Technology Development for Coronagraphic Imaging

Nick Siegler
NASA Exoplanet Exploration Program
Technology Manager

01/07/14
ExEP Program News
American Astronomical Society
2014 Winter Meeting (Washington DC)
Block Diagram of a Typical Lyot Coronagraph

Light from star and planet

AFTA telescope

Optics

Control

Detector

FSM

DM #1, DM #2

Masks, Apodizers

Flip Mirror

LOWFS

LOWFS FPA

Imaging FPA

IFS

IFS FPA

The architecture downselect

Post-processing

Drift control loop (< 2 Hz)
(WF aberrations due to thermal changes)

Jitter correction loop (~ 250 Hz)
(pointing stability)

High–order wavefront control loop
(WF aberrations due to imperfections in optics)
Coronagraph Mask Fabrication

Possible Path to Closing Technology Gap

1. Selection process underway from six AFTA candidate coronagraph architectures to two.
 - Primary and backup
2. Fabricate sets of each mask
3. Demonstrate performance in the two HCITs
 - Mask/apodizer iterations likely
4. Radiation testing (if necessary)
 - Some of the masks may have dielectrics or liquid crystal polymers
5. Down-selection to one architecture

Exoplanet Exploration Program

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Description</th>
<th>Current Capability</th>
<th>Required Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG-1</td>
<td>Architecture</td>
<td>Mask design and optical layout are needed that meet AFTA requirements</td>
<td>Three coronagraph technologies have obtained (\leq 10^{-6}) raw contrast at 10% BW centered on 700 nm with an unobscured pupil.</td>
<td>One or more coronagraph technologies with (\leq 10^{-8}) raw contrast at 10% BW filters from 430-980 nm with an obscured pupil.</td>
</tr>
</tbody>
</table>

Before (unobscured pupil)

- Free standing transmissive binary silicon mask

AFTA (obscured pupil)

- Black Si substrate with reflective patterned Al coating

Shaped Pupil Mask

- Linear mask with profiled Ni layer (amplitude) coated with profiled cryolite (phase)

- Circular mask with profiled Ni layer (amplitude) coated with profiled MgF2 (phase)
Low-Order Wavefront Sensing and Control (LOWFS/C)

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Description</th>
<th>Current Capability</th>
<th>Required Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG-2</td>
<td>Low-Order Wavefront Sensing & Control</td>
<td>Pointing stability and thermal drift</td>
<td>≤ 10^{-6} raw contrast has only been achieved in a well-controlled stable lab environment and unobscured pupil.</td>
<td>Sufficient sensing and control of fast line-of-sight jitter and slow thermally-induced WFE to maintain closed-loop ≤ 10^{-8} raw contrast with an AFTA obscured pupil and simulated dynamic flight environment. Residual pointing stability expected to be ~0.4 mas for an expected AFTA on-orbit env’t.</td>
</tr>
</tbody>
</table>

Possible Path to Closing Technology Gap

1. Upon AFTA coronagraph selection and receiving telescope jitter and WF drift inputs, baseline LOWFS/C rqmts for each coronagraph.
2. Downselect from multiple LOWFS/C techniques.
3. Develop LOWFS/C algorithms using modeling.
4. Build and demonstrate LOWFS/C closed-loop performance in an independent vacuum testbed.
5. Deliver and integrate to coronagraph testbed (HCIT)

Knife Edged Mask
- Use image morphology from a slightly defocused PSF to sense WF
- Detector near image plane
- Can sense tilt

Zernike WFS
- Point diffraction interfer.
- Sense WF by interfering the WF with a reference WF created by a spatial filter
- Detector at pupil plane
- Can sense tilt

Phase Retrieval
- Use FT and slightly defocused image to sense the WF
- Detector near image plane
- Can sense tilt

Shack-Hartmann
- Use SH subaperture image centroid to measure local WF tilt
- Detector at pupil plane
- Can sense tilt

Fast WF Jitter
- PSF centroid or quad cell / pyramid APD for line of sight at high rate
- WF tilt only
IFS Ultra-Low Noise Detector

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Description</th>
<th>Current Capability</th>
<th>Required Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG-9</td>
<td>Ultra-Low Noise Visible Detector</td>
<td>Low-noise detector needed to characterize exoplanet spectra</td>
<td>Si detector cooled to 150K can achieve dark current < 0.0001 e/pix/s</td>
<td>Dark current < 0.0001 e/pix/s and read noise < 0.1 e/pix built with flight electronics in GEO radiation flight environment.</td>
</tr>
</tbody>
</table>

Possible Path to Closing Technology Gap

1. **Understand science operational scenarios and camera modes; derive preliminary detector requirements.**
 - < 0.1 e/pix read noise
 - ~0.0001 e/pix/s dark current
 - QE > 80% in the visible

2. **Survey existing detector and read-out electronics technologies**

3. **Select and acquire a baseline detector; characterize under realistic operational scenarios**
 - Includes low-noise electronics

4. **Perform radiation testing of the selected detector; before and after characterization.**

5. **Investigate flight read-out electronics design.**

6. **Design, build, and test flight-like electronics boards.**

Note: e2V Electron Multiplying CCD (a candidate device) was used in the development. ESA successfully demonstrated gain stability and radiation tolerance for EMCCDs.
Possible Path to Closing Technology Gap

1. Assess the performance of current state-of-the-art post-processing algorithms using existing HCIT data and simulated multiwavelength IFS data
 a) evaluate the regime where contrast in no longer dominated by phase errors.

