

Jet Propulsion Laboratory California Institute of Technology

Choosing the Future: The Kepner-Tregoe Matrix for Complex Trades

Dr. Gary H. Blackwood

Manager, NASA Exoplanet Exploration Program

Jet Propulsion Laboratory

February 28, 2022

California Institute of Technology © 2022. All rights reserved.

URS CL#22-1179

Introduction

- Technology roadmaps and precursor science require, or will lead to, decision points (onramps, offramps) to prioritize, include or close out investments.
- Technical leaders and management will be faced with difficult decisions (trades) to make.
- There are many different methodologies to making decisions (performing trades) - I'd like to share one technique that was developed in the 1950s by the Rand Corporation. It's called the Kepner-Tregoe Matrix and I and others have been using it to help APD make important decisions for over 10 years.
- The technique is very transparent, thorough, objective, creative, and inclusive. Facilitates consensus.
- Additionally, the technique can be initiated early to open a trade space and motivate risk reduction, while allowing a later trade closure.

- Why have a trade (decision) process?
- Lots of ways to make decisions (autocratic, democratic, consensus, list of pros-and-cons, running simulations, multi-vote), and many methods to choose from
- One familiar example:

May work for:

- Simple or low-stakes trades
- Y/N or Either/Or
- Where outcome is known a priori
- Selling an outcome
- Summarizing a valid trade process

<u>Disadvantages:</u>

- Hard to see absolute strengths and weaknesses
- Hard to see all relevant criteria and relative importance
- Harder to account for risks (and opportunities)
- Hard to infer the "basis" for the trade (thoroughness)
- As presented, doesn't admit other options (creativity)
- Thus not suited for complex trades with high stakes

Trade (Decision) Process: Why, What, and How

• Another familiar example:

May work well when:

- There are multiple criteria
- There are many options
- Evaluation is complex
- The outcome is not prescribed a priori – creativity accepted or needed
- Stakeholders need transparency

Example of structured, rational trade process

Structured trade process useful when:

- A decision has to be made (including leaving options open)
- The stakes are high
- The decision needs to stick (consensus is important, need buy-in)
- Requires figures-of-merit determined by analysis, simulations
- The decision will be revisited when new information is available
- Significant uncertainty or risks prevail
- Transparency, thoroughness, objectivity, creativity, and inclusion are important

A Useful Trade Process for our Applications

- I can show you one process that has worked well in similar technology / concept trade applications:
- Roman CGI coronagraph architecture
- Starshade Working Group
- Extreme Precision Radial Velocity
- Origins Concept
- HabEx Concept
- Lynx Concept
- in-Space Assembled Telescopes
- Deformable Mirror Survey
- Purchasing a home in LA...

• It is very easy to set up in use in your applications!

Decision (Trade) Process

- Decision Process is a bit like a recipe:
 - It has a "best format" (ingredients)
 - It has "best practices" (steps to follow)
 the "how"
- the "what"
- In this case, it's ~1 part Excel matrix ("what") and ~3 parts best practices ("how" you do it)
- Like any recipe one can improvise and take shortcuts, (within some limits)

THE WHAT

Best Format

Best format is the **Kepner-Tregoe method** for rational decision making

- Fundamentally one page, allows
 - Creativity (development of new options, alternatives)
 - Transparency
 - Inclusion
 - Objectivity (Quantitative)
 - Consensus
 - Re-visitation when new information is available
- Developed in the 1950's developed by Rand Corporation
- I learned at a UCLA Extension 3-day course

- Adapted from Kepner-Tregoe methods. <u>The Rational Manager</u>, Kepner and Tregoe, 1965
- A systematic approach for decision making.

