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Introduction
This memo summarizes two estimates of wavefront error (WFE) and two types of wavefront sensing (WFS).  I estimate the time needed to collect enough photons to make a correction, and estimate the resulting contrast that can be achieved as a result of the uncertainty in this correction.  This memo is a first approach to thinking about low-order wavefront sensing and control (LOWFSC) on AFTA.
Estimates of WFE
The first WFE estimate is from Dave Content, for the DRM1 version of WFIRST, in an L2 orbit, for a worst-case change resulting from a telescope slew.  He gives an WFE RMS rate of 1 nm/184 sec , which we express as WFE RMS =  20 nm/hour RMS, for DRM1 in L2.

The second WFE estimate is from Zensheu Chang and Gary Kuan, who calculate periodic thermal deformations of the PM, SM, and structure for AFTA, over the course of a 1-day orbit.  They list values of “max displacement of PM wrt SM (dz)”, usually called “despace”, in their chart 15.  Their Cases 2-6 (ignoring the extreme of Case 1 pointing near the Earth limb) gives an averaged maximum despace rate of 1.72 nm/hour.  Multiplying this by the ratio of (WFE RMS)/despace = 0.0245, an empirical value from John Krist, I find an average of WFE RMS =0.042 nm/hour, maximum, for AFTA in GEO.   Other sources of WFE are smaller, but comparable; for example, the WFE from thermal deformation of the PM is about 0.010 nm/hour, about 4 times smaller.)  For this discussion, I round up to WFE RMS = 0.05 nm/hr.

These WFE rates are very different:  20 nm/hr versus 0.05 nm/hr.  I will carry both in this memo.

In addition to WFE, a despace will generate a shift in focus as well.  The relation is focus shift = 42 times despace.  So if despace changes at 1.72 nm/hr, then the focus position changes at 72 nm/hr.  The WFSC system for AFTA must control both of these terms, WFE and shift.
Photon-limited WFS
I consider two different types of WFS, one based on the value of the local tilt of the wavefront, compared to the average value, and one based on the value of the local phase of the wavefront, again compared to the average.  I find that both have about the same performance.  A real WFS will have differences depending on the detailed design, but for the purpose of this memo I will assume that no WFS can perform better than the photon-limited models outlined below.  For background see Sec. 4.6 and 4.7 in my chapter in Exoplanets (S. Seager, ed., 2010).
Local tilt WFS 
In a pupil image we insert an NN array of lenslets, each of which forms an image of the target star on a few pixels of a detector.  For a plane wave input, the location of the image is noted.  Then with a non-plane-wave input, each image will be displaced slightly, owing to the local WFE.  The displacement tells us the value of the average wavefront tilt across each lenslet, which in turn can be used to drive a deformable mirror (DM) to correct the WFE.   This type of device is usually called a Shack-Hartmann WFS.  It is a perfect WFS when the scale size of the error is matched to the size of the lenslets, and gradually loses its optimum sensitivity for scale sizes larger than the lenslet size.

If the local tilt is  (radians), then the image displacement is x = f where f is the focal length of the lenslet.  The uncertainty in measuring  is set by the number of electrons (n) in the star image, and is given by 
Δ = (λ/d)/n1/2,
where λ is the wavelength and d is the diameter of the lenslet.  The local tilt means that the uncertainty in measuring the local height of the wavefront is Δ h = Δd so that 
Δh = λ/n1/2
is the RMS uncertainty in the inferred wavefront lag or lead.  Since Δh is the measurement error, and any correction that we will make will include this error, we want it to be as small as possible, which in turn tells us that we want to have many photons per measurement.
Local phase WFS 
In a phase-based WFS we split the pupil beam into two parts, sending one through an imaging stage, focusing the image onto a single-mode fiber, allow the light to emerge from the fiber, and use a lens to create a beam that has the same overall diameter, the same average intensity, and nearly the same optical path delay as the other part of the input pupil beam.  These two wavefronts, one original that contains the WFE to be measured, and the other smoothed out so its WFE is zero (i.e., a perfect reference beam), are interfered at a beamsplitter, and the resulting intensity measured across the pupil, point by point.  The delay is adjusted so that the output intensity is set to its most sensitive value, about half-way between the brightest and darkest limits.  The measurement to be made is then to see if a given area is brighter or darker than the average, and this is related to the WFE in the input beam.  The result is that the uncertainty in measuring the local WFE is given by 
Δh = k λ/n1/2
which is the same as the relation for the tilt case above, but now with a factor k.  For the case where the light is combined as equal intensity beams, and if we assume that there is a 50% coupling efficiency into the single-mode fiber, then we have k = 31/2/  0.6, which is close enough to unity that we can consider the methods to be the same.  
Comparison 
An advantage of the phase method over the tilt method is that the output is an image of the pupil, and the brightness variation across this image can be measured on large scales separately from small scales, thus providing, in effect, a selectable “lenslet” size, giving better SNR on large-scale (low spatial frequency) errors.   A disadvantage of the phase method is that it has greater instrumental complexity, and that there is a danger of non-common-path errors coming from unknown errors in the reference beam path.  A trade study is needed to sort out these differences.
Photon-limited sensitivity 
We take the above results to indicate that the best performance we can expect is to be able to measure a wavefront with an uncertainty of Δh = λ/n1/2 RMS, where n is the number of detected electrons per subaperture, in an amount of time that we can choose as needed, give or take the changes that might arise in a trade study and a specific instrument design.