2. Understand telescope/instrument temporal behavior and assess possible operational scenarios and observation strategies.

3. Develop simulations of realistic AFTA coronagraphic PSFs including thermal modeling, LOWFS, temporal variations.

4. Develop simulated PSF library from actual HCIT data with AFTA pupil.

5. Demonstrate algorithm by retrieving simulated planet through PSF subtraction.
System-Level Testbed Demonstration with Dynamic Wavefront

Key Demonstration Objectives

- Contrast performance of the fabricated masks, including bandwidth and throughput
- LOWFS/C subsystem and nulling algorithms
- Preliminary speckle reduction algorithms
- WFE sensitivity studies
- Optical modeling validation

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Description</th>
<th>Current Capability</th>
<th>Required Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG-6</td>
<td>Breadboard Demo</td>
<td>High-fidelity laboratory contrast demonstrations</td>
<td>Testing with a simulated star in vacuum with semi-static wavefront errors and unobscured pupil at 10% BW at 700 nm.</td>
<td>Testing with a simulated star and telescope simulator in vacuum with dynamic wavefront errors and obscured pupil at 10% BW at 430-980 nm.</td>
</tr>
</tbody>
</table>
ExEP Technology Development Process

- Technology gaps identified and described, gaps technically quantified
- Prioritized for relative Importance, Urgency, and Trend
- Plans created to retire the top priorities in time

Coronagraph technology plans for AFTA far along; starshade next.
Starshade Technology Development Areas

Exoplanet Exploration Program

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Description</th>
<th>Current</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1</td>
<td>Control of Scattered Sunlight</td>
<td>Sunlight scattered from starshade edges and surfaces risks being the dominant source of measurement noise.</td>
<td>Several preliminary designs of edge shapes have been studied through laboratory tests and optical modeling and have been reported in the literature.</td>
<td>Scattered sunlight must be suppressed to less than the expected brightness of exozodiacal dust.</td>
</tr>
<tr>
<td>S-2</td>
<td>Starshade Deployment</td>
<td>Demonstrate that an starshade can be deployed to within the budgeted tolerances.</td>
<td>Millimeter-wave mesh antennas have been deployed in space with diameters up to 17 m × 19 m and a surface accuracy of 2.4 mm.</td>
<td>Demonstrate the budgeted in-plane deployment tolerances, which are millimeter to sub-millimeter depending on the specific error terms.</td>
</tr>
<tr>
<td>S-3</td>
<td>Validation of starshade optical models</td>
<td>Experimentally validate the equations that predict the contrasts achievable with a starshade</td>
<td>Experiments have validated optical diffraction models to contrasts of (4 \times 10^{-10}), but yet with poor agreement near petal valleys and tips.</td>
<td>Experimentally validate models of diffracted intensity to (\sim 1 \times 10^{-11}) and perturbation intensities to 20%.</td>
</tr>
<tr>
<td>S-4</td>
<td>Thermal & Mechanical Dynamic Stability</td>
<td>The deployed tolerances must be maintained under typical observing conditions, including starshade rotation.</td>
<td>Existing designs and petal prototypes do not yet have the fidelity to predict on-orbit performance.</td>
<td>The mechanical and thermal properties of a deployed starshade must meet the budgeted tolerances under the anticipated observing conditions.</td>
</tr>
<tr>
<td>S-5</td>
<td>Formation Flying GN&C</td>
<td>Demonstrate that the GN&C system for an occultor will enable the required slew from star to star and positional stability for science observations.</td>
<td>Simulations have demonstrated that GN&C is tractable, though no flight demonstrations have yet been conducted.</td>
<td>Sensors and algorithms are required to move from star to star. The hand-off to science mode and the required tracking capability must be demonstrated.</td>
</tr>
<tr>
<td>S-6</td>
<td>Flight Performance System Modeling</td>
<td>Demonstrate using experimental data and validated thermo-mechanical and optical models that the full-scale flight occultor will achieve its baseline performance.</td>
<td>Tolerancing of error budget terms is well understood. Error budgets reliably predict contrast degradations in simulations. Models have not been fully validated experimentally.</td>
<td>Demonstrate using scaling laws, subcomponent models, combined with appropriate telescope models that a full-sized flight occultor will achieve a baseline contrast of (1 \times 10^{-10}) over the required</td>
</tr>
</tbody>
</table>

Funding Sources

- **ExEP**
 - **TDEM 12** → **Suzanne Casement/NGAS**
 - Starshade Straylight Mitigation through Edge Scatter Modeling and Sharp-Edge Materials Development
 - **TDEM 10**
 - **ExEP**
 - **TDEM 12** → **Tiffany Glassman/NGAS**
 - Demonstration of Starshade Starlight-Suppression Performance in the Field
 - **STDT**
 - **ExEP**

Note: one TDEM 09 mitigated risk of petal fabrication.

Lawson, AAS poster, 01/14