

Zodiacal and Exozodiacal Light

- Exozodis can reveal what the solar system might have looked like
- Local zodiacal light observations relevant to these studies as templates
 - empirical (shape, density, variability)
 - Physical (parent bodies, dynamics, resonances)

Asteroidal and Cometary Planetsesimals in the Solar Nebula

Solids devolatilized

Icy planetesimals

5 AU H₂O ice

Collision or perturbation in Kuiper Belt → Centaur → Short Period comet $_{\circ} \tau \sim 10^{7} \text{ yr}$

Jupiter-Family Comets: Survive in inner Solar System $\tau_{\rm JFC}$ ~10⁵ yr $\dot{M} = \frac{M_{trail}}{\tau_{nert}} \sim \frac{10^{12} g}{50 yr}$ Debris can fill orbit τ_{orb} ~10³ yr

Truncated at perturbation τ_{pert} ~10² yr

0

$$\dot{M} = \frac{M_{trail}}{\tau_{pert}} \sim \frac{10^{12} g}{50 yr}$$

0

Cometary Material in Present Solar System

Parent Bodies: Comets or Asteroids?

- Nesvorny et al 2009
 >90% comets
 Based on latitude profile
- Nesvorny et al. 2003
 Asteroidal contribution
 Dust Bands = debris from
 young (<few Myr) families</p>

Recent Asteroid Collisions

Age	Source	Feature	Reference
50-250 kyr	1999 YC2		Nesvorny (2006 AJ 132, 1950)
220±2 kyr	Emilkowalski		
300-800 kyr	Lucasavin		
450 kyr	Datura	trail?	Nesvorny (2006 Sci 312, 1490)
<5 Myr	Beagle	1.4°band	Nesvorny (2008 ApJ 679, L143)
5.0±0.2 Myr	Karin	2.1°band	Nesvorny (2006 Icarus 183, 296)
8.3±0.5 Myr	Veritas	9.3°band	Nesvorny (2003 ApJ 591, 486) Farley (2006 Nature 432, 295)
~10 Myr	Semajoki	17°band	Nesvorny (2003 ApJ 591, 486)
35 Myr (Eocene)	Comet shower	Chesapeake Bay, Popigai crater	Farley (1998 Sci 280, 1250)

Cometary dust production

- Current dust production readily observed in tails (β>10⁻²) and trails (β<10⁻³)
- Many features commonly called "tails" are trails
- Trail ~ meteor storm
- Mid-infrared survey: >80% comets have trails
- 2 kg/s typical orbit-averaged
- 50 yr typical dynamical lifetime
- Need ~10⁶ comets to maintain cloud of ~5×10¹⁸ g (Fixsen & Dwek 2002)

Empirical: Outer Solar System

- Impact detectors Pioneer 10, Ulysses, Galileo, New Horizons Student Dust Counter (below)
 - Nearly constant density out to 20 AU

Kuiper Belt Dust Production

- Virtually unknown
- Theoretical: collisions among KBOs
 - Existence of Haumea collisional family
 - Subsequent comminution of fragments
- Need to get beyond 5 AU
- Possibility to join Jupiter/Europa
 - +Ganymede, Saturn/Titan missions

www.physics.uci.edu/5Al

physics@uci

The View from 5 AU: Measuring the Diffuse Sky Brightness from the Outer Solar System March 25-26th, 2010

6th annual workshop organized and hosted by: The Center for Cosmology, University of California, Irvine

workshop goals

- a) To establish the scientific goals of measuring the diffuse sky brightness from the vantage point of the outer Solar system, pertaining to the cosmic infrared background and interplanetary dust.
- (b) To establish astrophysical sciences enabled by simultaneous observations at 1 AU and a small aperture telescope at 5AU.
- (c) To establish the practical means for cruise-phase science for a small aperture optical to near-infrared telescope on an outer planets mission.
- (d) To establish instrumentation priorities and priorities and specifications.

topics

- :: Extragalactic Background
- :: Galaxy Evolution Models
- :: Reionization
- :: Oort Cloud, Kuiper Belt and Trans Neptunian Objects
- :: Zodiacal Light Models
- :: Microlensing and similar applications
- :: The Search for Exoplanets
- :: Instrument Concepts

organizing committee

- Charles Beichman (Caltech) :: Jamie Bock (JPL) :: Mike Brown (Caltech)
- :: Ranga Chary (Caltech) :: Asantha Cooray (UC Irvine) :: Giovanni Fazio (Harvard/.CfA)
- : Mike Hauser (STsCI) :: John Mather (NASA GSFC) :: Toshio Matsumoto (JAXA/ISAS)
- : David Nesvorny (SWRI) :: William Reach (Caltech) :: Mark Sykes (PSI) :: Mike Werner (JPL)

http://www.physics.uci.edu/5AU website:

asantha cooray, uc irvine : acooray@uci.edu contact:

workshopSPONSORS

NORTHROP GRUMMAN

The Zody Cloud is not static

- Smooth cloud traces mean orbital elements
 - Node randomized by Jupiter in 10⁶ yr so only secular long-time-averaged perturbations survive

Annual Variation of Polar Brightness at 1 AU

Azimuthal asymmetries in Zody Cloud

COBE/DIRBE model

Conclusions

Parent bodies

- Comets dominate meteors and most zodiacal light
- Recent asteroid collisions make dust bands

Dynamics

- Radial profile set mostly by PR drag
- Circumsolar ring of dust in mean motion resonance with Earth

Outer Solar System

- We need to get out there to see KB collisional dust
- We need support of exoplanet community for future experiments to observe zodiacal light from the outer solar system