Decisi	ion State	ment					_		_	
Б					Opti	ion 1	Opti	on 2	Opti	ion 3
ipti		Featur	re 1							
scr		Featur	re 2							
De		Featur	те 3							
	Musts									
		M1			~	/	•	/		/
		М2			~	•		?		?
tior		М3			~	1		•	>	<
luat	Wants		Weights							
Eva		W1	w1%		Rel s	core	Rel s	core		
		W2	w2%		Rel s	core	Rel s	core		
		W3	w3%		Rel s	core	Rel s	core		
			100%	Wt sum =>	Sco	re 1	Sco	re 2		
	Risks				С	L	С	L	С	L
		Risk 1			М	L	М	L		
		Risk 2			н	н	М	М		
Final	Decision	, Accou	inting for	Risks						
					C = Con	sequenc	ce, L = Lik	kelihood	ł	

K-T Trade Method

Decision Statement			

- 1. Decision Statement: raises or lowers the scope of the decision
- Criteria: Musts and Wants. Sets viability, then preference
- 3. Assign Weights to Wants
- 4. Describe **Options**
- 5. Screen Options vs Musts
- 6. Evaluate Options vs Wants
- 7. Calculate Weighted Sum
- 8. Evaluate Risks
- 9. (Evaluate **Opportunities**)
- 10. Final Decision, Accounting for Risks and Opportunities

But What about Technical Rigor?

• Typically categorize into

Science (e.g. beyond state of the ground at launch)

Technical (e.g. TRL by TBD NASA Key Decision Point)

Schedule (e.g. launch by TBD date)

Cost (e.g. likely target cost box)

- **Musts** relate to threshold, **Wants** can include "reflected Musts" (ie, go beyond the Must). Examples:
 - Must: characterize at least ~25 Hab-zone Earths, or,
 - Want: maximize # characterizations
- Musts are go/no_go, Wants are relative and weighted
- **Risks/Opportunities** are handled, but separately, as in, would the answer change if this risk (or opportunity) came true?
 - Example: would architecture change if the frequency of exo-earths was 3x lower or higher than assumed?

- AFTA Coronagraph Working Group AFTA => WFIRST => Roman CGI
 - Final presentation: follow link at bottom this page
 - http://exep.jpl.nasa.gov/presentations/

http://wfirst.gsfc.nasa.gov/science/AFTA_Coronagraph_Arch_Selection/Coro nagraph_Downselect_Rec_Dec13_2013.pdf

• These represent Program, Study Office, SDT, and Community:

[Signatures when ready]	Charter
Joan Catulla Joan Centrella Program Scientist AFTA Study	June 20, 2013
Astrophysics Division Science Mission Directorate NASA Headquarters	
Lio S. JaPiana	JURE 20,2013
Program Executive AFTA Study Astrophysics Division	
Science Mission Directorate NASA Headquarters	
Douglas Hudgins	nis June 20, 2013
Program Scientist Exoplanet Exploration Program Astrophysics Division	
NASA Headquarters	
Minge	June 21, 2013
Anthony Carro Program Executive Exoplanet Exploration Program Astrophysics Division	
Science Mission Directorate NASA Headquarters	

Workshop Organizers:

Gary Blackwood (NASA JPL) Kevin Grady (NASA GSFC) Feng Zhao (NASA JPL)

Steering Group: Scott Gaudi (OSU) Neil Gehrels (NASA GSFC) Dave Spergel (Princeton U) Tom Greene (NASA ARC) Chas Beichman (NExScI) Jeff Kruk (NASA GSFC) Karl Stapelfeldt (NASA GSFC) Wes Traub (NASA JPL) Bruce MacIntosh (LLNL) Peter Lawson (NASA JPL)

Members:

Jeremy Kasdin (Princeton U) Mark Marley (NASA ARC) Marc Clampin (NASA GSFC) Olivier Guyon (UofA) Gene Serabyn (NASA JPL) Stuart Shaklan (NASA JPL) Remi Soummer (STScI) John Trauger (NASA JPL) Marshall Perrin (STScI) Rick Lyon (NASA GSFC) Dave Content (NASA GSFC) Mark Melton (NASA GSFC) Cliff Jackson (NASA GSFC) John Ruffa (NASA GSFC) Jennifer Dooley (NASA JPL) Mike Shao (NASA JPL)

Trade Criteria: Defining a Successful Outcome

DECISION STATEMENT: Recommend a primary and backup coronagraph architecture (option) to focus design and technology investments

MUSTS (Requirements): Go/No_Go

- 1. Science: Does the proposed architecture meet the <u>threshold</u> science drivers?
- 2. Interfaces: For the <u>threshold</u> science, does the architecture meet telescope and spacecraft requirements of the observatory as specified by the AFTA project (DCIL¹)
- 3. Technology Readiness Level (TRL) Gates: For <u>threshold</u> science, is there a credible plan to be at TRL5 at start of FY17 and at TRL6 at start of FY19 within available resources?
- 4. Is the option ready in time for this selection process?
- 5. Is the architecture applicable to future earth-characterization missions (no showstoppers)?