The number of electrons (n) expected is given by the brightness of a star of magnitude m, using for example the relations in my chapter in Sec. 2.1.  The expression is
fλ = 10a - 0.4m erg/(cm2 s μm),
where a = -4.43 for V-band at λ = 550 nm.  The collecting area is the pupil of the telescope divided by (/4)N2 where N is the number of lenslets per diameter.  Allowing for the obscuring secondary, about 30% of the PM diameter, this gives an area per lenslet of  5.2104/N2 cm2.  The integration time is a parameter, ts in seconds.  The bandwidth is taken to be 40% of the central wavelength, assuming that we can use whatever part of the spectrum that is not sent to the coronagraph, or alternatively that we use a fraction of the whole spectrum; this gives a bandwidth of 0.40λμm (microns).  The number of photons per erg is given by 1 photon = 210-12(1 μm/λμm) ergs.    The efficiency of the optics is assumed to be η = (0.95)8 = 0.66, for mirror reflections or the equivalent.  The quantum efficiency is taken to be 80%.  The number of lenslets per diameter of pupil is N = 48 for the case where the WFE occurs at all spatial frequencies of interest and we use a 48x48 deformable mirror, or N = 6 where the WFE is concentrated in the lower 3 spatial frequencies, as is the case for WFE from mirror deformations and despace.  

Combining terms gives 
n = 5.541015  10a-0.4m λ2μm ts N-2      (electrons per subaperture)
Evaluating this for the BVRI bands, using Sec. 2.1 values from the cited chapter, and averaging, I find the average value 
n = 5.41010  10-0.4m ts N-2                (electrons per subaperture)
This is the number of electrons available to measure the wavefront in each subaperture.

The contrast C in the dark hole (DH), assuming no modification by a mask or coronagraph, for a given wavefront error hrms, and with N correcting elements per diameter is 
C = (4hrms/Nλ)2    
from Sec. 4.7 in the cited chapter.  This is for an angular range in the DH out to about Nλ/D, assuming again that the main disturbances lie in this range.
Control model  
We need to measure the wavefront in time steps short enough to keep the WFE under control, but long enough to gather enough photons to make a credible correction.  We estimate those steps here.  Suppose that the WFE grows linearly in time, so that 
hrms(t) = Rts               (WFE RMS)
where R is the rate from above, i.e., R = 20/3600 nm/sec or 0.05/3600 nm/sec.
In time ts (sec) we collect n electrons per subaperture, where from above we get
    n = 5.41010  10-0.4m ts N-2                (electrons per subaperture)

If we sense the WFE after each ts interval, we can control the WFE to about 
hrms = Δh = λ/n1/2
and thereby control the contrast to a level
CWFS(t) = (4Δh/Nλ)2 = (4/N)2 /n = 16/(nN2) = 9.310+0.4m – 10 /ts   

In that same time the contrast drifts upward to a value of 
Ctel(t) = (4hrms(t)/Nλ)2  = 16(Rts /Nλ)2    

Equating the increasing telescope-induced contrast Ctel to the level that can be sensed CWFS gives 
ts = 2.65  10-4 + m/7.5  (Nλ/R)2/3       (sec)
as the optimum integration time.

In time ts the achievable contrast is 
C = 3.5  10-6  10m/3.75  (R/Nλ)2/3   
And the number of electrons collected per subaperture is 
n = 1.4  107 – m/3.75   (λ/RN2)2/3            (elec per subaperture)

Specific values are tabulated here, for N = 6, λ = 550 nm, and the cases R = 20 and 0.05 nm/hr.

	star mag.
	N = 20 nm/hr case
	N = 0.05 nm/hr case

	
	t (sec)
	n (elec)
	C
	t (sec)
	n (elec)
	C

	0
	2
	3 e 9
	5 e -10
	100
	1 e 11
	9 e-12

	2
	4
	8 e 8
	2 e -9
	200
	4 e 10
	3 e-11

	4
	6
	2 e 8
	6 e-9
	400
	1 e 10
	1 e-10

	6
	12
	7 e 7
	2 e-8
	600
	4 e 9
	4 e-10

	8
	22
	2 e 7
	7 e-8
	1200
	1 e 9
	1 e-9



The number of electrons collected per subaperture and per integration time is greater than 700 million in the worst case, and hundreds of times larger in the better cases, justifying our neglect of read noise and dark counts.  Columns 4 and 7 give the best contrast that could be achieved, limited by photon flux, and assuming no other sources of uncertainty, for the given cases of WFE (20 or 0.05 nm/hour).   
Conclusion
This memo provides a first step toward understanding the values of contrast that might be expected for the coronagraph on AFTA, in the regime where photon noise and thermal deformations dominate the noise budget.  The results show that the expected contrast depends sensitively on the degree of wavefront error produced by the optical telescope assembly.  An improved understanding of that error would be an important step toward estimating the science that can be accomplished with the AFTA coronagraph.
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