4 hrs, (Sep/Oct 2015)

8 hrs, January 2016

1 hr, Jan/Feb 2016

No travel to JPL is expected

Instrument Concept Study (ICS)

- Six month (maximum) duration Aug 2015 to Jan 2016
- Early (first) progress review emphasizing an understanding of requirements
 - Requirements & Interface Review
- Final (second) review of the instrument's preliminary design and implementation plan (schedule, cost, and risks)
 - Instrument Concept Review (ICR)
- Instrument development will be treated as a Research and Technology (R&T) project under NPR 7120.8

Requirements/Interface Review - 1

- Deliverables
- Level 1 requirements / success criteria and their verification
- Performance Requirements
 - Level 2 (Level 3) requirements flow down
 - Key & driving requirements and their verification approach
 - Assess completeness and adequacy of requirements
 - Science, experiment and instrument performance models
 - Key metrics along with error budgets, current best estimates, uncertainties and assumptions
- Interface Requirements
 - Documentation of Optical, Mechanical, Environmental, Electrical, Software & Data interfaces

3/19/2015

Requirements/Interface Review - 2

- Instrument Description
 - Requirements, block diagram & architecture
 - Description & build approach what's new, inherited, procured
 - Performance capabilities and margins
 - Technical resources, uncertainties
 - Assumptions and risks
 - Integration and test concept
 - Calibration requirements and concept
- Operations and Data Management
 - Operational requirements
 - Pipeline processing requirements and concept
 - Levels 1-2 product description, data rate/volume & processing needs
 - Data interface to WIYN and NExScI.

Project

- Deliverables
- Level 1 requirements / success criteria
- Team organization roles & responsibilities, org chart
- Top-level schedule showing key milestones and critical path
- Key metrics along with current best estimates, contingencies and margins
- Key challenges, interfaces, constraints
- Facility (including major support equipment) requirements
- Status of action items (response to findings) from Req. Review
- Status of MOUs and agreements, if any
- Configuration management approach & plan

With emphasis on changes since Requirements Review

- Systems Engineering
 - Performance Requirements
 - Level 2 (Level 3) requirements flow down
 - Key & driving requirements and their verification approach
 - Requirements compliance check
 - Interface Requirements
 - Optical, Mechanical, Environmental, Electrical, Software, Data ICDs and status
 - Verification of Level 1 requirements
 - Results of major design trade-offs; outstanding trades, if any
 - Status of risk reduction hardware and testbeds, if any
 - Risk management process, risk list & mitigations
 - Descopes and decision date, if any
 - Project document tree and documentation plan
 - Drawing tree

Science

- Science, experiment and instrument performance models
- Error budgets for key parameters
- Calibration plan
- Changes since Requirements Review

Instrument

- Requirements, block diagram & architecture
- Changes since Requirements Review;
- Description & build approach what's new, inherited, procured
- Long lead procurement and status
- Performance capabilities and margins
- Technical resources, contingencies and margins
- Integration and test concept
- Requirements verification plan

- Operations and Data Management
 - Operational requirements, modes & scenarios
 - Pipeline processing algorithms
 - Levels 0-2 product description, data rate/volume & processing needs
 - Data interface to WIYN and NExScl
- Safety & Quality Assurance
 - NASA, JPL, Institutional and Project requirements
 - Environmental requirements along with design, analysis and test plan
 - Instrument life assessment life limiting elements & spares, time to recover from failures
 - Servicing and maintenance concept

- Path to completion of detailed design
- End-to-end I&T + verification plan (photons to RV)
- Preliminary commissioning plan

- Detailed Schedule
- Detailed Cost
 - Basis of estimate
 - Cost breakdown by WBS, month, phase

Development Focus

Product	At Req. Rev	At ICR	At CDR	At SIR
L1 Requirements / success criteria (PLRA)	Final			
L2-L3 requirements	Preliminary	Under change control	Final	
Interface Requirements	Preliminary	Under change control	Under change control	Under change control
Performance models & error budget	Preliminary	Detailed	Refined	As built performance
Instrument design/build	Conceptual	Preliminary	Drawings	Parts built
Integration & test (I&T)	Conceptual	Preliminary	Plan	Procedures
Verification & validation (V&V)	L1 approach	L1 & L2 plan	L1-L3 plan	Procedures
Pipeline	Proof-of- concept	Approach	Algorithms	Code

CDR = Critical Design Review

SIR: System Integration Review

ICS Presentation

Teams deliver ICS presentation material Late-January

 Teams present the material to the Review board Mid-February (8 hrs)

 Teams present summary of their concept to Paul Hertz/HQ. Early-March (30 min each)

Review board presents summary of their findings/recommendations to Paul Hertz/HQ

(1 hr)

Paul Hertz/HQ announce selection

Mid-March

PM: Ensures Project Success

- Assist the implementing team to increase likelihood of project success – delivering on performance, cost and schedule
 - Performance via sound Systems Engineering
 - Support requirements flowdown
 - Assist in building performance models and error budgets
 - Lead risk management
 - Cost & schedule control
 - Assess progress vs plan, take corrective actions
 - Document liens to Program Office
 - Safety and quality assurance
 - Ensure design, analysis, build and testing meet relevant standards and are documented; configuration is managed
 - Hold comprehensive project reviews
 - Initiate "tiger teams" to address specific problems
 - Employ JPL expertise where needed

PM: Liaison to ExEPO & NASA

- Reduces reporting burden on implementing team. With support from PS, provides
 - Inputs to weekly significant events
 - Inputs to monthly program status review (PSR)
 - Inputs to quarterly status reviews (QSRs)
 - Inputs to PPBE NASA budget cycle
- Organize all project reviews
- Communicate NASA/ExEPO priorities, budget profile, etc.
- Independently assesses impact of Project decisions (descopes), risks and status on science (L1 requirements)

PM: Contract Technical Manager

- Instrument development at selected institution through subcontract from JPL
- As the JPL CTM, the PM assists with all contractual issues
 - Authorizing funding on an incremental basis every 3-6 months
 - Approve certain procurements
 - Resolve disposition of any work that fails to comply with subcontract requirements

Backups

Schecule