WANTS (Goals): Relative to each other, for those that pass the Musts:

- 1. Science: Relative strength of science beyond the threshold
- Technical: Relative technical criteria
 See details
- 3. Programmatic: Relative cost of plan to meet TRL Gates

RISKS and OPPORTUNITIES – scored as H,M,L

¹DCIL = Dave Content Interface List

Evaluation Criteria: Defining a Successful Outcome

Criteria: Wants

Wants		Weights
W1	<u>Science</u>	40
а	Relative Science yield (1.6, x10) beyond M1-T	K
W2	Technical	30
а	Relative demands on observatory (DCIL), except for jitter and thermal stability	
b	Relative sensitivities of post-processing to low order aberrations	\swarrow
С	Demonstrated Performance in 10% Light	
d	Relative complexity of design	
e	Relative difficulty in alignment, calibration, ops	
W3	Programmatic	30
а	Relative Cost of plans to meet TRL gates	
	Wt. sum =>	100%

- Relative Science yield beyond the threshold "Must"
- Post processing algorithms required to remove dark hole speckles, and degree of speckles sensitivity to optical low-order aberrations (static and dynamic). How sensitive are the dark holes of the technologies to these aberrations?
 - Demonstrated performance in 10% light: what has been accomplished through investments to date?

Criteria: Risks and Opportunities

Risks	(all judged to be Hgh consequence)	
Risk 1	Technical risk in meeting TRL5 gate	
Risk 2	Schedule or Cost risk in meeting TRL5 Gate	
Risk 3	Schedule or Cost risk in meeting TRL6 Gate	
Risk 4	Risk of not meeting at least threshold science	
Risk 5	Risk of mnfr tolerances not meeting BL science	
Risk 6	Risk that wrong architecture is chosen due to assumption that all iitter >2Hz is only tip/tilt	
Risk 7	Risk that wrong architecture is chosen due to any assumption made for practicality/simplicity	
Risk 8	Risk that ACWG simulations (by JK and BM) overestimate the science yield due to model fidelity	
Opportunities	(judged to be High benefit)	
Oppty	1 Possibility of Science gain for 0.2marcsec jitter, x30	

- Risks account for uncertainties in the prior evaluations:
 - In the Musts: credible plan, threshold science
 - In the Wants: the relative cost, the science beyond the Must)
- Also considered any parameters in the decision matrix to which the trade evaluations may be sensitive (e.g., jitter)
- Opportunity: considers improved science yield if the actual jitter is lower, and speckle subtraction is better

Results: Full Trade Matrix

Indicates Sig. Discriminator in ACWG discussion Decision Statement: Recommend one Primary and one Backup coronagraph architecture (option) to focus design and technology development Scores entered as Option 3 Option 1 Option 2 Option 4 Option 5 Option 6 Notes Desc SPC PIAACMC vvc VNC - DA VNC - PO Name HIC Musts Programmatic group U M1 - T Science: Meet Threshold requirements? (1.6, x10) No No M2 Interfaces: Meets the DCII **? ш Consensus sought TRL Gates: For baseline science is there a credible yes, or expected likely unknown M3 plan to meet TRL5 at start of FY17 and TRL6 at start U No U no, or expected showstoppe but not required; of FY19 within available resources? M4 Ready for 11/21 TAC briefing Yes Yes No Architecture applicable to future earth-M5 U no dissent characterization missions Wants Weights SPC PIAACMC HLC vvc VNC-DA VNC - PO received 5 W1 Science 40 Range of opinions between "significant and small". For SPC Relative Science yield (1.6, x10) beyond M1-T Sm/Sig Sm/Sig VL VL a Best and VNC2 the search area is ~3 times less than 360deg, and Consensus that was taken into acct in comparisons W2 Technical 30 Relative demands on observatory (DCIL), except reached after ~24 Best Best Best а Best Small for jitter and thermal stability For n-lambda over D or different amplitudes the designs will Relative sensitivities of post-processing to low Sig VL U Best Sig hours of group order aberrations have the same relative ranking Demonstrated Performance in 10% Light Small Best VL Demonstrated Performance (10%) and Prediction Sig Sig d Relative complexity of design Best Small Best Small Sig discussion on all Identify "Best" and others are Relative difficulty in alignment, calibration, ops Best Small Small Sig/Sm e -Wash W3 Programmatic 30 -Small Difference Relative Cost of plans to meet TRL gates Best Small Best Sig -Significant Difference Sig points except a -Very Large Difference Wt. sum => 100% those indicated in Risks (all judged to be Hgh consequence) SPC PIAACMC HLC VVC VNC-DA VNC - PO yellow С С С С С С L L PIAA trend over the last three working days lower, but Risk 1 Technical risk in meeting TRL5 gate М M/L M/H ecommendation to keep M Other colors for М M/L M/H Risk 2 Schedule or Cost risk in meeting TRL5 Gate М М Risk 3 Schedule or Cost risk in meeting TRL6 Gate evaluation added Risk 4 Risk of not meeting at least threshold science afterwards for One dissent, previous TDEM performance track record and Risk 5 Risk of mnfr tolerances not meeting BL science M/L Bala's assessment should be taken into account Risk that wrong architecture is chosen due to M/H м м/н м Risk 6 presentation ssumption that all jitter >2Hz is only tip/tilt Risk that wrong architecture is chosen due to any open ended question, spawned evaluations on Risk 5, Risk 6, Risk 8, and Oppty 1 Risk 7 ssumption made for practicality/simplicity clarity Risk that ACWG simulations (by JK and BM) Model validation is a risk that needs to be evaluated in the overestimate the science yield due to model discussed; not enough understanding at this time to make an evaluation. Risk 8 future Opportunities (judged to be High benefit) SPC PIAACMC HLC vvc VNC-DA VNC - PO в L в L в L в L в В L M/H М Oppty 1 Possibility of Science gain for 0.2marcsec jitter, x30 L L Final Decision, Accounting for Risks and Opportunities: C = Consequence, L = Likelihood, B=Benefit indicates those few areas where consensus was not achieved **DCIL = Dave Content Interface List

consensus achieved on balance of matrix

Results (Opportunity): Greater Science Yield for Lower Jitter, Greater Speckle Suppression

•	Revis	it Opportunity Scien	ce:		/	Colors indicate pass/fail v / Threshold					
			M1-T ↓	K			ues indicate the Science nt "Beyond the Must" for sign Point (1.6mas, x10)				
	Threshold	@1.6mas, x10	Value	SPC	PIAA	HLC					
	1	Wavelength: 430-980 nm, 10% bandpass, pol.		yes	yes	yes					
	2	Outer Disk: 100 zodi@2AU = 6e-9 at 250 mas @ 550 nm	6 (E-9)	5	6	5	3 leaders have				
	2	Gas Giant Detection: Depth>10 for 4-14 RE	10	10	11	12	unierent science				
	3	550 nm photometry of doppler planets		1	3	0	strenaths				
	Oppty	@ 0.2mas, x30	Value	SPC	PIAA	HLC					
	2	Outer Disk: 100 zodi@2AU = 6e-9 at 250 mas @ 550 nm	<6 <mark>(</mark> E-9)	2	0.4	0.6	Can we choose a				
	5	HZ Disk: 10 zodi@1AU = 10e-9@ 130mas @450 nm	< 10 (E-9)	n/a	10	10	primary architecture				
	3	Gas Giant Detection: Depth>10 for 4-14 RE	>10	23	43	14	that plays to				
	3	550 nm photometry of doppler planets		8	31	15	that plays to				
	4	Gas Giant Spectrum: Doppler planets at 550nm, 2 months	Max	1	12	5	combined strengths?				
	6	Ice Giant Detection: Depth >2 for < 4RE	>2	0.4	3	3.6					

Colors indicate degree of Science Benefit for Oppty (0.2mas, x30)

Final Trade Evaluation considering OMC=Option 7

				Opt	ion 7	Op	tion 1	Opti	ion 2	Ър	tion 3
	Name			0	мс	9	PC	PIA	CMC	ŀ	ILC
Mus	ts	Programmatic			Yes		Yes		Yes		Yes
War	ts		Weight	A	BC	9	PC	PIAA		F	ILC
	W1	Science	40					2			
	а	Relative Science yield (1.6, x10) beyond M1-T			Sm/Si g		Sm/Sig		Best		Sm/Si
	W2	Technical	30								
	a	Relative demands on observatory (DCIL), except for jitter and thermal stability			Wash		Best		Best		Best
	Ь	Relative sensitivities of post-processing to low order aberrations			Best		Best		Sig		Sig
	с	Demonstrated Performance in 10% Light			Best		Small		Sig	_	Best
	d	Relative complexity of design			Best		Best	-	Small	_	Best
	e	Relative difficulty in alignment, calibration, ops			Best	-	Best		Small	_	Best
	W3	Programmatic	30			-		Cesell		_	
	a	Relative Lost of plans to meet TRL gates	_	_	Small		Best	_	Small		Best
		Wt. sum =>	100%								
Risk	5	(all judged to be Hgh consequence)		A	BC	9	PC	PIA	CMC	ŀ	ILC
	D . 1 4		1	C		C					
	HISK I	Technical risk in meeting TRL5 gate	8						M	_	MIL
	Risk 2	Schedule or Cost risk in meeting TRL5 Gate			L.		L		М		MIL
	Risk 3	Schedule or Cost risk in meeting TRL6 Gate			L.		L		L		L
	Risk 4	Risk of not meeting at least threshold science			L		L		L		L
	Risk 5	Risk of mnfr tolerances not meeting BL science			L.		L		L		L
	Risk 6	Risk that wrong architecture is chosen due to			L		L		MIH		м
		assumption that all jitter >2Hz is only tipitilit	-								
oortu	nities	(judged to be High benefit)		A	BC	9	iPC	PIAA		F	ILC
				В	L	В	L	В	L	3	L
							100				11

- Define OMC = **Occulting Mask** Coronagraph
- Includes SPC+HL masks on different filter wheels
- OMC emerges as strongest candidate for Primary Architecture
- **PIAACMC** emerges as • the candidate for the **Backup Architecture**

THE HOW

- A <u>Facilitator</u> that does not have a stake in the outcome, other than that there IS an outcome
- A good <u>Recorder</u>
 - Next steps: experiment with collaborative tools
- First agree on Decision Statement, and Criteria
- Careful distinction of description vs evaluation (always in 2 steps)
- Useful to establish SFOM, TFOM, PFOM
 - Science, Technical, and Programmatic figures-of-merit
 - Sub-teams for evaluation of SFOM, TFOM, PFOM
- Handling consensus and dissent
- Timeline expectations: long form and short form

Working version of Consensus (yes, NASA has a policy)

- Prefer consensus in the time available, else, dissent will be captured and we will move on
 - Will follow 7120.5E, Ch 3.4, "Process for Handling Dissenting Opinion"
 - Three options: (1) Agree, (2) Disagree but fully support the decision, (3) Disagree and raise a dissenting opinion
 - Treat (1) and (2) as consensus for STDT
 - Dissents (3) will be documented and delivered to senior NASA management (APD DD) per 7120.5E

Results (Musts)

DECISION STATEMENT: Recommend **one DRM concept** Mirror Optical Assembly Architecture to **focus the design** for the final report and identify any **feasible alternates**

					Adjustable		Full Shell	Sil	icon Meta Shell
MUS	TS								
	Science	Per de	fn / ana	alysis of SET					
M1	Optical performance will meet reqts flowing down from Science Trace Matrix				Y		Y		Y
	Technical	Per de	fn / ana	alysis of TET					
M2	Credible roadmap from today's status to predict flight on-orbit performance				Y		Y		Y
М3	Performance modeling tools related to current results are demonstrated to be credible				Y		Y		Y
M4	Repeatable fabrication process based on current status				Y		Y		Y
M5	Credible error budget that flows down to each mirror element				Y		Y		Y
M6	Expected to survive launch				Y		Y		Y
	Programmatic	Per de	fn / ana	alysis of PET					
M7	Show a credible plan to meet TRL 4-6				Y		Y		Y
M8	Produce the mirror assembly within the Program schedule allocation				Y	2	Y		Y

- All 3 architectures passed the "Musts".
- One note related to the Science criteria is that the full-shell optical design used for this study requires additional integration time for some observations. This was deemed by the LMAT to have minor consequence and can be mitigated.

Final Trade Matrix

- Consensus reached on all Musts, Wants, Risks and Opportunities in 20 hours of LMAT clock time
- One Want was not in consensus (see dissenting opinion)
- Only Key Wants (78 points of 100) were scored in weighted sum
- Effect of non-Key Wants and Dissent did not change Final Recommendation
- Final Consensus Recommendation: (accounting for Risks and Opportunities): Silicon Meta Shell as DRM concept, Adjustable and Full Shell as feasible alternates

DE	CISION STATEMENT: Recommend	one D	ORM o	concept N	lirror	Optical Assem	bly A	Architecture to f	ocu	s the design
IOF	he linal report and identity any reasin	ne an	terna	les		Adjustable		Full Shell	Sili	con Meta Shell
MUS	TS									
	Science	Per de	efn / an	alysis of SET						
M1	Optical performance will meet reqts flowing down from Science Trace Matrix					Y		Y		Y
M2	Technical Credible roadmap from today's status to predict	Per de	efn / an	alysis of TET		Y		Y		Y
МЗ	Performance modeling tools related to current results are demonstrated to be credible					Y		Y		Y
M4	Repeatable fabrication process based on current status					Y		Y		Y
M5	Credible error budget that flows down to each mirror element					Y		Y		Y
M6	Expected to survive launch					Y		Y		Y
M7	Programmatic Show a credible plan to meet TRL 4-6	Per de	efn / an	alysis of PET		Y		Y		Y
м8	Produce the mirror assembly within the Program schedule allocation					Y		Y		Ŷ
VAN	ITS	Kev	Driving	a Weiahts						
÷	Technical	Per de	≠ efn / an	alysis of TET	- Score	Ψ	- Score	•	- Score	•
W1	Highest predicted technology readiness at Astro2020 by March 2020	к	D	12	7	small-significant	7	small-significant	10	Small difference
W2	Relative demonstrated performance	к	D	12	4	SIG./VL DIFFERENCE	4	SIG./VL DIFFERENCE	10	BEST
ΝЗ	Relative credibility of roadmaps from today's status to predict flight on-orbit performance	к	D	12	5	SIG. DIFFERENCE	5	SIG. DIFFERENCE	10	BEST
V 4	(renects M2) Relative simplicity of mirror assembly production process and test	к		10	8	small difference	10	BEST	10	BEST
V 5	Relative contamination control (cost, complexity)			1		DIFFERENCE		BEST		DIFFERENCE
V6	Relative ease of implementing stray light control			3		DIFFERENCE		BEST		DIFFERENCE
V7	Relative ease of implementing thermal control and baffling			4		DIFFERENCE		BEST		BEST
V8	Relative ease of creating a system option for charged particle mitigation			1				WASH		
/10	Relative confidence in launch survivability (reflects M6)			3		WASH		WASH		
/11	Relative complexity and accuracy of ground calibration of mirror assembly	к		6	8	small difference	10	BEST	10	BEST
V13	(cost, mass, spacecraft resources, etc)	к	D	10	8	small difference	5	SIG. DIFFERENCE	10	BEST
	Subtotal	Por de	ofn / on	alveis of PET		400		402		620
V12	Relative cost and credibility of grass-roots cost	ĸ	, in , un	10	10	WASH	10	WASH	10	WASH
v14	estimate of the mirror assembly through delivery Lowest relative cost to reach TRL5 and 6			3				WASH		
v16	Best assessment of the cost of ground calibration			3		DIFFERENCE		BEST		BEST
v17	Earliest date to reach TRL5 and 6			4		DIFFERENCE		BEST		DIFFERENCE
V18	Best assessment of the schedule to mirror assembly delivery (reflects M8)	к		6	8	small difference	10	BEST	8	small difference
	Subtotal					148		160		148
	Total			100	548		562		768	
sĸ	S See wording for each in TET package			PET Ref#		C, L		C, L		C, L
R 1	Credible Roadmap (WRT M2)					3, 3		3, 2		3, 2
32	Repeatable correct fabrication					5, 1		5, 1		5, 1
3-5	Credible Error Budget					5, 1		3, 1		3, 2
R 6	to meet margin) Programmatic impact of Low Mirror vield					3, 1		3, 1		3, 1
R7	IF the process yield is less than expected then it will Mirror Technology Maturation			R1		3, 3		4,3		4,2
<8 20	(only risk related to M7)			R2		3,4		3,4		3,2
. 9	Efficiency of Mirror Alignment and Bonding (no eval			R3		4, 2		4, 1		4,3
.10	for full shell) Difference in Execution of Repetitive Activities			R4		3, 2		12		3,4
.11 12	(including metrology environment) Mirror Shell delivery by Coming			R6		∠, 3 n/a		1,3		ی, 1 n/a
13	Adhesive Cure Time			R7						3, 2
14	Risk of observatory mass exceeding LV requrements If the mirror assembly mass increases					4,1		4,3		4, 1
R15	beyond 2600kg (includes MGA) Meeting 1.2 arc seconds: If cannot meet 1.2 arc seconds due to =>					5,2		5,2		5,2
PPO	ORTUNITIES See wording for each in TET package	,		PET Ref#		B, L		B, L		B, L
01	Coatings					4, 4		4, 4		4, 4
02	Adjustability to help meet requirements before and after launch									
03 05	ESA and ASI Partnership (Full Shell) If the mirror assembly can be redesigned (while			01		3.4		3.4		3.5
	meeting all other requirements) to improve grasp at									

• Out of 780 possible points.

DECISION STATEMENT: Recommend **one DRM concept** Mirror Optical Assembly Architecture to **focus the design** for the final report and identify any **feasible alternates**

						Adjustable		Full Shell	Silicon Meta Shell		
W.~	TS 💌	Ke	Driv'	Weight ⁻	•	•	•	•	•	•	
	Technical	Per de	efn / ana	lysis of TET	Score		Score	5	Score		
W1	Highest predicted technology readiness at Astro2020 by March 2020	к	D	12	7	small-significant	7	small-significant	10	Small difference	
W2	Relative demonstrated performance	к	D	12	4	SIG./VL DIFFERENCE	4	SIG./VL DIFFERENCE	10	BEST	
W3	Relative credibility of roadmaps from today's status to predict flight on-orbit performance (reflects M2)	к	D	12	5	SIG. DIFFERENCE	5	SIG. DIFFERENCE	10	BEST	
W4	Relative simplicity of mirror assembly production process and test	к		10	8	small difference	10	BEST	10	BEST	
W11	Relative complexity and accuracy of ground calibration of mirror assembly	к		6	8	small difference	10	BEST	10	BEST	
W13	Relative impact of technical accommodation (cost, mass, spacecraft resources, etc)	к	D	10	8	small difference	5	SIG. DIFFERENCE	10	BEST	
	Subtotal					400		402		620	
	Programmatic	Per de	efn / ana	lysis of PET	, T						
W12	Relative cost and credibility of grass-roots cost estimate of the mirror assembly through delivery	к		10	10	WASH	10	WASH	10	WASH	
W18	Best assessment of the schedule to mirror assembly delivery (reflects M8)	к		6	8	small difference	10	BEST	8	small difference	
	Subtotal					148		160		148	
	Total			100	548		562		76 8		

W4, W11, W12, W18 were Key but not Driving W3 was Dissented – see detail following pages

Come Back to: Buying a Home

Summary

- A rationale decision process is needed when the decision matters
 - 1. A decision has to be made (including leaving options open)
 - 2. The stakes are high
 - 3. The decision needs to stick (consensus is important, need buy-in)
 - 4. Requires figures-of-merit determined by analysis, simulations
 - 5. The decision will be revisited when new information is available
 - 6. Significant uncertainty or risks prevail
 - 7. Transparency, thoroughness, objectivity, creativity, and inclusion are important
- A great format exists and has been used effectively
- A set of best practices are essential
- It is very easy to set up in use in your applications!
- KT methods may be useful in the very near future for the IROUV

BACKUP